dts: early mount efs
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
6b251fc9 64#include <linux/userfaultfd_k.h>
1da177e4 65
6952b61d 66#include <asm/io.h>
1da177e4
LT
67#include <asm/pgalloc.h>
68#include <asm/uaccess.h>
69#include <asm/tlb.h>
70#include <asm/tlbflush.h>
71#include <asm/pgtable.h>
72
42b77728
JB
73#include "internal.h"
74
90572890
PZ
75#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
77#endif
78
d41dee36 79#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
80/* use the per-pgdat data instead for discontigmem - mbligh */
81unsigned long max_mapnr;
82struct page *mem_map;
83
84EXPORT_SYMBOL(max_mapnr);
85EXPORT_SYMBOL(mem_map);
86#endif
87
1da177e4
LT
88/*
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
94 */
95void * high_memory;
1da177e4 96
1da177e4 97EXPORT_SYMBOL(high_memory);
1da177e4 98
32a93233
IM
99/*
100 * Randomize the address space (stacks, mmaps, brk, etc.).
101 *
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
104 */
105int randomize_va_space __read_mostly =
106#ifdef CONFIG_COMPAT_BRK
107 1;
108#else
109 2;
110#endif
a62eaf15
AK
111
112static int __init disable_randmaps(char *s)
113{
114 randomize_va_space = 0;
9b41046c 115 return 1;
a62eaf15
AK
116}
117__setup("norandmaps", disable_randmaps);
118
62eede62 119unsigned long zero_pfn __read_mostly;
03f6462a 120unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 121
0b70068e
AB
122EXPORT_SYMBOL(zero_pfn);
123
a13ea5b7
HD
124/*
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 */
127static int __init init_zero_pfn(void)
128{
129 zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 return 0;
131}
132core_initcall(init_zero_pfn);
a62eaf15 133
d559db08 134
34e55232
KH
135#if defined(SPLIT_RSS_COUNTING)
136
ea48cf78 137void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
138{
139 int i;
140
141 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
142 if (current->rss_stat.count[i]) {
143 add_mm_counter(mm, i, current->rss_stat.count[i]);
144 current->rss_stat.count[i] = 0;
34e55232
KH
145 }
146 }
05af2e10 147 current->rss_stat.events = 0;
34e55232
KH
148}
149
150static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151{
152 struct task_struct *task = current;
153
154 if (likely(task->mm == mm))
155 task->rss_stat.count[member] += val;
156 else
157 add_mm_counter(mm, member, val);
158}
159#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162/* sync counter once per 64 page faults */
163#define TASK_RSS_EVENTS_THRESH (64)
164static void check_sync_rss_stat(struct task_struct *task)
165{
166 if (unlikely(task != current))
167 return;
168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 169 sync_mm_rss(task->mm);
34e55232 170}
9547d01b 171#else /* SPLIT_RSS_COUNTING */
34e55232
KH
172
173#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176static void check_sync_rss_stat(struct task_struct *task)
177{
178}
179
9547d01b
PZ
180#endif /* SPLIT_RSS_COUNTING */
181
182#ifdef HAVE_GENERIC_MMU_GATHER
183
ca1d6c7d 184static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
185{
186 struct mmu_gather_batch *batch;
187
188 batch = tlb->active;
189 if (batch->next) {
190 tlb->active = batch->next;
ca1d6c7d 191 return true;
9547d01b
PZ
192 }
193
53a59fc6 194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 195 return false;
53a59fc6 196
9547d01b
PZ
197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 if (!batch)
ca1d6c7d 199 return false;
9547d01b 200
53a59fc6 201 tlb->batch_count++;
9547d01b
PZ
202 batch->next = NULL;
203 batch->nr = 0;
204 batch->max = MAX_GATHER_BATCH;
205
206 tlb->active->next = batch;
207 tlb->active = batch;
208
ca1d6c7d 209 return true;
9547d01b
PZ
210}
211
212/* tlb_gather_mmu
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
216 */
2b047252 217void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
218{
219 tlb->mm = mm;
220
2b047252
LT
221 /* Is it from 0 to ~0? */
222 tlb->fullmm = !(start | (end+1));
1de14c3c 223 tlb->need_flush_all = 0;
9547d01b
PZ
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
53a59fc6 228 tlb->batch_count = 0;
9547d01b
PZ
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232#endif
fb7332a9
WD
233
234 __tlb_reset_range(tlb);
9547d01b
PZ
235}
236
1cf35d47 237static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 238{
721c21c1
WD
239 if (!tlb->end)
240 return;
241
9547d01b 242 tlb_flush(tlb);
34ee645e 243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
244#ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb);
34e55232 246#endif
fb7332a9 247 __tlb_reset_range(tlb);
1cf35d47
LT
248}
249
250static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251{
252 struct mmu_gather_batch *batch;
34e55232 253
721c21c1 254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
