x86/KVM/VMX: Add module argument for L1TF mitigation
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / Documentation / static-keys.txt
CommitLineData
603699bb
MCC
1===========
2Static Keys
3===========
1cfa60dc 4
603699bb 5.. warning::
412758cb 6
603699bb 7 DEPRECATED API:
412758cb 8
603699bb
MCC
9 The use of 'struct static_key' directly, is now DEPRECATED. In addition
10 static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following::
412758cb 11
603699bb
MCC
12 struct static_key false = STATIC_KEY_INIT_FALSE;
13 struct static_key true = STATIC_KEY_INIT_TRUE;
14 static_key_true()
15 static_key_false()
412758cb 16
603699bb 17 The updated API replacements are::
1cfa60dc 18
603699bb
MCC
19 DEFINE_STATIC_KEY_TRUE(key);
20 DEFINE_STATIC_KEY_FALSE(key);
21 DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
22 DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
23 static_branch_likely()
24 static_branch_unlikely()
25
26Abstract
27========
1cfa60dc
JB
28
29Static keys allows the inclusion of seldom used features in
30performance-sensitive fast-path kernel code, via a GCC feature and a code
603699bb 31patching technique. A quick example::
1cfa60dc 32
412758cb 33 DEFINE_STATIC_KEY_FALSE(key);
1cfa60dc
JB
34
35 ...
36
412758cb 37 if (static_branch_unlikely(&key))
1cfa60dc
JB
38 do unlikely code
39 else
40 do likely code
41
42 ...
412758cb 43 static_branch_enable(&key);
1cfa60dc 44 ...
412758cb 45 static_branch_disable(&key);
1cfa60dc
JB
46 ...
47
412758cb 48The static_branch_unlikely() branch will be generated into the code with as little
1cfa60dc
JB
49impact to the likely code path as possible.
50
51
603699bb
MCC
52Motivation
53==========
1cfa60dc
JB
54
55
56Currently, tracepoints are implemented using a conditional branch. The
57conditional check requires checking a global variable for each tracepoint.
58Although the overhead of this check is small, it increases when the memory
59cache comes under pressure (memory cache lines for these global variables may
60be shared with other memory accesses). As we increase the number of tracepoints
61in the kernel this overhead may become more of an issue. In addition,
62tracepoints are often dormant (disabled) and provide no direct kernel
63functionality. Thus, it is highly desirable to reduce their impact as much as
64possible. Although tracepoints are the original motivation for this work, other
65kernel code paths should be able to make use of the static keys facility.
66
67
603699bb
MCC
68Solution
69========
1cfa60dc
JB
70
71
72gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
73
74http://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
75
76Using the 'asm goto', we can create branches that are either taken or not taken
77by default, without the need to check memory. Then, at run-time, we can patch
78the branch site to change the branch direction.
79
603699bb 80For example, if we have a simple branch that is disabled by default::
1cfa60dc 81
412758cb 82 if (static_branch_unlikely(&key))
1cfa60dc
JB
83 printk("I am the true branch\n");
84
85Thus, by default the 'printk' will not be emitted. And the code generated will
86consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
87straight-line code path. When the branch is 'flipped', we will patch the
88'no-op' in the straight-line codepath with a 'jump' instruction to the
89out-of-line true branch. Thus, changing branch direction is expensive but
90branch selection is basically 'free'. That is the basic tradeoff of this
91optimization.
92
93This lowlevel patching mechanism is called 'jump label patching', and it gives
94the basis for the static keys facility.
95
603699bb
MCC
96Static key label API, usage and examples
97========================================
1cfa60dc
JB
98
99
603699bb 100In order to make use of this optimization you must first define a key::
1cfa60dc 101
412758cb 102 DEFINE_STATIC_KEY_TRUE(key);
1cfa60dc 103
603699bb 104or::
1cfa60dc 105
412758cb
JB
106 DEFINE_STATIC_KEY_FALSE(key);
107
1cfa60dc 108
412758cb 109The key must be global, that is, it can't be allocated on the stack or dynamically
1cfa60dc
JB
110allocated at run-time.
111
603699bb 112The key is then used in code as::
1cfa60dc 113
412758cb 114 if (static_branch_unlikely(&key))
1cfa60dc
JB
115 do unlikely code
116 else
117 do likely code
118
603699bb 119Or::
1cfa60dc 120
412758cb 121 if (static_branch_likely(&key))
1cfa60dc
JB
122 do likely code
123 else
124 do unlikely code
125
412758cb
JB
126Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
127be used in either static_branch_likely() or static_branch_unlikely()
9bb0e9cb 128statements.
