decon_reg: silence literal conversion warning
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
c4843a75
GT
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
250df6ed 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 40 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 41 *
5a505085 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 43 * ->tasklist_lock
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
b95f1b31 56#include <linux/export.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
ef5d437f 61#include <linux/backing-dev.h>
33c3fc71 62#include <linux/page_idle.h>
1da177e4
LT
63
64#include <asm/tlbflush.h>
65
72b252ae
MG
66#include <trace/events/tlb.h>
67
b291f000
NP
68#include "internal.h"
69
fdd2e5f8 70static struct kmem_cache *anon_vma_cachep;
5beb4930 71static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
72
73static inline struct anon_vma *anon_vma_alloc(void)
74{
01d8b20d
PZ
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
01d8b20d
PZ
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
fdd2e5f8
AB
90}
91
01d8b20d 92static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 93{
01d8b20d 94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
95
96 /*
4fc3f1d6 97 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 104 *
4fc3f1d6
IM
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
88c22088 107 * LOCK MB
4fc3f1d6 108 * atomic_read() rwsem_is_locked()
88c22088
PZ
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
7f39dda9 113 might_sleep();
5a505085 114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 115 anon_vma_lock_write(anon_vma);
08b52706 116 anon_vma_unlock_write(anon_vma);
88c22088
PZ
117 }
118
fdd2e5f8
AB
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120}
1da177e4 121
dd34739c 122static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 123{
dd34739c 124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
125}
126
e574b5fd 127static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
128{
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130}
131
6583a843
KC
132static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135{
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
140}
141
d9d332e0
LT
142/**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
23a0790a 151 * not we either need to find an adjacent mapping that we
d9d332e0
LT
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
1da177e4
LT
169int anon_vma_prepare(struct vm_area_struct *vma)
170{
171 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 172 struct anon_vma_chain *avc;
1da177e4
LT
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
d9d332e0 177 struct anon_vma *allocated;
1da177e4 178
dd34739c 179 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
180 if (!avc)
181 goto out_enomem;
182
1da177e4 183 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
184 allocated = NULL;
185 if (!anon_vma) {
1da177e4
LT
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
5beb4930 188 goto out_enomem_free_avc;
1da177e4 189 allocated = anon_vma;
1da177e4
LT
190 }
191
4fc3f1d6 192 anon_vma_lock_write(anon_vma);
1da177e4
LT
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
6583a843 197 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
1da177e4 200 allocated = NULL;
31f2b0eb 201 avc = NULL;
1da177e4
LT
202 }
203 spin_unlock(&mm->page_table_lock);
08b52706 204 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
205
206 if (unlikely(allocated))
01d8b20d 207 put_anon_vma(allocated);
31f2b0eb 208 if (unlikely(avc))
5beb4930 209 anon_vma_chain_free(avc);
1da177e4
LT
210 }
211 return 0;
5beb4930
RR
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
1da177e4
LT
217}
218
bb4aa396
LT
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
5a505085 232 up_write(&root->rwsem);
bb4aa396 233 root = new_root;
5a505085 234 down_write(&root->rwsem);
bb4aa396
LT
235 }
236 return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241 if (root)
5a505085 242 up_write(&root->rwsem);
bb4aa396
LT
243}
244
5beb4930
RR
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
5beb4930
RR
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 258{
5beb4930 259 struct anon_vma_chain *avc, *pavc;
bb4aa396 260 struct anon_vma *root = NULL;
5beb4930 261
646d87b4 262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
263 struct anon_vma *anon_vma;
264
dd34739c
LT
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
bb4aa396
LT
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
5beb4930 288 }
7a3ef208
KK
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
bb4aa396 291 unlock_anon_vma_root(root);
5beb4930 292 return 0;
1da177e4 293
5beb4930 294 enomem_failure:
3fe89b3e
LY
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
5beb4930
RR
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
1da177e4
LT
304}
305
5beb4930
RR
306/*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 312{
5beb4930
RR
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
c4ea95d7 315 int error;
1da177e4 316
5beb4930
RR
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
7a3ef208
KK
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
5beb4930
RR
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
c4ea95d7
DF
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
5beb4930 331
7a3ef208
KK
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
5beb4930
RR
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
dd34739c 340 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
341 if (!avc)
342 goto out_error_free_anon_vma;
5c341ee1
RR
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
7a3ef208 349 anon_vma->parent = pvma->anon_vma;
76545066 350 /*
01d8b20d
PZ
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
354 */
355 get_anon_vma(anon_vma->root);
5beb4930
RR
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
4fc3f1d6 358 anon_vma_lock_write(anon_vma);
5c341ee1 359 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 360 anon_vma->parent->degree++;
08b52706 361 anon_vma_unlock_write(anon_vma);
5beb4930
RR
362
363 return 0;
364
365 out_error_free_anon_vma:
01d8b20d 366 put_anon_vma(anon_vma);
5beb4930 367 out_error:
4946d54c 368 unlink_anon_vmas(vma);
5beb4930 369 return -ENOMEM;
1da177e4
LT
370}
371
5beb4930
RR
372void unlink_anon_vmas(struct vm_area_struct *vma)
373{
374 struct anon_vma_chain *avc, *next;
eee2acba 375 struct anon_vma *root = NULL;
5beb4930 376
5c341ee1
RR
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
5beb4930 381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
7a3ef208
KK
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
eee2acba 393 continue;
7a3ef208 394 }
eee2acba
PZ
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
7a3ef208
KK
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
eee2acba
PZ
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 406 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
7a3ef208 411 BUG_ON(anon_vma->degree);
eee2acba
PZ
412 put_anon_vma(anon_vma);
413
5beb4930
RR
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417}
418
51cc5068 419static void anon_vma_ctor(void *data)
1da177e4 420{
a35afb83 421 struct anon_vma *anon_vma = data;
1da177e4 422
5a505085 423 init_rwsem(&anon_vma->rwsem);
83813267 424 atomic_set(&anon_vma->refcount, 0);
bf181b9f 425 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
426}
427
428void __init anon_vma_init(void)
429{
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 432 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
433}
434
435/*
6111e4ca
PZ
436 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
437 *
438 * Since there is no serialization what so ever against page_remove_rmap()
439 * the best this function can do is return a locked anon_vma that might
440 * have been relevant to this page.