255 free_pages_and_swap_cache(batch->pages, batch->nr);
256 batch->nr = 0;
257 }
258 tlb->active = &tlb->local;
259}
260
1cf35d47
LT
261void tlb_flush_mmu(struct mmu_gather *tlb)
262{
1cf35d47
LT
263 tlb_flush_mmu_tlbonly(tlb);
264 tlb_flush_mmu_free(tlb);
265}
266
9547d01b
PZ
267/* tlb_finish_mmu
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
270 */
271void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272{
273 struct mmu_gather_batch *batch, *next;
274
275 tlb_flush_mmu(tlb);
276
277 /* keep the page table cache within bounds */
278 check_pgt_cache();
279
280 for (batch = tlb->local.next; batch; batch = next) {
281 next = batch->next;
282 free_pages((unsigned long)batch, 0);
283 }
284 tlb->local.next = NULL;
285}
286
287/* __tlb_remove_page
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
292 */
293int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294{
295 struct mmu_gather_batch *batch;
296
fb7332a9 297 VM_BUG_ON(!tlb->end);
9547d01b 298
9547d01b
PZ
299 batch = tlb->active;
300 batch->pages[batch->nr++] = page;
301 if (batch->nr == batch->max) {
302 if (!tlb_next_batch(tlb))
303 return 0;
0b43c3aa 304 batch = tlb->active;
9547d01b 305 }
309381fe 306 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
307
308 return batch->max - batch->nr;
309}
310
311#endif /* HAVE_GENERIC_MMU_GATHER */
312
26723911
PZ
313#ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315/*
316 * See the comment near struct mmu_table_batch.
317 */
318
319static void tlb_remove_table_smp_sync(void *arg)
320{
321 /* Simply deliver the interrupt */
322}
323
324static void tlb_remove_table_one(void *table)
325{
326 /*
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
329 *
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
332 */
333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 __tlb_remove_table(table);
335}
336
337static void tlb_remove_table_rcu(struct rcu_head *head)
338{
339 struct mmu_table_batch *batch;
340 int i;
341
342 batch = container_of(head, struct mmu_table_batch, rcu);
343
344 for (i = 0; i < batch->nr; i++)
345 __tlb_remove_table(batch->tables[i]);
346
347 free_page((unsigned long)batch);
348}
349
350void tlb_table_flush(struct mmu_gather *tlb)
351{
352 struct mmu_table_batch **batch = &tlb->batch;
353
354 if (*batch) {
355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 *batch = NULL;
357 }
358}
359
360void tlb_remove_table(struct mmu_gather *tlb, void *table)
361{
362 struct mmu_table_batch **batch = &tlb->batch;
363
26723911
PZ
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384}
385
9547d01b 386#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 387
1da177e4
LT
388/*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
9e1b32ca
BH
392static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
1da177e4 394{
2f569afd 395 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 396 pmd_clear(pmd);
9e1b32ca 397 pte_free_tlb(tlb, token, addr);
e1f56c89 398 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
399}
400
e0da382c
HD
401static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
1da177e4
LT
404{
405 pmd_t *pmd;
406 unsigned long next;
e0da382c 407 unsigned long start;
1da177e4 408
e0da382c 409 start = addr;
1da177e4 410 pmd = pmd_offset(pud, addr);
1da177e4
LT
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
9e1b32ca 415 free_pte_range(tlb, pmd, addr);
1da177e4
LT
416 } while (pmd++, addr = next, addr != end);
417
e0da382c
HD
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
1da177e4 425 }
e0da382c
HD
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
9e1b32ca 431 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 432 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
433}
434
e0da382c
HD
435static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436 unsigned long addr, unsigned long end,
437 unsigned long floor, unsigned long ceiling)
1da177e4
LT
438{
439 pud_t *pud;
440 unsigned long next;
e0da382c 441 unsigned long start;
1da177e4 442
e0da382c 443 start = addr;
1da177e4 444 pud = pud_offset(pgd, addr);
1da177e4
LT
445 do {
446 next = pud_addr_end(addr, end);
447 if (pud_none_or_clear_bad(pud))
448 continue;
e0da382c 449 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
450 } while (pud++, addr = next, addr != end);
451
e0da382c
HD
452 start &= PGDIR_MASK;
453 if (start < floor)
454 return;
455 if (ceiling) {
456 ceiling &= PGDIR_MASK;
457 if (!ceiling)
458 return;
1da177e4 459 }
e0da382c
HD
460 if (end - 1 > ceiling - 1)
461 return;
462
463 pud = pud_offset(pgd, start);
464 pgd_clear(pgd);
9e1b32ca 465 pud_free_tlb(tlb, pud, start);
1da177e4
LT
466}
467
468/*
e0da382c 469 * This function frees user-level page tables of a process.