1cfa60dc 129
603699bb 130Branch(es) can be set true via::
1cfa60dc 131
603699bb 132 static_branch_enable(&key);
1cfa60dc 133
603699bb 134or false via::
412758cb 135
603699bb 136 static_branch_disable(&key);
1cfa60dc 137
603699bb 138The branch(es) can then be switched via reference counts::
1cfa60dc 139
412758cb
JB
140 static_branch_inc(&key);
141 ...
142 static_branch_dec(&key);
1cfa60dc 143
412758cb
JB
144Thus, 'static_branch_inc()' means 'make the branch true', and
145'static_branch_dec()' means 'make the branch false' with appropriate
146reference counting. For example, if the key is initialized true, a
147static_branch_dec(), will switch the branch to false. And a subsequent
148static_branch_inc(), will change the branch back to true. Likewise, if the
149key is initialized false, a 'static_branch_inc()', will change the branch to
150true. And then a 'static_branch_dec()', will again make the branch false.
1cfa60dc 151
7a34bcb8
PB
152The state and the reference count can be retrieved with 'static_key_enabled()'
153and 'static_key_count()'. In general, if you use these functions, they
154should be protected with the same mutex used around the enable/disable
155or increment/decrement function.
156
5a40527f
MZ
157Note that switching branches results in some locks being taken,
158particularly the CPU hotplug lock (in order to avoid races against
159CPUs being brought in the kernel whilst the kernel is getting
160patched). Calling the static key API from within a hotplug notifier is
161thus a sure deadlock recipe. In order to still allow use of the
162functionnality, the following functions are provided:
163
164 static_key_enable_cpuslocked()
165 static_key_disable_cpuslocked()
166 static_branch_enable_cpuslocked()
167 static_branch_disable_cpuslocked()
168
169These functions are *not* general purpose, and must only be used when
170you really know that you're in the above context, and no other.
171
603699bb 172Where an array of keys is required, it can be defined as::
ef0da55a
CM
173
174 DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
175
603699bb 176or::
ef0da55a
CM
177
178 DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
1cfa60dc
JB
179
1804) Architecture level code patching interface, 'jump labels'
181
182
183There are a few functions and macros that architectures must implement in order
184to take advantage of this optimization. If there is no architecture support, we
3821fd35
JB
185simply fall back to a traditional, load, test, and jump sequence. Also, the
186struct jump_entry table must be at least 4-byte aligned because the
187static_key->entry field makes use of the two least significant bits.
1cfa60dc 188
603699bb
MCC
189* ``select HAVE_ARCH_JUMP_LABEL``,
190 see: arch/x86/Kconfig
1cfa60dc 191
603699bb
MCC
192* ``#define JUMP_LABEL_NOP_SIZE``,
193 see: arch/x86/include/asm/jump_label.h
1cfa60dc 194
603699bb
MCC
195* ``__always_inline bool arch_static_branch(struct static_key *key, bool branch)``,
196 see: arch/x86/include/asm/jump_label.h
412758cb 197
603699bb
MCC
198* ``__always_inline bool arch_static_branch_jump(struct static_key *key, bool branch)``,
199 see: arch/x86/include/asm/jump_label.h
1cfa60dc 200
603699bb
MCC
201* ``void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type)``,
202 see: arch/x86/kernel/jump_label.c
1cfa60dc 203
603699bb
MCC
204* ``__init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type)``,
205 see: arch/x86/kernel/jump_label.c
1cfa60dc 206
603699bb
MCC
207* ``struct jump_entry``,
208 see: arch/x86/include/asm/jump_label.h
1cfa60dc
JB
209
210
2115) Static keys / jump label analysis, results (x86_64):
212
213
214As an example, let's add the following branch to 'getppid()', such that the
603699bb 215system call now looks like::
1cfa60dc 216
603699bb
MCC
217 SYSCALL_DEFINE0(getppid)
218 {
1cfa60dc
JB
219 int pid;
220
603699bb
MCC
221 + if (static_branch_unlikely(&key))
222 + printk("I am the true branch\n");
1cfa60dc
JB
223
224 rcu_read_lock();
225 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
226 rcu_read_unlock();
227
228 return pid;
603699bb
MCC
229 }
230
231The resulting instructions with jump labels generated by GCC is::
232
233 ffffffff81044290 <sys_getppid>:
234 ffffffff81044290: 55 push %rbp
235 ffffffff81044291: 48 89 e5 mov %rsp,%rbp
236 ffffffff81044294: e9 00 00 00 00 jmpq ffffffff81044299 <sys_getppid+0x9>
237 ffffffff81044299: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
238 ffffffff810442a0: 00 00
239 ffffffff810442a2: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