441 *
442 * The page might have been remapped to a different anon_vma or the anon_vma
443 * returned may already be freed (and even reused).
444 *
bc658c96
PZ
445 * In case it was remapped to a different anon_vma, the new anon_vma will be a
446 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
447 * ensure that any anon_vma obtained from the page will still be valid for as
448 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
449 *
6111e4ca
PZ
450 * All users of this function must be very careful when walking the anon_vma
451 * chain and verify that the page in question is indeed mapped in it
452 * [ something equivalent to page_mapped_in_vma() ].
453 *
454 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
455 * that the anon_vma pointer from page->mapping is valid if there is a
456 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 457 */
746b18d4 458struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 459{
746b18d4 460 struct anon_vma *anon_vma = NULL;
1da177e4
LT
461 unsigned long anon_mapping;
462
463 rcu_read_lock();
4db0c3c2 464 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 465 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
466 goto out;
467 if (!page_mapped(page))
468 goto out;
469
470 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
471 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
472 anon_vma = NULL;
473 goto out;
474 }
f1819427
HD
475
476 /*
477 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
478 * freed. But if it has been unmapped, we have no security against the
479 * anon_vma structure being freed and reused (for another anon_vma:
480 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
481 * above cannot corrupt).
f1819427 482 */
746b18d4 483 if (!page_mapped(page)) {
7f39dda9 484 rcu_read_unlock();
746b18d4 485 put_anon_vma(anon_vma);
7f39dda9 486 return NULL;
746b18d4 487 }
1da177e4
LT
488out:
489 rcu_read_unlock();
746b18d4
PZ
490
491 return anon_vma;
492}
493
88c22088
PZ
494/*
495 * Similar to page_get_anon_vma() except it locks the anon_vma.
496 *
497 * Its a little more complex as it tries to keep the fast path to a single
498 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
499 * reference like with page_get_anon_vma() and then block on the mutex.
500 */
4fc3f1d6 501struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 502{
88c22088 503 struct anon_vma *anon_vma = NULL;
eee0f252 504 struct anon_vma *root_anon_vma;
88c22088 505 unsigned long anon_mapping;
746b18d4 506
88c22088 507 rcu_read_lock();
4db0c3c2 508 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
509 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
510 goto out;
511 if (!page_mapped(page))
512 goto out;
513
514 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 515 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 516 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 517 /*
eee0f252
HD
518 * If the page is still mapped, then this anon_vma is still
519 * its anon_vma, and holding the mutex ensures that it will
bc658c96 520 * not go away, see anon_vma_free().
88c22088 521 */
eee0f252 522 if (!page_mapped(page)) {
4fc3f1d6 523 up_read(&root_anon_vma->rwsem);
88c22088
PZ
524 anon_vma = NULL;
525 }
526 goto out;
527 }
746b18d4 528
88c22088
PZ
529 /* trylock failed, we got to sleep */
530 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
531 anon_vma = NULL;
532 goto out;
533 }
534
535 if (!page_mapped(page)) {
7f39dda9 536 rcu_read_unlock();
88c22088 537 put_anon_vma(anon_vma);
7f39dda9 538 return NULL;
88c22088
PZ
539 }
540
541 /* we pinned the anon_vma, its safe to sleep */
542 rcu_read_unlock();
4fc3f1d6 543 anon_vma_lock_read(anon_vma);
88c22088
PZ
544
545 if (atomic_dec_and_test(&anon_vma->refcount)) {
546 /*
547 * Oops, we held the last refcount, release the lock
548 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 549 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 550 */
4fc3f1d6 551 anon_vma_unlock_read(anon_vma);
88c22088
PZ
552 __put_anon_vma(anon_vma);
553 anon_vma = NULL;
554 }
555
556 return anon_vma;
557
558out:
559 rcu_read_unlock();
746b18d4 560 return anon_vma;
34bbd704
ON
561}
562
4fc3f1d6 563void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 564{
4fc3f1d6 565 anon_vma_unlock_read(anon_vma);
1da177e4
LT
566}
567
568/*
3ad33b24 569 * At what user virtual address is page expected in @vma?
1da177e4 570 */
86c2ad19
ML
571static inline unsigned long
572__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 573{
a0f7a756 574 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
575 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
576}
577
578inline unsigned long
579vma_address(struct page *page, struct vm_area_struct *vma)
580{
581 unsigned long address = __vma_address(page, vma);
582
583 /* page should be within @vma mapping range */
81d1b09c 584 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 585
1da177e4
LT
586 return address;
587}
588
72b252ae 589#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
590/*
591 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
592 * important if a PTE was dirty when it was unmapped that it's flushed
593 * before any IO is initiated on the page to prevent lost writes. Similarly,
594 * it must be flushed before freeing to prevent data leakage.
595 */
596void try_to_unmap_flush(void)
597{
598 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
599 int cpu;
600
601 if (!tlb_ubc->flush_required)
602 return;
603
604 cpu = get_cpu();
605
8d5ee51a
NA
606 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
607 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
608 local_flush_tlb();
609 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
72b252ae 610 }
8d5ee51a
NA
611
612 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
613 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
72b252ae
MG
614 cpumask_clear(&tlb_ubc->cpumask);
615 tlb_ubc->flush_required = false;
d950c947 616 tlb_ubc->writable = false;
72b252ae
MG
617 put_cpu();
618}
619
d950c947
MG
620/* Flush iff there are potentially writable TLB entries that can race with IO */
621void try_to_unmap_flush_dirty(void)
622{
623 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
624
625 if (tlb_ubc->writable)
626 try_to_unmap_flush();
627}
628
72b252ae 629static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 630 struct page *page, bool writable)
72b252ae
MG
631{
632 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
633
634 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
635 tlb_ubc->flush_required = true;
d950c947 636
f1181047
MG
637 /*
638 * Ensure compiler does not re-order the setting of tlb_flush_batched
639 * before the PTE is cleared.
640 */
641 barrier();
642 mm->tlb_flush_batched = true;
643
d950c947
MG
644 /*
645 * If the PTE was dirty then it's best to assume it's writable. The
646 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
647 * before the page is queued for IO.
648 */
649 if (writable)
650 tlb_ubc->writable = true;
72b252ae
MG
651}
652
653/*
654 * Returns true if the TLB flush should be deferred to the end of a batch of
655 * unmap operations to reduce IPIs.