1da177e4 470 */
42b77728 471void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
472 unsigned long addr, unsigned long end,
473 unsigned long floor, unsigned long ceiling)
1da177e4
LT
474{
475 pgd_t *pgd;
476 unsigned long next;
e0da382c
HD
477
478 /*
479 * The next few lines have given us lots of grief...
480 *
481 * Why are we testing PMD* at this top level? Because often
482 * there will be no work to do at all, and we'd prefer not to
483 * go all the way down to the bottom just to discover that.
484 *
485 * Why all these "- 1"s? Because 0 represents both the bottom
486 * of the address space and the top of it (using -1 for the
487 * top wouldn't help much: the masks would do the wrong thing).
488 * The rule is that addr 0 and floor 0 refer to the bottom of
489 * the address space, but end 0 and ceiling 0 refer to the top
490 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491 * that end 0 case should be mythical).
492 *
493 * Wherever addr is brought up or ceiling brought down, we must
494 * be careful to reject "the opposite 0" before it confuses the
495 * subsequent tests. But what about where end is brought down
496 * by PMD_SIZE below? no, end can't go down to 0 there.
497 *
498 * Whereas we round start (addr) and ceiling down, by different
499 * masks at different levels, in order to test whether a table
500 * now has no other vmas using it, so can be freed, we don't
501 * bother to round floor or end up - the tests don't need that.
502 */
1da177e4 503
e0da382c
HD
504 addr &= PMD_MASK;
505 if (addr < floor) {
506 addr += PMD_SIZE;
507 if (!addr)
508 return;
509 }
510 if (ceiling) {
511 ceiling &= PMD_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 end -= PMD_SIZE;
517 if (addr > end - 1)
518 return;
519
42b77728 520 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
521 do {
522 next = pgd_addr_end(addr, end);
523 if (pgd_none_or_clear_bad(pgd))
524 continue;
42b77728 525 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 526 } while (pgd++, addr = next, addr != end);
e0da382c
HD
527}
528
42b77728 529void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 530 unsigned long floor, unsigned long ceiling)
e0da382c
HD
531{
532 while (vma) {
533 struct vm_area_struct *next = vma->vm_next;
534 unsigned long addr = vma->vm_start;
535
8f4f8c16 536 /*
25d9e2d1 537 * Hide vma from rmap and truncate_pagecache before freeing
538 * pgtables
8f4f8c16 539 */
5beb4930 540 unlink_anon_vmas(vma);
8f4f8c16
HD
541 unlink_file_vma(vma);
542
9da61aef 543 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 545 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
546 } else {
547 /*
548 * Optimization: gather nearby vmas into one call down
549 */
550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 551 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
552 vma = next;
553 next = vma->vm_next;
5beb4930 554 unlink_anon_vmas(vma);
8f4f8c16 555 unlink_file_vma(vma);
3bf5ee95
HD
556 }
557 free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 }
e0da382c
HD
560 vma = next;
561 }
1da177e4
LT
562}
563
8ac1f832
AA
564int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565 pmd_t *pmd, unsigned long address)
1da177e4 566{
c4088ebd 567 spinlock_t *ptl;
2f569afd 568 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 569 int wait_split_huge_page;
1bb3630e
HD
570 if (!new)
571 return -ENOMEM;
572
362a61ad
NP
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
c4088ebd 588 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
589 wait_split_huge_page = 0;
590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 591 atomic_long_inc(&mm->nr_ptes);
1da177e4 592 pmd_populate(mm, pmd, new);
2f569afd 593 new = NULL;
8ac1f832
AA
594 } else if (unlikely(pmd_trans_splitting(*pmd)))
595 wait_split_huge_page = 1;
c4088ebd 596 spin_unlock(ptl);
2f569afd
MS
597 if (new)
598 pte_free(mm, new);
8ac1f832
AA
599 if (wait_split_huge_page)
600 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 601 return 0;
1da177e4
LT
602}
603
1bb3630e 604int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 605{
1bb3630e
HD
606 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607 if (!new)
608 return -ENOMEM;
609
362a61ad
NP
610 smp_wmb(); /* See comment in __pte_alloc */
611
1bb3630e 612 spin_lock(&init_mm.page_table_lock);
