Merge 4.14.80 into android-4.14-p
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / Documentation / kref.txt
CommitLineData
d6ac1c7e
MCC
1===================================================
2Adding reference counters (krefs) to kernel objects
3===================================================
4
5:Author: Corey Minyard <minyard@acm.org>
6:Author: Thomas Hellstrom <thellstrom@vmware.com>
7
8A lot of this was lifted from Greg Kroah-Hartman's 2004 OLS paper and
9presentation on krefs, which can be found at:
10
11 - http://www.kroah.com/linux/talks/ols_2004_kref_paper/Reprint-Kroah-Hartman-OLS2004.pdf
12 - http://www.kroah.com/linux/talks/ols_2004_kref_talk/
13
14Introduction
15============
5c11c520
CM
16
17krefs allow you to add reference counters to your objects. If you
18have objects that are used in multiple places and passed around, and
19you don't have refcounts, your code is almost certainly broken. If
20you want refcounts, krefs are the way to go.
21
d6ac1c7e 22To use a kref, add one to your data structures like::
5c11c520 23
d6ac1c7e
MCC
24 struct my_data
25 {
5c11c520
CM
26 .
27 .
28 struct kref refcount;
29 .
30 .
d6ac1c7e 31 };
5c11c520
CM
32
33The kref can occur anywhere within the data structure.
34
d6ac1c7e
MCC
35Initialization
36==============
37
5c11c520 38You must initialize the kref after you allocate it. To do this, call
d6ac1c7e 39kref_init as so::
5c11c520
CM
40
41 struct my_data *data;
42
43 data = kmalloc(sizeof(*data), GFP_KERNEL);
44 if (!data)
45 return -ENOMEM;
46 kref_init(&data->refcount);
47
48This sets the refcount in the kref to 1.
49
d6ac1c7e
MCC
50Kref rules
51==========
52
5c11c520
CM
53Once you have an initialized kref, you must follow the following
54rules:
55
561) If you make a non-temporary copy of a pointer, especially if
57 it can be passed to another thread of execution, you must
d6ac1c7e
MCC
58 increment the refcount with kref_get() before passing it off::
59
5c11c520 60 kref_get(&data->refcount);
d6ac1c7e 61
5c11c520
CM
62 If you already have a valid pointer to a kref-ed structure (the
63 refcount cannot go to zero) you may do this without a lock.
64
d6ac1c7e
MCC
652) When you are done with a pointer, you must call kref_put()::
66
5c11c520 67 kref_put(&data->refcount, data_release);
d6ac1c7e 68
5c11c520
CM
69 If this is the last reference to the pointer, the release
70 routine will be called. If the code never tries to get
71 a valid pointer to a kref-ed structure without already
72 holding a valid pointer, it is safe to do this without
73 a lock.
74
753) If the code attempts to gain a reference to a kref-ed structure
76 without already holding a valid pointer, it must serialize access
77 where a kref_put() cannot occur during the kref_get(), and the
78 structure must remain valid during the kref_get().
79
80For example, if you allocate some data and then pass it to another
d6ac1c7e 81thread to process::
5c11c520 82
d6ac1c7e
MCC
83 void data_release(struct kref *ref)
84 {
5c11c520
CM
85 struct my_data *data = container_of(ref, struct my_data, refcount);
86 kfree(data);
d6ac1c7e 87 }
5c11c520 88
d6ac1c7e
MCC
89 void more_data_handling(void *cb_data)
90 {
5c11c520
CM
91 struct my_data *data = cb_data;
92 .
93 . do stuff with data here
94 .
b7cc4a87 95 kref_put(&data->refcount, data_release);
d6ac1c7e 96 }
5c11c520 97
d6ac1c7e
MCC
98 int my_data_handler(void)
99 {
5c11c520
CM
100 int rv = 0;
101 struct my_data *data;
102 struct task_struct *task;
103 data = kmalloc(sizeof(*data), GFP_KERNEL);
104 if (!data)
105 return -ENOMEM;
106 kref_init(&data->refcount);
107
108 kref_get(&data->refcount);
109 task = kthread_run(more_data_handling, data, "more_data_handling");
110 if (task == ERR_PTR(-ENOMEM)) {
111 rv = -ENOMEM;
fd0f50db 112 kref_put(&data->refcount, data_release);
5c11c520
CM
113 goto out;
114 }
115
116 .