656 */
657static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
658{
659 bool should_defer = false;
660
661 if (!(flags & TTU_BATCH_FLUSH))
662 return false;
663
664 /* If remote CPUs need to be flushed then defer batch the flush */
665 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
666 should_defer = true;
667 put_cpu();
668
669 return should_defer;
670}
f1181047
MG
671
672/*
673 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
674 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
675 * operation such as mprotect or munmap to race between reclaim unmapping
676 * the page and flushing the page. If this race occurs, it potentially allows
677 * access to data via a stale TLB entry. Tracking all mm's that have TLB
678 * batching in flight would be expensive during reclaim so instead track
679 * whether TLB batching occurred in the past and if so then do a flush here
680 * if required. This will cost one additional flush per reclaim cycle paid
681 * by the first operation at risk such as mprotect and mumap.
682 *
683 * This must be called under the PTL so that an access to tlb_flush_batched
684 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
685 * via the PTL.
686 */
687void flush_tlb_batched_pending(struct mm_struct *mm)
688{
689 if (mm->tlb_flush_batched) {
690 flush_tlb_mm(mm);
691
692 /*
693 * Do not allow the compiler to re-order the clearing of
694 * tlb_flush_batched before the tlb is flushed.
695 */
696 barrier();
697 mm->tlb_flush_batched = false;
698 }
699}
72b252ae
MG
700#else
701static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 702 struct page *page, bool writable)
72b252ae
MG
703{
704}
705
706static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
707{
708 return false;
709}
710#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
711
1da177e4 712/*
bf89c8c8 713 * At what user virtual address is page expected in vma?
ab941e0f 714 * Caller should check the page is actually part of the vma.
1da177e4
LT
715 */
716unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
717{
86c2ad19 718 unsigned long address;
21d0d443 719 if (PageAnon(page)) {
4829b906
HD
720 struct anon_vma *page__anon_vma = page_anon_vma(page);
721 /*
722 * Note: swapoff's unuse_vma() is more efficient with this
723 * check, and needs it to match anon_vma when KSM is active.
724 */
725 if (!vma->anon_vma || !page__anon_vma ||
726 vma->anon_vma->root != page__anon_vma->root)
21d0d443 727 return -EFAULT;
27ba0644
KS
728 } else if (page->mapping) {
729 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
730 return -EFAULT;
731 } else
732 return -EFAULT;
86c2ad19
ML
733 address = __vma_address(page, vma);
734 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
735 return -EFAULT;
736 return address;
1da177e4
LT
737}
738
6219049a
BL
739pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
740{
741 pgd_t *pgd;
742 pud_t *pud;
743 pmd_t *pmd = NULL;
f72e7dcd 744 pmd_t pmde;
6219049a
BL
745
746 pgd = pgd_offset(mm, address);
747 if (!pgd_present(*pgd))
748 goto out;
749
750 pud = pud_offset(pgd, address);
751 if (!pud_present(*pud))
752 goto out;
753
754 pmd = pmd_offset(pud, address);
f72e7dcd 755 /*
8809aa2d 756 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
757 * without holding anon_vma lock for write. So when looking for a
758 * genuine pmde (in which to find pte), test present and !THP together.
759 */
e37c6982
CB
760 pmde = *pmd;
761 barrier();
f72e7dcd 762 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
763 pmd = NULL;
764out:
765 return pmd;
766}
767
81b4082d
ND
768/*
769 * Check that @page is mapped at @address into @mm.
770 *
479db0bf
NP
771 * If @sync is false, page_check_address may perform a racy check to avoid
772 * the page table lock when the pte is not present (helpful when reclaiming
773 * highly shared pages).
774 *
b8072f09 775 * On success returns with pte mapped and locked.
81b4082d 776 */
e9a81a82 777pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 778 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 779{
81b4082d
ND
780 pmd_t *pmd;
781 pte_t *pte;
c0718806 782 spinlock_t *ptl;
81b4082d 783
0fe6e20b 784 if (unlikely(PageHuge(page))) {
98398c32 785 /* when pud is not present, pte will be NULL */
0fe6e20b 786 pte = huge_pte_offset(mm, address);
98398c32
JW
787 if (!pte)
788 return NULL;
789
cb900f41 790 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
791 goto check;
792 }
793
6219049a
BL
794 pmd = mm_find_pmd(mm, address);
795 if (!pmd)
c0718806
HD
796 return NULL;
797
c0718806
HD
798 pte = pte_offset_map(pmd, address);
799 /* Make a quick check before getting the lock */
479db0bf 800 if (!sync && !pte_present(*pte)) {
c0718806
HD
801 pte_unmap(pte);
802 return NULL;
803 }
804
4c21e2f2 805 ptl = pte_lockptr(mm, pmd);
0fe6e20b 806check:
c0718806
HD
807 spin_lock(ptl);
808 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
809 *ptlp = ptl;
810 return pte;
81b4082d 811 }
c0718806
HD
812 pte_unmap_unlock(pte, ptl);
813 return NULL;
81b4082d
ND
814}
815
b291f000
NP
816/**
817 * page_mapped_in_vma - check whether a page is really mapped in a VMA
818 * @page: the page to test
819 * @vma: the VMA to test
820 *
821 * Returns 1 if the page is mapped into the page tables of the VMA, 0
822 * if the page is not mapped into the page tables of this VMA. Only
823 * valid for normal file or anonymous VMAs.
824 */
6a46079c 825int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
826{
827 unsigned long address;
828 pte_t *pte;
829 spinlock_t *ptl;
830
86c2ad19
ML
831 address = __vma_address(page, vma);
832 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
833 return 0;
834 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
835 if (!pte) /* the page is not in this mm */
836 return 0;
837 pte_unmap_unlock(pte, ptl);
838
839 return 1;
840}
841
9f32624b
JK
842struct page_referenced_arg {
843 int mapcount;
844 int referenced;
845 unsigned long vm_flags;
846 struct mem_cgroup *memcg;
847};
1da177e4 848/*
9f32624b 849 * arg: page_referenced_arg will be passed
1da177e4 850 */
ac769501 851static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 852 unsigned long address, void *arg)
1da177e4
LT
853{
854 struct mm_struct *mm = vma->vm_mm;
117b0791 855 spinlock_t *ptl;
1da177e4 856 int referenced = 0;
9f32624b 857 struct page_referenced_arg *pra = arg;
1da177e4 858
71e3aac0
AA
859 if (unlikely(PageTransHuge(page))) {
860 pmd_t *pmd;
861
2da28bfd
AA
862 /*
863 * rmap might return false positives; we must filter
864 * these out using page_check_address_pmd().