8ac1f832 613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 614 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 615 new = NULL;
8ac1f832
AA
616 } else
617 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 618 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
619 if (new)
620 pte_free_kernel(&init_mm, new);
1bb3630e 621 return 0;
1da177e4
LT
622}
623
d559db08
KH
624static inline void init_rss_vec(int *rss)
625{
626 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627}
628
629static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 630{
d559db08
KH
631 int i;
632
34e55232 633 if (current->mm == mm)
05af2e10 634 sync_mm_rss(mm);
d559db08
KH
635 for (i = 0; i < NR_MM_COUNTERS; i++)
636 if (rss[i])
637 add_mm_counter(mm, i, rss[i]);
ae859762
HD
638}
639
b5810039 640/*
6aab341e
LT
641 * This function is called to print an error when a bad pte
642 * is found. For example, we might have a PFN-mapped pte in
643 * a region that doesn't allow it.
b5810039
NP
644 *
645 * The calling function must still handle the error.
646 */
3dc14741
HD
647static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte, struct page *page)
b5810039 649{
3dc14741
HD
650 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651 pud_t *pud = pud_offset(pgd, addr);
652 pmd_t *pmd = pmd_offset(pud, addr);
653 struct address_space *mapping;
654 pgoff_t index;
d936cf9b
HD
655 static unsigned long resume;
656 static unsigned long nr_shown;
657 static unsigned long nr_unshown;
658
659 /*
660 * Allow a burst of 60 reports, then keep quiet for that minute;
661 * or allow a steady drip of one report per second.
662 */
663 if (nr_shown == 60) {
664 if (time_before(jiffies, resume)) {
665 nr_unshown++;
666 return;
667 }
668 if (nr_unshown) {
1e9e6365
HD
669 printk(KERN_ALERT
670 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
671 nr_unshown);
672 nr_unshown = 0;
673 }
674 nr_shown = 0;
675 }
676 if (nr_shown++ == 0)
677 resume = jiffies + 60 * HZ;
3dc14741
HD
678
679 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680 index = linear_page_index(vma, addr);
681
1e9e6365
HD
682 printk(KERN_ALERT
683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
684 current->comm,
685 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 686 if (page)
f0b791a3 687 dump_page(page, "bad pte");
1e9e6365 688 printk(KERN_ALERT
3dc14741
HD
689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691 /*
692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 */
2682582a
KK
694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695 vma->vm_file,
696 vma->vm_ops ? vma->vm_ops->fault : NULL,
697 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698 mapping ? mapping->a_ops->readpage : NULL);
b5810039 699 dump_stack();
373d4d09 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
701}
702
ee498ed7 703/*
7e675137 704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 705 *
7e675137
NP
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 709 *
7e675137
NP
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 718 *
b379d790
JH
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
6aab341e
LT
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
7e675137
NP
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
b379d790 732 *
b379d790 733 *
7e675137 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
ee498ed7 744 */
7e675137
NP
745#ifdef __HAVE_ARCH_PTE_SPECIAL
746# define HAVE_PTE_SPECIAL 1
747#else
748# define HAVE_PTE_SPECIAL 0
749#endif
750struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
ee498ed7 752{
22b31eec 753 unsigned long pfn = pte_pfn(pte);
7e675137
NP
754
755 if (HAVE_PTE_SPECIAL) {
b38af472 756 if (likely(!pte_special(pte)))
22b31eec 757 goto check_pfn;
667a0a06
DV
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
62eede62 762 if (!is_zero_pfn(pfn))
22b31eec 763 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
764 return NULL;
765 }
766
767 /* !HAVE_PTE_SPECIAL case follows: */
768
b379d790
JH
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
7e675137
NP
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
781 }
6aab341e
LT
782 }
783
b38af472
HD
784 if (is_zero_pfn(pfn))
785 return NULL;
22b31eec
HD
786check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
6aab341e
LT
791
792 /*
7e675137 793 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 794 * eg. VDSO mappings can cause them to exist.
