KVM: x86: Add a framework for supporting MSR-based features
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / Documentation / core-api / genericirq.rst
CommitLineData
3bd3b99a
MCC
1.. include:: <isonum.txt>
2
3==========================
4Linux generic IRQ handling
5==========================
6
7:Copyright: |copy| 2005-2010: Thomas Gleixner
8:Copyright: |copy| 2005-2006: Ingo Molnar
9
10Introduction
11============
12
13The generic interrupt handling layer is designed to provide a complete
14abstraction of interrupt handling for device drivers. It is able to
15handle all the different types of interrupt controller hardware. Device
16drivers use generic API functions to request, enable, disable and free
17interrupts. The drivers do not have to know anything about interrupt
18hardware details, so they can be used on different platforms without
19code changes.
20
21This documentation is provided to developers who want to implement an
22interrupt subsystem based for their architecture, with the help of the
23generic IRQ handling layer.
24
25Rationale
26=========
27
28The original implementation of interrupt handling in Linux uses the
76d40fae 29:c:func:`__do_IRQ` super-handler, which is able to deal with every type of
3bd3b99a
MCC
30interrupt logic.
31
32Originally, Russell King identified different types of handlers to build
33a quite universal set for the ARM interrupt handler implementation in
34Linux 2.5/2.6. He distinguished between:
35
36- Level type
37
38- Edge type
39
40- Simple type
41
42During the implementation we identified another type:
43
44- Fast EOI type
45
76d40fae 46In the SMP world of the :c:func:`__do_IRQ` super-handler another type was
3bd3b99a
MCC
47identified:
48
49- Per CPU type
50
51This split implementation of high-level IRQ handlers allows us to
52optimize the flow of the interrupt handling for each specific interrupt
53type. This reduces complexity in that particular code path and allows
54the optimized handling of a given type.
55
56The original general IRQ implementation used hw_interrupt_type
76d40fae 57structures and their ``->ack``, ``->end`` [etc.] callbacks to differentiate
3bd3b99a
MCC
58the flow control in the super-handler. This leads to a mix of flow logic
59and low-level hardware logic, and it also leads to unnecessary code
76d40fae
MCC
60duplication: for example in i386, there is an ``ioapic_level_irq`` and an
61``ioapic_edge_irq`` IRQ-type which share many of the low-level details but
3bd3b99a
MCC
62have different flow handling.
63
64A more natural abstraction is the clean separation of the 'irq flow' and
65the 'chip details'.
66
67Analysing a couple of architecture's IRQ subsystem implementations
68reveals that most of them can use a generic set of 'irq flow' methods
69and only need to add the chip-level specific code. The separation is
70also valuable for (sub)architectures which need specific quirks in the
71IRQ flow itself but not in the chip details - and thus provides a more
72transparent IRQ subsystem design.
73
74Each interrupt descriptor is assigned its own high-level flow handler,
75which is normally one of the generic implementations. (This high-level
76flow handler implementation also makes it simple to provide
77demultiplexing handlers which can be found in embedded platforms on
78various architectures.)
79
80The separation makes the generic interrupt handling layer more flexible
81and extensible. For example, an (sub)architecture can use a generic
82IRQ-flow implementation for 'level type' interrupts and add a
83(sub)architecture specific 'edge type' implementation.
84
85To make the transition to the new model easier and prevent the breakage
76d40fae 86of existing implementations, the :c:func:`__do_IRQ` super-handler is still
3bd3b99a
MCC
87available. This leads to a kind of duality for the time being. Over time
88the new model should be used in more and more architectures, as it
89enables smaller and cleaner IRQ subsystems. It's deprecated for three
90years now and about to be removed.
91
92Known Bugs And Assumptions
93==========================
94
95None (knock on wood).