865 */
71e3aac0 866 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
867 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
868 if (!pmd)
9f32624b 869 return SWAP_AGAIN;
2da28bfd
AA
870
871 if (vma->vm_flags & VM_LOCKED) {
117b0791 872 spin_unlock(ptl);
9f32624b
JK
873 pra->vm_flags |= VM_LOCKED;
874 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
875 }
876
877 /* go ahead even if the pmd is pmd_trans_splitting() */
878 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 879 referenced++;
117b0791 880 spin_unlock(ptl);
71e3aac0
AA
881 } else {
882 pte_t *pte;
71e3aac0 883
2da28bfd
AA
884 /*
885 * rmap might return false positives; we must filter
886 * these out using page_check_address().
887 */
71e3aac0
AA
888 pte = page_check_address(page, mm, address, &ptl, 0);
889 if (!pte)
9f32624b 890 return SWAP_AGAIN;
71e3aac0 891
2da28bfd
AA
892 if (vma->vm_flags & VM_LOCKED) {
893 pte_unmap_unlock(pte, ptl);
9f32624b
JK
894 pra->vm_flags |= VM_LOCKED;
895 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
896 }
897
71e3aac0
AA
898 if (ptep_clear_flush_young_notify(vma, address, pte)) {
899 /*
900 * Don't treat a reference through a sequentially read
901 * mapping as such. If the page has been used in
902 * another mapping, we will catch it; if this other
903 * mapping is already gone, the unmap path will have
904 * set PG_referenced or activated the page.
905 */
64363aad 906 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
907 referenced++;
908 }
909 pte_unmap_unlock(pte, ptl);
910 }
911
33c3fc71
VD
912 if (referenced)
913 clear_page_idle(page);
914 if (test_and_clear_page_young(page))
915 referenced++;
916
9f32624b
JK
917 if (referenced) {
918 pra->referenced++;
919 pra->vm_flags |= vma->vm_flags;
1da177e4 920 }
34bbd704 921
9f32624b
JK
922 pra->mapcount--;
923 if (!pra->mapcount)
924 return SWAP_SUCCESS; /* To break the loop */
925
926 return SWAP_AGAIN;
1da177e4
LT
927}
928
9f32624b 929static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 930{
9f32624b
JK
931 struct page_referenced_arg *pra = arg;
932 struct mem_cgroup *memcg = pra->memcg;
1da177e4 933
9f32624b
JK
934 if (!mm_match_cgroup(vma->vm_mm, memcg))
935 return true;
1da177e4 936
9f32624b 937 return false;
1da177e4
LT
938}
939
940/**
941 * page_referenced - test if the page was referenced
942 * @page: the page to test
943 * @is_locked: caller holds lock on the page
72835c86 944 * @memcg: target memory cgroup
6fe6b7e3 945 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
946 *
947 * Quick test_and_clear_referenced for all mappings to a page,
948 * returns the number of ptes which referenced the page.
949 */
6fe6b7e3
WF
950int page_referenced(struct page *page,
951 int is_locked,
72835c86 952 struct mem_cgroup *memcg,
6fe6b7e3 953 unsigned long *vm_flags)
1da177e4 954{
9f32624b 955 int ret;
5ad64688 956 int we_locked = 0;
9f32624b
JK
957 struct page_referenced_arg pra = {
958 .mapcount = page_mapcount(page),
959 .memcg = memcg,
960 };
961 struct rmap_walk_control rwc = {
962 .rmap_one = page_referenced_one,
963 .arg = (void *)&pra,
964 .anon_lock = page_lock_anon_vma_read,
965 };
1da177e4 966
6fe6b7e3 967 *vm_flags = 0;
9f32624b
JK
968 if (!page_mapped(page))
969 return 0;
970
971 if (!page_rmapping(page))
972 return 0;
973
974 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
975 we_locked = trylock_page(page);
976 if (!we_locked)
977 return 1;
1da177e4 978 }
9f32624b
JK
979
980 /*
981 * If we are reclaiming on behalf of a cgroup, skip
982 * counting on behalf of references from different
983 * cgroups
984 */
985 if (memcg) {
986 rwc.invalid_vma = invalid_page_referenced_vma;
987 }
988
989 ret = rmap_walk(page, &rwc);
990 *vm_flags = pra.vm_flags;
991
992 if (we_locked)
993 unlock_page(page);
994
995 return pra.referenced;
1da177e4
LT
996}
997
1cb1729b 998static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 999 unsigned long address, void *arg)
d08b3851
PZ
1000{
1001 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 1002 pte_t *pte;
d08b3851
PZ
1003 spinlock_t *ptl;
1004 int ret = 0;
9853a407 1005 int *cleaned = arg;
d08b3851 1006
479db0bf 1007 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
1008 if (!pte)
1009 goto out;
1010
c2fda5fe
PZ
1011 if (pte_dirty(*pte) || pte_write(*pte)) {
1012 pte_t entry;
d08b3851 1013
c2fda5fe 1014 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1015 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
1016 entry = pte_wrprotect(entry);
1017 entry = pte_mkclean(entry);
d6e88e67 1018 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
1019 ret = 1;
1020 }
d08b3851 1021
d08b3851 1022 pte_unmap_unlock(pte, ptl);
2ec74c3e 1023
9853a407 1024 if (ret) {
2ec74c3e 1025 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
1026 (*cleaned)++;
1027 }
d08b3851 1028out:
9853a407 1029 return SWAP_AGAIN;
d08b3851
PZ
1030}
1031
9853a407 1032static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1033{
9853a407 1034 if (vma->vm_flags & VM_SHARED)
871beb8c 1035 return false;
d08b3851 1036
871beb8c 1037 return true;
d08b3851
PZ
1038}
1039
1040int page_mkclean(struct page *page)
1041{
9853a407
JK
1042 int cleaned = 0;
1043 struct address_space *mapping;
1044 struct rmap_walk_control rwc = {
1045 .arg = (void *)&cleaned,
1046 .rmap_one = page_mkclean_one,
1047 .invalid_vma = invalid_mkclean_vma,
1048 };
d08b3851
PZ
1049
1050 BUG_ON(!PageLocked(page));
1051
9853a407
JK
1052 if (!page_mapped(page))
1053 return 0;
1054
1055 mapping = page_mapping(page);
1056 if (!mapping)
1057 return 0;
1058
1059 rmap_walk(page, &rwc);
d08b3851 1060
9853a407 1061 return cleaned;
d08b3851 1062}
60b59bea 1063EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1064
c44b6743
RR
1065/**
1066 * page_move_anon_rmap - move a page to our anon_vma
1067 * @page: the page to move to our anon_vma
1068 * @vma: the vma the page belongs to
1069 * @address: the user virtual address mapped
1070 *
1071 * When a page belongs exclusively to one process after a COW event,
1072 * that page can be moved into the anon_vma that belongs to just that
1073 * process, so the rmap code will not search the parent or sibling
1074 * processes.