117 . do stuff with data here
118 .
d6ac1c7e 119 out:
5c11c520
CM
120 kref_put(&data->refcount, data_release);
121 return rv;
d6ac1c7e 122 }
5c11c520
CM
123
124This way, it doesn't matter what order the two threads handle the
125data, the kref_put() handles knowing when the data is not referenced
126any more and releasing it. The kref_get() does not require a lock,
127since we already have a valid pointer that we own a refcount for. The
128put needs no lock because nothing tries to get the data without
129already holding a pointer.
130
131Note that the "before" in rule 1 is very important. You should never
d6ac1c7e 132do something like::
5c11c520
CM
133
134 task = kthread_run(more_data_handling, data, "more_data_handling");
135 if (task == ERR_PTR(-ENOMEM)) {
136 rv = -ENOMEM;
137 goto out;
138 } else
139 /* BAD BAD BAD - get is after the handoff */
140 kref_get(&data->refcount);
141
142Don't assume you know what you are doing and use the above construct.
143First of all, you may not know what you are doing. Second, you may
144know what you are doing (there are some situations where locking is
145involved where the above may be legal) but someone else who doesn't
146know what they are doing may change the code or copy the code. It's
147bad style. Don't do it.
148
149There are some situations where you can optimize the gets and puts.
150For instance, if you are done with an object and enqueuing it for
151something else or passing it off to something else, there is no reason
d6ac1c7e 152to do a get then a put::
5c11c520
CM
153
154 /* Silly extra get and put */
155 kref_get(&obj->ref);
156 enqueue(obj);
157 kref_put(&obj->ref, obj_cleanup);
158
d6ac1c7e 159Just do the enqueue. A comment about this is always welcome::
5c11c520
CM
160
161 enqueue(obj);
162 /* We are done with obj, so we pass our refcount off
163 to the queue. DON'T TOUCH obj AFTER HERE! */
164
165The last rule (rule 3) is the nastiest one to handle. Say, for
166instance, you have a list of items that are each kref-ed, and you wish
167to get the first one. You can't just pull the first item off the list
168and kref_get() it. That violates rule 3 because you are not already
1373bed3 169holding a valid pointer. You must add a mutex (or some other lock).
d6ac1c7e
MCC
170For instance::
171
172 static DEFINE_MUTEX(mutex);
173 static LIST_HEAD(q);
174 struct my_data
175 {
176 struct kref refcount;
177 struct list_head link;
178 };
179
180 static struct my_data *get_entry()
181 {
182 struct my_data *entry = NULL;
183 mutex_lock(&mutex);
184 if (!list_empty(&q)) {
185 entry = container_of(q.next, struct my_data, link);
186 kref_get(&entry->refcount);
187 }
188 mutex_unlock(&mutex);
189 return entry;
5c11c520 190 }
5c11c520 191
d6ac1c7e
MCC
192 static void release_entry(struct kref *ref)
193 {
194 struct my_data *entry = container_of(ref, struct my_data, refcount);
5c11c520 195
d6ac1c7e
MCC
196 list_del(&entry->link);
197 kfree(entry);
198 }
5c11c520 199
d6ac1c7e
MCC
200 static void put_entry(struct my_data *entry)
201 {
202 mutex_lock(&mutex);
203 kref_put(&entry->refcount, release_entry);
204 mutex_unlock(&mutex);
205 }
5c11c520
CM
206
207The kref_put() return value is useful if you do not want to hold the
208lock during the whole release operation. Say you didn't want to call
209kfree() with the lock held in the example above (since it is kind of
d6ac1c7e 210pointless to do so). You could use kref_put() as follows::
5c11c520 211
d6ac1c7e
MCC
212 static void release_entry(struct kref *ref)
213 {
214 /* All work is done after the return from kref_put(). */
215 }
5c11c520 216
d6ac1c7e
MCC
217 static void put_entry(struct my_data *entry)
218 {
219 mutex_lock(&mutex);
220 if (kref_put(&entry->refcount, release_entry)) {
221 list_del(&entry->link);
222 mutex_unlock(&mutex);
223 kfree(entry);
224 } else
225 mutex_unlock(&mutex);
226 }
5c11c520
CM
227
228This is really more useful if you have to call other routines as part
229of the free operations that could take a long time or might claim the
230same lock. Note that doing everything in the release routine is still
231preferred as it is a little neater.