96
97Abstraction layers
98==================
99
100There are three main levels of abstraction in the interrupt code:
101
1021. High-level driver API
103
1042. High-level IRQ flow handlers
105
1063. Chip-level hardware encapsulation
107
108Interrupt control flow
109----------------------
110
111Each interrupt is described by an interrupt descriptor structure
112irq_desc. The interrupt is referenced by an 'unsigned int' numeric
113value which selects the corresponding interrupt description structure in
114the descriptor structures array. The descriptor structure contains
115status information and pointers to the interrupt flow method and the
116interrupt chip structure which are assigned to this interrupt.
117
118Whenever an interrupt triggers, the low-level architecture code calls
76d40fae 119into the generic interrupt code by calling :c:func:`desc->handle_irq`. This
3bd3b99a
MCC
120high-level IRQ handling function only uses desc->irq_data.chip
121primitives referenced by the assigned chip descriptor structure.
122
123High-level Driver API
124---------------------
125
126The high-level Driver API consists of following functions:
127
76d40fae 128- :c:func:`request_irq`
3bd3b99a 129
76d40fae 130- :c:func:`free_irq`
3bd3b99a 131
76d40fae 132- :c:func:`disable_irq`
3bd3b99a 133
76d40fae 134- :c:func:`enable_irq`
3bd3b99a 135
76d40fae 136- :c:func:`disable_irq_nosync` (SMP only)
3bd3b99a 137
76d40fae 138- :c:func:`synchronize_irq` (SMP only)
3bd3b99a 139
76d40fae 140- :c:func:`irq_set_irq_type`
3bd3b99a 141
76d40fae 142- :c:func:`irq_set_irq_wake`
3bd3b99a 143
76d40fae 144- :c:func:`irq_set_handler_data`
3bd3b99a 145
76d40fae 146- :c:func:`irq_set_chip`
3bd3b99a 147
76d40fae 148- :c:func:`irq_set_chip_data`
3bd3b99a
MCC
149
150See the autogenerated function documentation for details.
151
152High-level IRQ flow handlers
153----------------------------
154
155The generic layer provides a set of pre-defined irq-flow methods:
156
76d40fae 157- :c:func:`handle_level_irq`
3bd3b99a 158
76d40fae 159- :c:func:`handle_edge_irq`
3bd3b99a 160
76d40fae 161- :c:func:`handle_fasteoi_irq`
3bd3b99a 162
76d40fae 163- :c:func:`handle_simple_irq`
3bd3b99a 164
76d40fae 165- :c:func:`handle_percpu_irq`
3bd3b99a 166
76d40fae 167- :c:func:`handle_edge_eoi_irq`
3bd3b99a 168
76d40fae 169- :c:func:`handle_bad_irq`
3bd3b99a
MCC
170
171The interrupt flow handlers (either pre-defined or architecture
172specific) are assigned to specific interrupts by the architecture either
173during bootup or during device initialization.
174
175Default flow implementations
176~~~~~~~~~~~~~~~~~~~~~~~~~~~~
177
178Helper functions
179^^^^^^^^^^^^^^^^
180
181The helper functions call the chip primitives and are used by the
182default flow implementations. The following helper functions are
183implemented (simplified excerpt)::
184
185 default_enable(struct irq_data *data)
186 {
187 desc->irq_data.chip->irq_unmask(data);
188 }
189
190 default_disable(struct irq_data *data)
191 {
192 if (!delay_disable(data))
193 desc->irq_data.chip->irq_mask(data);
194 }
195
196 default_ack(struct irq_data *data)
197 {
198 chip->irq_ack(data);
199 }
200
201 default_mask_ack(struct irq_data *data)
202 {
203 if (chip->irq_mask_ack) {
204 chip->irq_mask_ack(data);
205 } else {
206 chip->irq_mask(data);
207 chip->irq_ack(data);
208 }
209 }
210
211 noop(struct irq_data *data))
212 {
213 }
214
215
216
217Default flow handler implementations
218~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
219
220Default Level IRQ flow handler
221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
222
223handle_level_irq provides a generic implementation for level-triggered
224interrupts.