1075 */
1076void page_move_anon_rmap(struct page *page,
1077 struct vm_area_struct *vma, unsigned long address)
1078{
1079 struct anon_vma *anon_vma = vma->anon_vma;
1080
309381fe 1081 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1082 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1083 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1084
1085 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1086 /*
1087 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1088 * simultaneously, so a concurrent reader (eg page_referenced()'s
1089 * PageAnon()) will not see one without the other.
1090 */
1091 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1092}
1093
9617d95e 1094/**
4e1c1975
AK
1095 * __page_set_anon_rmap - set up new anonymous rmap
1096 * @page: Page to add to rmap
1097 * @vma: VM area to add page to.
1098 * @address: User virtual address of the mapping
e8a03feb 1099 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1100 */
1101static void __page_set_anon_rmap(struct page *page,
e8a03feb 1102 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1103{
e8a03feb 1104 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1105
e8a03feb 1106 BUG_ON(!anon_vma);
ea90002b 1107
4e1c1975
AK
1108 if (PageAnon(page))
1109 return;
1110
ea90002b 1111 /*
e8a03feb
RR
1112 * If the page isn't exclusively mapped into this vma,
1113 * we must use the _oldest_ possible anon_vma for the
1114 * page mapping!
ea90002b 1115 */
4e1c1975 1116 if (!exclusive)
288468c3 1117 anon_vma = anon_vma->root;
9617d95e 1118
9617d95e
NP
1119 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1120 page->mapping = (struct address_space *) anon_vma;
9617d95e 1121 page->index = linear_page_index(vma, address);
9617d95e
NP
1122}
1123
c97a9e10 1124/**
43d8eac4 1125 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1126 * @page: the page to add the mapping to
1127 * @vma: the vm area in which the mapping is added
1128 * @address: the user virtual address mapped
1129 */
1130static void __page_check_anon_rmap(struct page *page,
1131 struct vm_area_struct *vma, unsigned long address)
1132{
1133#ifdef CONFIG_DEBUG_VM
1134 /*
1135 * The page's anon-rmap details (mapping and index) are guaranteed to
1136 * be set up correctly at this point.
1137 *
1138 * We have exclusion against page_add_anon_rmap because the caller
1139 * always holds the page locked, except if called from page_dup_rmap,
1140 * in which case the page is already known to be setup.
1141 *
1142 * We have exclusion against page_add_new_anon_rmap because those pages
1143 * are initially only visible via the pagetables, and the pte is locked
1144 * over the call to page_add_new_anon_rmap.
1145 */
44ab57a0 1146 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1147 BUG_ON(page->index != linear_page_index(vma, address));
1148#endif
1149}
1150
1da177e4
LT
1151/**
1152 * page_add_anon_rmap - add pte mapping to an anonymous page
1153 * @page: the page to add the mapping to
1154 * @vma: the vm area in which the mapping is added
1155 * @address: the user virtual address mapped
1156 *
5ad64688 1157 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1158 * the anon_vma case: to serialize mapping,index checking after setting,
1159 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1160 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1161 */
1162void page_add_anon_rmap(struct page *page,
1163 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1164{
1165 do_page_add_anon_rmap(page, vma, address, 0);
1166}
1167
1168/*
1169 * Special version of the above for do_swap_page, which often runs
1170 * into pages that are exclusively owned by the current process.
1171 * Everybody else should continue to use page_add_anon_rmap above.
1172 */
1173void do_page_add_anon_rmap(struct page *page,
1174 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1175{
5ad64688 1176 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1177 if (first) {
bea04b07
JZ
1178 /*
1179 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1180 * these counters are not modified in interrupt context, and
1181 * pte lock(a spinlock) is held, which implies preemption
1182 * disabled.
1183 */
3cd14fcd 1184 if (PageTransHuge(page))
79134171
AA
1185 __inc_zone_page_state(page,
1186 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1187 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1188 hpage_nr_pages(page));
79134171 1189 }
5ad64688
HD
1190 if (unlikely(PageKsm(page)))
1191 return;
1192
309381fe 1193 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1194 /* address might be in next vma when migration races vma_adjust */
5ad64688 1195 if (first)
ad8c2ee8 1196 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1197 else
c97a9e10 1198 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1199}
1200
43d8eac4 1201/**
9617d95e
NP
1202 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1203 * @page: the page to add the mapping to
1204 * @vma: the vm area in which the mapping is added
1205 * @address: the user virtual address mapped
1206 *
1207 * Same as page_add_anon_rmap but must only be called on *new* pages.
1208 * This means the inc-and-test can be bypassed.
c97a9e10 1209 * Page does not have to be locked.
9617d95e
NP
1210 */
1211void page_add_new_anon_rmap(struct page *page,
1212 struct vm_area_struct *vma, unsigned long address)
1213{
81d1b09c 1214 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1215 SetPageSwapBacked(page);
1216 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1217 if (PageTransHuge(page))
79134171 1218 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1219 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1220 hpage_nr_pages(page));
e8a03feb 1221 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1222}
1223
1da177e4
LT
1224/**
1225 * page_add_file_rmap - add pte mapping to a file page
1226 * @page: the page to add the mapping to
1227 *
b8072f09 1228 * The caller needs to hold the pte lock.