240 ffffffff810442a9: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
241 ffffffff810442b0: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
242 ffffffff810442b7: e8 f4 d9 00 00 callq ffffffff81051cb0 <pid_vnr>
243 ffffffff810442bc: 5d pop %rbp
244 ffffffff810442bd: 48 98 cltq
245 ffffffff810442bf: c3 retq
246 ffffffff810442c0: 48 c7 c7 e3 54 98 81 mov $0xffffffff819854e3,%rdi
247 ffffffff810442c7: 31 c0 xor %eax,%eax
248 ffffffff810442c9: e8 71 13 6d 00 callq ffffffff8171563f <printk>
249 ffffffff810442ce: eb c9 jmp ffffffff81044299 <sys_getppid+0x9>
250
251Without the jump label optimization it looks like::
252
253 ffffffff810441f0 <sys_getppid>:
254 ffffffff810441f0: 8b 05 8a 52 d8 00 mov 0xd8528a(%rip),%eax # ffffffff81dc9480 <key>
255 ffffffff810441f6: 55 push %rbp
256 ffffffff810441f7: 48 89 e5 mov %rsp,%rbp
257 ffffffff810441fa: 85 c0 test %eax,%eax
258 ffffffff810441fc: 75 27 jne ffffffff81044225 <sys_getppid+0x35>
259 ffffffff810441fe: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
260 ffffffff81044205: 00 00
261 ffffffff81044207: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
262 ffffffff8104420e: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
263 ffffffff81044215: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
264 ffffffff8104421c: e8 2f da 00 00 callq ffffffff81051c50 <pid_vnr>
265 ffffffff81044221: 5d pop %rbp
266 ffffffff81044222: 48 98 cltq
267 ffffffff81044224: c3 retq
268 ffffffff81044225: 48 c7 c7 13 53 98 81 mov $0xffffffff81985313,%rdi
269 ffffffff8104422c: 31 c0 xor %eax,%eax
270 ffffffff8104422e: e8 60 0f 6d 00 callq ffffffff81715193 <printk>
271 ffffffff81044233: eb c9 jmp ffffffff810441fe <sys_getppid+0xe>
272 ffffffff81044235: 66 66 2e 0f 1f 84 00 data32 nopw %cs:0x0(%rax,%rax,1)
273 ffffffff8104423c: 00 00 00 00
1cfa60dc
JB
274
275Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
276vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
277to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
603699bb 278label case adds::
1cfa60dc 279
603699bb 280 6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
1cfa60dc
JB
281
282If we then include the padding bytes, the jump label code saves, 16 total bytes
c94bed8e 283of instruction memory for this small function. In this case the non-jump label
c79a8d85 284function is 80 bytes long. Thus, we have saved 20% of the instruction
1cfa60dc
JB
285footprint. We can in fact improve this even further, since the 5-byte no-op
286really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
287However, we have not yet implemented optimal no-op sizes (they are currently
288hard-coded).
289
290Since there are a number of static key API uses in the scheduler paths,
291'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
292performance improvement. Testing done on 3.3.0-rc2:
293
603699bb 294jump label disabled::
1cfa60dc
JB
295
296 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
297
298 855.700314 task-clock # 0.534 CPUs utilized ( +- 0.11% )
299 200,003 context-switches # 0.234 M/sec ( +- 0.00% )
300 0 CPU-migrations # 0.000 M/sec ( +- 39.58% )
301 487 page-faults # 0.001 M/sec ( +- 0.02% )
302 1,474,374,262 cycles # 1.723 GHz ( +- 0.17% )
303 <not supported> stalled-cycles-frontend
304 <not supported> stalled-cycles-backend
305 1,178,049,567 instructions # 0.80 insns per cycle ( +- 0.06% )
306 208,368,926 branches # 243.507 M/sec ( +- 0.06% )
307 5,569,188 branch-misses # 2.67% of all branches ( +- 0.54% )
308
309 1.601607384 seconds time elapsed ( +- 0.07% )
310
603699bb 311jump label enabled::
1cfa60dc
JB
312
313 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
314
315 841.043185 task-clock # 0.533 CPUs utilized ( +- 0.12% )
316 200,004 context-switches # 0.238 M/sec ( +- 0.00% )
317 0 CPU-migrations # 0.000 M/sec ( +- 40.87% )
318 487 page-faults # 0.001 M/sec ( +- 0.05% )
319 1,432,559,428 cycles # 1.703 GHz ( +- 0.18% )
320 <not supported> stalled-cycles-frontend
321 <not supported> stalled-cycles-backend
322 1,175,363,994 instructions # 0.82 insns per cycle ( +- 0.04% )
323 206,859,359 branches # 245.956 M/sec ( +- 0.04% )
324 4,884,119 branch-misses # 2.36% of all branches ( +- 0.85% )
325
326 1.579384366 seconds time elapsed
327
328The percentage of saved branches is .7%, and we've saved 12% on
329'branch-misses'. This is where we would expect to get the most savings, since
330this optimization is about reducing the number of branches. In addition, we've
331saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.