225
226The following control flow is implemented (simplified excerpt)::
227
76d40fae 228 :c:func:`desc->irq_data.chip->irq_mask_ack`;
3bd3b99a 229 handle_irq_event(desc->action);
76d40fae 230 :c:func:`desc->irq_data.chip->irq_unmask`;
3bd3b99a
MCC
231
232
233Default Fast EOI IRQ flow handler
234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
235
236handle_fasteoi_irq provides a generic implementation for interrupts,
237which only need an EOI at the end of the handler.
238
239The following control flow is implemented (simplified excerpt)::
240
241 handle_irq_event(desc->action);
76d40fae 242 :c:func:`desc->irq_data.chip->irq_eoi`;
3bd3b99a
MCC
243
244
245Default Edge IRQ flow handler
246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
247
248handle_edge_irq provides a generic implementation for edge-triggered
249interrupts.
250
251The following control flow is implemented (simplified excerpt)::
252
253 if (desc->status & running) {
76d40fae 254 :c:func:`desc->irq_data.chip->irq_mask_ack`;
3bd3b99a
MCC
255 desc->status |= pending | masked;
256 return;
257 }
76d40fae 258 :c:func:`desc->irq_data.chip->irq_ack`;
3bd3b99a
MCC
259 desc->status |= running;
260 do {
261 if (desc->status & masked)
76d40fae 262 :c:func:`desc->irq_data.chip->irq_unmask`;
3bd3b99a
MCC
263 desc->status &= ~pending;
264 handle_irq_event(desc->action);
265 } while (status & pending);
266 desc->status &= ~running;
267
268
269Default simple IRQ flow handler
270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
271
272handle_simple_irq provides a generic implementation for simple
273interrupts.
274
275.. note::
276
277 The simple flow handler does not call any handler/chip primitives.
278
279The following control flow is implemented (simplified excerpt)::
280
281 handle_irq_event(desc->action);
282
283
284Default per CPU flow handler
285^^^^^^^^^^^^^^^^^^^^^^^^^^^^
286
287handle_percpu_irq provides a generic implementation for per CPU
288interrupts.
289
290Per CPU interrupts are only available on SMP and the handler provides a
291simplified version without locking.
292
293The following control flow is implemented (simplified excerpt)::
294
295 if (desc->irq_data.chip->irq_ack)
76d40fae 296 :c:func:`desc->irq_data.chip->irq_ack`;
3bd3b99a
MCC
297 handle_irq_event(desc->action);
298 if (desc->irq_data.chip->irq_eoi)
76d40fae 299 :c:func:`desc->irq_data.chip->irq_eoi`;
3bd3b99a
MCC
300
301
302EOI Edge IRQ flow handler
303^^^^^^^^^^^^^^^^^^^^^^^^^
304
305handle_edge_eoi_irq provides an abnomination of the edge handler
306which is solely used to tame a badly wreckaged irq controller on
307powerpc/cell.
308
309Bad IRQ flow handler
310^^^^^^^^^^^^^^^^^^^^
311
312handle_bad_irq is used for spurious interrupts which have no real
313handler assigned..
314
315Quirks and optimizations
316~~~~~~~~~~~~~~~~~~~~~~~~
317
318The generic functions are intended for 'clean' architectures and chips,
319which have no platform-specific IRQ handling quirks. If an architecture
320needs to implement quirks on the 'flow' level then it can do so by
321overriding the high-level irq-flow handler.