1da177e4
LT
1229 */
1230void page_add_file_rmap(struct page *page)
1231{
d7365e78 1232 struct mem_cgroup *memcg;
89c06bd5 1233
6de22619 1234 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1235 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1236 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1237 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1238 }
6de22619 1239 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1240}
1241
8186eb6a
JW
1242static void page_remove_file_rmap(struct page *page)
1243{
1244 struct mem_cgroup *memcg;
8186eb6a 1245
6de22619 1246 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1247
1248 /* page still mapped by someone else? */
1249 if (!atomic_add_negative(-1, &page->_mapcount))
1250 goto out;
1251
1252 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1253 if (unlikely(PageHuge(page)))
1254 goto out;
1255
1256 /*
1257 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1258 * these counters are not modified in interrupt context, and
1259 * pte lock(a spinlock) is held, which implies preemption disabled.
1260 */
1261 __dec_zone_page_state(page, NR_FILE_MAPPED);
1262 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1263
1264 if (unlikely(PageMlocked(page)))
1265 clear_page_mlock(page);
1266out:
6de22619 1267 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1268}
1269
1da177e4
LT
1270/**
1271 * page_remove_rmap - take down pte mapping from a page
1272 * @page: page to remove mapping from
1273 *
b8072f09 1274 * The caller needs to hold the pte lock.
1da177e4 1275 */
edc315fd 1276void page_remove_rmap(struct page *page)
1da177e4 1277{
8186eb6a
JW
1278 if (!PageAnon(page)) {
1279 page_remove_file_rmap(page);
1280 return;
1281 }
89c06bd5 1282
b904dcfe
KM
1283 /* page still mapped by someone else? */
1284 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1285 return;
1286
1287 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1288 if (unlikely(PageHuge(page)))
1289 return;
b904dcfe 1290
0fe6e20b 1291 /*
bea04b07
JZ
1292 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1293 * these counters are not modified in interrupt context, and
bea04b07 1294 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1295 */
8186eb6a
JW
1296 if (PageTransHuge(page))
1297 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1298
1299 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1300 -hpage_nr_pages(page));
1301
e6c509f8
HD
1302 if (unlikely(PageMlocked(page)))
1303 clear_page_mlock(page);
8186eb6a 1304
b904dcfe
KM
1305 /*
1306 * It would be tidy to reset the PageAnon mapping here,
1307 * but that might overwrite a racing page_add_anon_rmap
1308 * which increments mapcount after us but sets mapping
1309 * before us: so leave the reset to free_hot_cold_page,
1310 * and remember that it's only reliable while mapped.
1311 * Leaving it set also helps swapoff to reinstate ptes
1312 * faster for those pages still in swapcache.
1313 */
1da177e4
LT
1314}
1315
1cac41cb
MB
1316#ifdef CONFIG_RKP_DMAP_PROT
1317extern void dmap_prot(u64 addr,u64 order,u64 val);
1318#endif
1da177e4 1319/*
52629506 1320 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1321 */
ac769501 1322static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1323 unsigned long address, void *arg)
1da177e4
LT
1324{
1325 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1326 pte_t *pte;
1327 pte_t pteval;
c0718806 1328 spinlock_t *ptl;
1da177e4 1329 int ret = SWAP_AGAIN;
52629506 1330 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1331
b87537d9
HD
1332 /* munlock has nothing to gain from examining un-locked vmas */
1333 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1334 goto out;
1335
479db0bf 1336 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1337 if (!pte)
81b4082d 1338 goto out;
1da177e4
LT
1339
1340 /*
1341 * If the page is mlock()d, we cannot swap it out.
1342 * If it's recently referenced (perhaps page_referenced
1343 * skipped over this mm) then we should reactivate it.
1344 */
14fa31b8 1345 if (!(flags & TTU_IGNORE_MLOCK)) {
b87537d9
HD
1346 if (vma->vm_flags & VM_LOCKED) {
1347 /* Holding pte lock, we do *not* need mmap_sem here */
1348 mlock_vma_page(page);
1349 ret = SWAP_MLOCK;
1350 goto out_unmap;
1351 }
daa5ba76 1352 if (flags & TTU_MUNLOCK)
53f79acb 1353 goto out_unmap;
14fa31b8
AK
1354 }
1355 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1356 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1357 ret = SWAP_FAIL;
1358 goto out_unmap;
1359 }
1360 }
1cac41cb
MB
1361#ifdef CONFIG_RKP_DMAP_PROT
1362 dmap_prot((u64)page_to_phys(page),(u64)compound_order(page),0);
1363#endif
1da177e4
LT
1364 /* Nuke the page table entry. */
1365 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1366 if (should_defer_flush(mm, flags)) {
1367 /*
1368 * We clear the PTE but do not flush so potentially a remote
1369 * CPU could still be writing to the page. If the entry was
1370 * previously clean then the architecture must guarantee that
1371 * a clear->dirty transition on a cached TLB entry is written
1372 * through and traps if the PTE is unmapped.
1373 */
1374 pteval = ptep_get_and_clear(mm, address, pte);
1375
d950c947 1376 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
72b252ae
MG
1377 } else {
1378 pteval = ptep_clear_flush(vma, address, pte);
1379 }
1da177e4
LT
1380
1381 /* Move the dirty bit to the physical page now the pte is gone. */
1382 if (pte_dirty(pteval))
1383 set_page_dirty(page);
1384
365e9c87
HD
1385 /* Update high watermark before we lower rss */
1386 update_hiwater_rss(mm);
1387
888b9f7c 1388 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5d317b2b
NH
1389 if (PageHuge(page)) {
1390 hugetlb_count_sub(1 << compound_order(page), mm);
1391 } else {
5f24ae58
NH
1392 if (PageAnon(page))
1393 dec_mm_counter(mm, MM_ANONPAGES);
1394 else
1395 dec_mm_counter(mm, MM_FILEPAGES);
1396 }
1cac41cb
MB
1397#ifdef CONFIG_RKP_DMAP_PROT
1398 dmap_prot((u64)swp_entry_to_pte(make_hwpoison_entry(page)),0,0);
1399#endif
888b9f7c 1400 set_pte_at(mm, address, pte,
5f24ae58 1401 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1402 } else if (pte_unused(pteval)) {
1403 /*
1404 * The guest indicated that the page content is of no
1405 * interest anymore. Simply discard the pte, vmscan
1406 * will take care of the rest.