6aab341e 795 */
b379d790 796out:
6aab341e 797 return pfn_to_page(pfn);
ee498ed7
HD
798}
799
e513b90a
GS
800#ifdef CONFIG_TRANSPARENT_HUGEPAGE
801struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
802 pmd_t pmd)
803{
804 unsigned long pfn = pmd_pfn(pmd);
805
806 /*
807 * There is no pmd_special() but there may be special pmds, e.g.
808 * in a direct-access (dax) mapping, so let's just replicate the
809 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
810 */
811 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
812 if (vma->vm_flags & VM_MIXEDMAP) {
813 if (!pfn_valid(pfn))
814 return NULL;
815 goto out;
816 } else {
817 unsigned long off;
818 off = (addr - vma->vm_start) >> PAGE_SHIFT;
819 if (pfn == vma->vm_pgoff + off)
820 return NULL;
821 if (!is_cow_mapping(vma->vm_flags))
822 return NULL;
823 }
824 }
825
826 if (is_zero_pfn(pfn))
827 return NULL;
828 if (unlikely(pfn > highest_memmap_pfn))
829 return NULL;
830
831 /*
832 * NOTE! We still have PageReserved() pages in the page tables.
833 * eg. VDSO mappings can cause them to exist.
834 */
835out:
836 return pfn_to_page(pfn);
837}
838#endif
839
1da177e4
LT
840/*
841 * copy one vm_area from one task to the other. Assumes the page tables
842 * already present in the new task to be cleared in the whole range
843 * covered by this vma.
1da177e4
LT
844 */
845
570a335b 846static inline unsigned long
1da177e4 847copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 848 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 849 unsigned long addr, int *rss)
1da177e4 850{
b5810039 851 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
852 pte_t pte = *src_pte;
853 struct page *page;
1da177e4
LT
854
855 /* pte contains position in swap or file, so copy. */
856 if (unlikely(!pte_present(pte))) {
0661a336
KS
857 swp_entry_t entry = pte_to_swp_entry(pte);
858
859 if (likely(!non_swap_entry(entry))) {
860 if (swap_duplicate(entry) < 0)
861 return entry.val;
862
863 /* make sure dst_mm is on swapoff's mmlist. */
864 if (unlikely(list_empty(&dst_mm->mmlist))) {
865 spin_lock(&mmlist_lock);
866 if (list_empty(&dst_mm->mmlist))
867 list_add(&dst_mm->mmlist,
868 &src_mm->mmlist);
869 spin_unlock(&mmlist_lock);
870 }
871 rss[MM_SWAPENTS]++;
872 } else if (is_migration_entry(entry)) {
873 page = migration_entry_to_page(entry);
874
875 if (PageAnon(page))
876 rss[MM_ANONPAGES]++;
877 else
878 rss[MM_FILEPAGES]++;
879
880 if (is_write_migration_entry(entry) &&
881 is_cow_mapping(vm_flags)) {
882 /*
883 * COW mappings require pages in both
884 * parent and child to be set to read.