322
323Delayed interrupt disable
324~~~~~~~~~~~~~~~~~~~~~~~~~
325
326This per interrupt selectable feature, which was introduced by Russell
327King in the ARM interrupt implementation, does not mask an interrupt at
76d40fae 328the hardware level when :c:func:`disable_irq` is called. The interrupt is kept
3bd3b99a
MCC
329enabled and is masked in the flow handler when an interrupt event
330happens. This prevents losing edge interrupts on hardware which does not
331store an edge interrupt event while the interrupt is disabled at the
332hardware level. When an interrupt arrives while the IRQ_DISABLED flag
333is set, then the interrupt is masked at the hardware level and the
334IRQ_PENDING bit is set. When the interrupt is re-enabled by
76d40fae 335:c:func:`enable_irq` the pending bit is checked and if it is set, the interrupt
3bd3b99a
MCC
336is resent either via hardware or by a software resend mechanism. (It's
337necessary to enable CONFIG_HARDIRQS_SW_RESEND when you want to use
338the delayed interrupt disable feature and your hardware is not capable
339of retriggering an interrupt.) The delayed interrupt disable is not
340configurable.
341
342Chip-level hardware encapsulation
343---------------------------------
344
76d40fae
MCC
345The chip-level hardware descriptor structure :c:type:`irq_chip` contains all
346the direct chip relevant functions, which can be utilized by the irq flow
3bd3b99a
MCC
347implementations.
348
76d40fae 349- ``irq_ack``
3bd3b99a 350
76d40fae 351- ``irq_mask_ack`` - Optional, recommended for performance
3bd3b99a 352
76d40fae 353- ``irq_mask``
3bd3b99a 354
76d40fae 355- ``irq_unmask``
3bd3b99a 356
76d40fae 357- ``irq_eoi`` - Optional, required for EOI flow handlers
3bd3b99a 358
76d40fae 359- ``irq_retrigger`` - Optional
3bd3b99a 360
76d40fae 361- ``irq_set_type`` - Optional
3bd3b99a 362
76d40fae 363- ``irq_set_wake`` - Optional
3bd3b99a
MCC
364
365These primitives are strictly intended to mean what they say: ack means
366ACK, masking means masking of an IRQ line, etc. It is up to the flow
367handler(s) to use these basic units of low-level functionality.
368
369__do_IRQ entry point
370====================
371
76d40fae 372The original implementation :c:func:`__do_IRQ` was an alternative entry point
3bd3b99a
MCC
373for all types of interrupts. It no longer exists.
374
375This handler turned out to be not suitable for all interrupt hardware
376and was therefore reimplemented with split functionality for
377edge/level/simple/percpu interrupts. This is not only a functional
378optimization. It also shortens code paths for interrupts.
379
380Locking on SMP
381==============
382
383The locking of chip registers is up to the architecture that defines the
384chip primitives. The per-irq structure is protected via desc->lock, by
385the generic layer.
386
387Generic interrupt chip
388======================
389
390To avoid copies of identical implementations of IRQ chips the core
391provides a configurable generic interrupt chip implementation.
392Developers should check carefully whether the generic chip fits their
393needs before implementing the same functionality slightly differently
394themselves.
395
396.. kernel-doc:: kernel/irq/generic-chip.c
397 :export:
398
399Structures
400==========
401
402This chapter contains the autogenerated documentation of the structures
403which are used in the generic IRQ layer.
404
405.. kernel-doc:: include/linux/irq.h
406 :internal:
407
408.. kernel-doc:: include/linux/interrupt.h
409 :internal:
410
411Public Functions Provided
412=========================
413
414This chapter contains the autogenerated documentation of the kernel API
415functions which are exported.
416
417.. kernel-doc:: kernel/irq/manage.c
3bd3b99a
MCC
418
419.. kernel-doc:: kernel/irq/chip.c
3bd3b99a
MCC
420
421Internal Functions Provided
422===========================
423
424This chapter contains the autogenerated documentation of the internal
425functions.
426
427.. kernel-doc:: kernel/irq/irqdesc.c
3bd3b99a
MCC
428
429.. kernel-doc:: kernel/irq/handle.c
3bd3b99a
MCC
430
431.. kernel-doc:: kernel/irq/chip.c
3bd3b99a
MCC
432
433Credits
434=======
435
436The following people have contributed to this document:
437
4381. Thomas Gleixner tglx@linutronix.de
439
4402. Ingo Molnar mingo@elte.hu