1407 */
1408 if (PageAnon(page))
1409 dec_mm_counter(mm, MM_ANONPAGES);
1410 else
1411 dec_mm_counter(mm, MM_FILEPAGES);
470f119f
HD
1412 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1413 swp_entry_t entry;
1414 pte_t swp_pte;
1415 /*
1416 * Store the pfn of the page in a special migration
1417 * pte. do_swap_page() will wait until the migration
1418 * pte is removed and then restart fault handling.
1419 */
1420 entry = make_migration_entry(page, pte_write(pteval));
1421 swp_pte = swp_entry_to_pte(entry);
1422 if (pte_soft_dirty(pteval))
1423 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1cac41cb
MB
1424#ifdef CONFIG_RKP_DMAP_PROT
1425 dmap_prot((u64)swp_pte,0,0);
1426#endif
470f119f 1427 set_pte_at(mm, address, pte, swp_pte);
888b9f7c 1428 } else if (PageAnon(page)) {
4c21e2f2 1429 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1430 pte_t swp_pte;
470f119f
HD
1431 /*
1432 * Store the swap location in the pte.
1433 * See handle_pte_fault() ...
1434 */
1435 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1436 if (swap_duplicate(entry) < 0) {
1cac41cb
MB
1437#ifdef CONFIG_RKP_DMAP_PROT
1438 dmap_prot((u64)pteval,0,0);
1439#endif
470f119f
HD
1440 set_pte_at(mm, address, pte, pteval);
1441 ret = SWAP_FAIL;
1442 goto out_unmap;
1443 }
1444 if (list_empty(&mm->mmlist)) {
1445 spin_lock(&mmlist_lock);
1446 if (list_empty(&mm->mmlist))
1447 list_add(&mm->mmlist, &init_mm.mmlist);
1448 spin_unlock(&mmlist_lock);
1da177e4 1449 }
470f119f
HD
1450 dec_mm_counter(mm, MM_ANONPAGES);
1451 inc_mm_counter(mm, MM_SWAPENTS);
179ef71c
CG
1452 swp_pte = swp_entry_to_pte(entry);
1453 if (pte_soft_dirty(pteval))
1454 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1cac41cb
MB
1455#ifdef CONFIG_RKP_DMAP_PROT
1456 dmap_prot((u64)swp_pte,0,0);
1457#endif
179ef71c 1458 set_pte_at(mm, address, pte, swp_pte);
04e62a29 1459 } else
d559db08 1460 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1461
edc315fd 1462 page_remove_rmap(page);
1da177e4
LT
1463 page_cache_release(page);
1464
1465out_unmap:
c0718806 1466 pte_unmap_unlock(pte, ptl);
b87537d9 1467 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
2ec74c3e 1468 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1469out:
1470 return ret;
1da177e4
LT
1471}
1472
71e3aac0 1473bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1474{
1475 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1476
1477 if (!maybe_stack)
1478 return false;
1479
1480 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1481 VM_STACK_INCOMPLETE_SETUP)
1482 return true;
1483
1484 return false;
1485}
1486
52629506
JK
1487static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1488{
1489 return is_vma_temporary_stack(vma);
1490}
1491
52629506
JK
1492static int page_not_mapped(struct page *page)
1493{
1494 return !page_mapped(page);
1495};
1496
1da177e4
LT
1497/**
1498 * try_to_unmap - try to remove all page table mappings to a page
1499 * @page: the page to get unmapped
14fa31b8 1500 * @flags: action and flags
1da177e4
LT
1501 *
1502 * Tries to remove all the page table entries which are mapping this
1503 * page, used in the pageout path. Caller must hold the page lock.
1504 * Return values are:
1505 *
1506 * SWAP_SUCCESS - we succeeded in removing all mappings
1507 * SWAP_AGAIN - we missed a mapping, try again later
1508 * SWAP_FAIL - the page is unswappable
b291f000 1509 * SWAP_MLOCK - page is mlocked.
1da177e4 1510 */
14fa31b8 1511int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1512{
1513 int ret;
52629506
JK
1514 struct rmap_walk_control rwc = {
1515 .rmap_one = try_to_unmap_one,
1516 .arg = (void *)flags,
1517 .done = page_not_mapped,
52629506
JK
1518 .anon_lock = page_lock_anon_vma_read,
1519 };
1da177e4 1520
309381fe 1521 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1522
52629506
JK
1523 /*
1524 * During exec, a temporary VMA is setup and later moved.
1525 * The VMA is moved under the anon_vma lock but not the
1526 * page tables leading to a race where migration cannot
1527 * find the migration ptes. Rather than increasing the
1528 * locking requirements of exec(), migration skips
1529 * temporary VMAs until after exec() completes.
1530 */
daa5ba76 1531 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1532 rwc.invalid_vma = invalid_migration_vma;
1533
1534 ret = rmap_walk(page, &rwc);
1535
b291f000 1536 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1537 ret = SWAP_SUCCESS;
1538 return ret;
1539}
81b4082d 1540
b291f000
NP
1541/**
1542 * try_to_munlock - try to munlock a page
1543 * @page: the page to be munlocked
1544 *
1545 * Called from munlock code. Checks all of the VMAs mapping the page
1546 * to make sure nobody else has this page mlocked. The page will be
1547 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1548 *
1549 * Return values are:
1550 *
53f79acb 1551 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1552 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1553 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1554 * SWAP_MLOCK - page is now mlocked.