232
a82b8db0 233The above example could also be optimized using kref_get_unless_zero() in
d6ac1c7e
MCC
234the following way::
235
236 static struct my_data *get_entry()
237 {
238 struct my_data *entry = NULL;
239 mutex_lock(&mutex);
240 if (!list_empty(&q)) {
241 entry = container_of(q.next, struct my_data, link);
242 if (!kref_get_unless_zero(&entry->refcount))
243 entry = NULL;
244 }
245 mutex_unlock(&mutex);
246 return entry;
a82b8db0 247 }
a82b8db0 248
d6ac1c7e
MCC
249 static void release_entry(struct kref *ref)
250 {
251 struct my_data *entry = container_of(ref, struct my_data, refcount);
a82b8db0 252
d6ac1c7e
MCC
253 mutex_lock(&mutex);
254 list_del(&entry->link);
255 mutex_unlock(&mutex);
256 kfree(entry);
257 }
a82b8db0 258
d6ac1c7e
MCC
259 static void put_entry(struct my_data *entry)
260 {
261 kref_put(&entry->refcount, release_entry);
262 }
a82b8db0
TH
263
264Which is useful to remove the mutex lock around kref_put() in put_entry(), but
265it's important that kref_get_unless_zero is enclosed in the same critical
266section that finds the entry in the lookup table,
267otherwise kref_get_unless_zero may reference already freed memory.
268Note that it is illegal to use kref_get_unless_zero without checking its
269return value. If you are sure (by already having a valid pointer) that
270kref_get_unless_zero() will return true, then use kref_get() instead.
271
d6ac1c7e
MCC
272Krefs and RCU
273=============
a82b8db0 274
d6ac1c7e
MCC
275The function kref_get_unless_zero also makes it possible to use rcu
276locking for lookups in the above example::
277
278 struct my_data
279 {
280 struct rcu_head rhead;
281 .
282 struct kref refcount;
283 .
284 .
285 };
286
287 static struct my_data *get_entry_rcu()
288 {
289 struct my_data *entry = NULL;
290 rcu_read_lock();
291 if (!list_empty(&q)) {
292 entry = container_of(q.next, struct my_data, link);
293 if (!kref_get_unless_zero(&entry->refcount))
294 entry = NULL;
295 }
296 rcu_read_unlock();
297 return entry;
a82b8db0 298 }
a82b8db0 299
d6ac1c7e
MCC
300 static void release_entry_rcu(struct kref *ref)
301 {
302 struct my_data *entry = container_of(ref, struct my_data, refcount);
a82b8db0 303
d6ac1c7e
MCC
304 mutex_lock(&mutex);
305 list_del_rcu(&entry->link);
306 mutex_unlock(&mutex);
307 kfree_rcu(entry, rhead);
308 }
a82b8db0 309
d6ac1c7e
MCC
310 static void put_entry(struct my_data *entry)
311 {
312 kref_put(&entry->refcount, release_entry_rcu);
313 }
a82b8db0
TH
314
315But note that the struct kref member needs to remain in valid memory for a
316rcu grace period after release_entry_rcu was called. That can be accomplished
317by using kfree_rcu(entry, rhead) as done above, or by calling synchronize_rcu()
318before using kfree, but note that synchronize_rcu() may sleep for a
319substantial amount of time.