885 */
886 make_migration_entry_read(&entry);
887 pte = swp_entry_to_pte(entry);
888 if (pte_swp_soft_dirty(*src_pte))
889 pte = pte_swp_mksoft_dirty(pte);
890 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 891 }
1da177e4 892 }
ae859762 893 goto out_set_pte;
1da177e4
LT
894 }
895
1da177e4
LT
896 /*
897 * If it's a COW mapping, write protect it both
898 * in the parent and the child
899 */
67121172 900 if (is_cow_mapping(vm_flags)) {
1da177e4 901 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 902 pte = pte_wrprotect(pte);
1da177e4
LT
903 }
904
905 /*
906 * If it's a shared mapping, mark it clean in
907 * the child
908 */
909 if (vm_flags & VM_SHARED)
910 pte = pte_mkclean(pte);
911 pte = pte_mkold(pte);
6aab341e
LT
912
913 page = vm_normal_page(vma, addr, pte);
914 if (page) {
915 get_page(page);
21333b2b 916 page_dup_rmap(page);
d559db08
KH
917 if (PageAnon(page))
918 rss[MM_ANONPAGES]++;
919 else
920 rss[MM_FILEPAGES]++;
6aab341e 921 }
ae859762
HD
922
923out_set_pte:
924 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 925 return 0;
1da177e4
LT
926}
927
21bda264 928static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
929 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930 unsigned long addr, unsigned long end)
1da177e4 931{
c36987e2 932 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 933 pte_t *src_pte, *dst_pte;
c74df32c 934 spinlock_t *src_ptl, *dst_ptl;
e040f218 935 int progress = 0;
d559db08 936 int rss[NR_MM_COUNTERS];
570a335b 937 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
938
939again:
d559db08
KH
940 init_rss_vec(rss);
941
c74df32c 942 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
943 if (!dst_pte)
944 return -ENOMEM;
ece0e2b6 945 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 946 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 947 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
948 orig_src_pte = src_pte;
949 orig_dst_pte = dst_pte;
6606c3e0 950 arch_enter_lazy_mmu_mode();
1da177e4 951
1da177e4
LT
952 do {
953 /*
954 * We are holding two locks at this point - either of them
955 * could generate latencies in another task on another CPU.
956 */
e040f218
HD
957 if (progress >= 32) {
958 progress = 0;
959 if (need_resched() ||
95c354fe 960 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
961 break;
962 }
1da177e4
LT
963 if (pte_none(*src_pte)) {
964 progress++;
965 continue;
966 }
570a335b
HD
967 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968 vma, addr, rss);
969 if (entry.val)
970 break;
1da177e4
LT
971 progress += 8;
972 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 973
6606c3e0 974 arch_leave_lazy_mmu_mode();
c74df32c 975 spin_unlock(src_ptl);
ece0e2b6 976 pte_unmap(orig_src_pte);
d559db08 977 add_mm_rss_vec(dst_mm, rss);
c36987e2 978 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 979 cond_resched();
570a335b
HD
980
981 if (entry.val) {
982 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983 return -ENOMEM;
984 progress = 0;
985 }
1da177e4
LT
986 if (addr != end)
987 goto again;
988 return 0;
989}
990
991static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993 unsigned long addr, unsigned long end)
994{
995 pmd_t *src_pmd, *dst_pmd;
996 unsigned long next;
997
998 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999 if (!dst_pmd)
1000 return -ENOMEM;
1001 src_pmd = pmd_offset(src_pud, addr);
1002 do {
1003 next = pmd_addr_end(addr, end);
71e3aac0
AA
1004 if (pmd_trans_huge(*src_pmd)) {
1005 int err;
14d1a55c 1006 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
1007 err = copy_huge_pmd(dst_mm, src_mm,
1008 dst_pmd, src_pmd, addr, vma);
1009 if (err == -ENOMEM)
1010 return -ENOMEM;
1011 if (!err)
1012 continue;
1013 /* fall through */
1014 }
1da177e4
LT
1015 if (pmd_none_or_clear_bad(src_pmd))
1016 continue;
1017 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018 vma, addr, next))
1019 return -ENOMEM;
1020 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021 return 0;
1022}
1023
1024static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026 unsigned long addr, unsigned long end)
1027{
1028 pud_t *src_pud, *dst_pud;
1029 unsigned long next;
1030
1031 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032 if (!dst_pud)
1033 return -ENOMEM;
1034 src_pud = pud_offset(src_pgd, addr);
1035 do {
1036 next = pud_addr_end(addr, end);
1037 if (pud_none_or_clear_bad(src_pud))
1038 continue;
1039 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1040 vma, addr, next))
1041 return -ENOMEM;
1042 } while (dst_pud++, src_pud++, addr = next, addr != end);
1043 return 0;
1044}
1045
1046int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047 struct vm_area_struct *vma)
1048{
1049 pgd_t *src_pgd, *dst_pgd;
1050 unsigned long next;
1051 unsigned long addr = vma->vm_start;
1052 unsigned long end = vma->vm_end;
2ec74c3e
SG
1053 unsigned long mmun_start; /* For mmu_notifiers */
1054 unsigned long mmun_end; /* For mmu_notifiers */
1055 bool is_cow;
cddb8a5c 1056 int ret;
1da177e4 1057
d992895b
NP
1058 /*
1059 * Don't copy ptes where a page fault will fill them correctly.