1555 */
1556int try_to_munlock(struct page *page)
1557{
e8351ac9
JK
1558 int ret;
1559 struct rmap_walk_control rwc = {
1560 .rmap_one = try_to_unmap_one,
1561 .arg = (void *)TTU_MUNLOCK,
1562 .done = page_not_mapped,
e8351ac9
JK
1563 .anon_lock = page_lock_anon_vma_read,
1564
1565 };
1566
309381fe 1567 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1568
e8351ac9
JK
1569 ret = rmap_walk(page, &rwc);
1570 return ret;
b291f000 1571}
e9995ef9 1572
01d8b20d 1573void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1574{
01d8b20d 1575 struct anon_vma *root = anon_vma->root;
76545066 1576
624483f3 1577 anon_vma_free(anon_vma);
01d8b20d
PZ
1578 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1579 anon_vma_free(root);
76545066 1580}
76545066 1581
0dd1c7bb
JK
1582static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1583 struct rmap_walk_control *rwc)
faecd8dd
JK
1584{
1585 struct anon_vma *anon_vma;
1586
0dd1c7bb
JK
1587 if (rwc->anon_lock)
1588 return rwc->anon_lock(page);
1589
faecd8dd
JK
1590 /*
1591 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1592 * because that depends on page_mapped(); but not all its usages
1593 * are holding mmap_sem. Users without mmap_sem are required to
1594 * take a reference count to prevent the anon_vma disappearing
1595 */
1596 anon_vma = page_anon_vma(page);
1597 if (!anon_vma)
1598 return NULL;
1599
1600 anon_vma_lock_read(anon_vma);
1601 return anon_vma;
1602}
1603
e9995ef9 1604/*
e8351ac9
JK
1605 * rmap_walk_anon - do something to anonymous page using the object-based
1606 * rmap method
1607 * @page: the page to be handled
1608 * @rwc: control variable according to each walk type
1609 *
1610 * Find all the mappings of a page using the mapping pointer and the vma chains
1611 * contained in the anon_vma struct it points to.
1612 *
1613 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1614 * where the page was found will be held for write. So, we won't recheck
1615 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1616 * LOCKED.
e9995ef9 1617 */
051ac83a 1618static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1619{
1620 struct anon_vma *anon_vma;
b258d860 1621 pgoff_t pgoff;
5beb4930 1622 struct anon_vma_chain *avc;
e9995ef9
HD
1623 int ret = SWAP_AGAIN;
1624
0dd1c7bb 1625 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1626 if (!anon_vma)
1627 return ret;
faecd8dd 1628
b258d860 1629 pgoff = page_to_pgoff(page);
bf181b9f 1630 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1631 struct vm_area_struct *vma = avc->vma;
e9995ef9 1632 unsigned long address = vma_address(page, vma);
0dd1c7bb 1633
ad12695f
AA
1634 cond_resched();
1635
0dd1c7bb
JK
1636 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1637 continue;
1638
051ac83a 1639 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1640 if (ret != SWAP_AGAIN)
1641 break;
0dd1c7bb
JK
1642 if (rwc->done && rwc->done(page))
1643 break;
e9995ef9 1644 }
4fc3f1d6 1645 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1646 return ret;
1647}
1648
e8351ac9
JK
1649/*
1650 * rmap_walk_file - do something to file page using the object-based rmap method
1651 * @page: the page to be handled
1652 * @rwc: control variable according to each walk type
1653 *
1654 * Find all the mappings of a page using the mapping pointer and the vma chains
1655 * contained in the address_space struct it points to.
1656 *
1657 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1658 * where the page was found will be held for write. So, we won't recheck
1659 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1660 * LOCKED.
1661 */
051ac83a 1662static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1663{
1664 struct address_space *mapping = page->mapping;
b258d860 1665 pgoff_t pgoff;
e9995ef9 1666 struct vm_area_struct *vma;
e9995ef9
HD
1667 int ret = SWAP_AGAIN;
1668
9f32624b
JK
1669 /*
1670 * The page lock not only makes sure that page->mapping cannot
1671 * suddenly be NULLified by truncation, it makes sure that the
1672 * structure at mapping cannot be freed and reused yet,
c8c06efa 1673 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1674 */
81d1b09c 1675 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1676
e9995ef9
HD
1677 if (!mapping)
1678 return ret;
3dec0ba0 1679
b258d860 1680 pgoff = page_to_pgoff(page);
3dec0ba0 1681 i_mmap_lock_read(mapping);
6b2dbba8 1682 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1683 unsigned long address = vma_address(page, vma);
0dd1c7bb 1684
ad12695f
AA
1685 cond_resched();
1686
0dd1c7bb
JK
1687 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1688 continue;
1689
051ac83a 1690 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1691 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1692 goto done;
1693 if (rwc->done && rwc->done(page))
1694 goto done;
e9995ef9 1695 }
0dd1c7bb 1696
0dd1c7bb 1697done:
3dec0ba0 1698 i_mmap_unlock_read(mapping);
e9995ef9
HD
1699 return ret;
1700}
1701
051ac83a 1702int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1703{
e9995ef9 1704 if (unlikely(PageKsm(page)))
051ac83a 1705 return rmap_walk_ksm(page, rwc);
e9995ef9 1706 else if (PageAnon(page))
051ac83a 1707 return rmap_walk_anon(page, rwc);
e9995ef9 1708 else
051ac83a 1709 return rmap_walk_file(page, rwc);
e9995ef9 1710}
0fe6e20b 1711
e3390f67 1712#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1713/*
1714 * The following three functions are for anonymous (private mapped) hugepages.
1715 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1716 * and no lru code, because we handle hugepages differently from common pages.
1717 */
1718static void __hugepage_set_anon_rmap(struct page *page,
1719 struct vm_area_struct *vma, unsigned long address, int exclusive)
1720{
1721 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1722
0fe6e20b 1723 BUG_ON(!anon_vma);
433abed6
NH
1724
1725 if (PageAnon(page))
1726 return;
1727 if (!exclusive)
1728 anon_vma = anon_vma->root;
1729
0fe6e20b
NH
1730 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1731 page->mapping = (struct address_space *) anon_vma;
1732 page->index = linear_page_index(vma, address);
1733}
1734
1735void hugepage_add_anon_rmap(struct page *page,
1736 struct vm_area_struct *vma, unsigned long address)
1737{
1738 struct anon_vma *anon_vma = vma->anon_vma;
1739 int first;
a850ea30
NH
1740
1741 BUG_ON(!PageLocked(page));
0fe6e20b 1742 BUG_ON(!anon_vma);
5dbe0af4 1743 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1744 first = atomic_inc_and_test(&page->_mapcount);
1745 if (first)
1746 __hugepage_set_anon_rmap(page, vma, address, 0);
1747}
1748
1749void hugepage_add_new_anon_rmap(struct page *page,
1750 struct vm_area_struct *vma, unsigned long address)
1751{
1752 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1753 atomic_set(&page->_mapcount, 0);
1754 __hugepage_set_anon_rmap(page, vma, address, 1);
1755}
e3390f67 1756#endif /* CONFIG_HUGETLB_PAGE */