1060 * Fork becomes much lighter when there are big shared or private
1061 * readonly mappings. The tradeoff is that copy_page_range is more
1062 * efficient than faulting.
1063 */
0661a336
KS
1064 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1065 !vma->anon_vma)
1066 return 0;
d992895b 1067
1da177e4
LT
1068 if (is_vm_hugetlb_page(vma))
1069 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1070
b3b9c293 1071 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1072 /*
1073 * We do not free on error cases below as remove_vma
1074 * gets called on error from higher level routine
1075 */
5180da41 1076 ret = track_pfn_copy(vma);
2ab64037 1077 if (ret)
1078 return ret;
1079 }
1080
cddb8a5c
AA
1081 /*
1082 * We need to invalidate the secondary MMU mappings only when
1083 * there could be a permission downgrade on the ptes of the
1084 * parent mm. And a permission downgrade will only happen if
1085 * is_cow_mapping() returns true.
1086 */
2ec74c3e
SG
1087 is_cow = is_cow_mapping(vma->vm_flags);
1088 mmun_start = addr;
1089 mmun_end = end;
1090 if (is_cow)
1091 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1092 mmun_end);
cddb8a5c
AA
1093
1094 ret = 0;
1da177e4
LT
1095 dst_pgd = pgd_offset(dst_mm, addr);
1096 src_pgd = pgd_offset(src_mm, addr);
1097 do {
1098 next = pgd_addr_end(addr, end);
1099 if (pgd_none_or_clear_bad(src_pgd))
1100 continue;
cddb8a5c
AA
1101 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1102 vma, addr, next))) {
1103 ret = -ENOMEM;
1104 break;
1105 }
1da177e4 1106 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1107
2ec74c3e
SG
1108 if (is_cow)
1109 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1110 return ret;
1da177e4
LT
1111}
1112
51c6f666 1113static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1114 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1115 unsigned long addr, unsigned long end,
97a89413 1116 struct zap_details *details)
1da177e4 1117{
b5810039 1118 struct mm_struct *mm = tlb->mm;
d16dfc55 1119 int force_flush = 0;
d559db08 1120 int rss[NR_MM_COUNTERS];
97a89413 1121 spinlock_t *ptl;
5f1a1907 1122 pte_t *start_pte;
97a89413 1123 pte_t *pte;
8a5f14a2 1124 swp_entry_t entry;
d559db08 1125
d16dfc55 1126again:
e303297e 1127 init_rss_vec(rss);
5f1a1907
SR
1128 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1129 pte = start_pte;
f1181047 1130 flush_tlb_batched_pending(mm);
6606c3e0 1131 arch_enter_lazy_mmu_mode();
1da177e4
LT
1132 do {
1133 pte_t ptent = *pte;
51c6f666 1134 if (pte_none(ptent)) {
1da177e4 1135 continue;
51c6f666 1136 }
6f5e6b9e 1137
1da177e4 1138 if (pte_present(ptent)) {
ee498ed7 1139 struct page *page;
51c6f666 1140
6aab341e 1141 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1142 if (unlikely(details) && page) {
1143 /*
1144 * unmap_shared_mapping_pages() wants to
1145 * invalidate cache without truncating:
1146 * unmap shared but keep private pages.
1147 */
1148 if (details->check_mapping &&
1149 details->check_mapping != page->mapping)
1150 continue;
1da177e4 1151 }
b5810039 1152 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1153 tlb->fullmm);
1da177e4
LT
1154 tlb_remove_tlb_entry(tlb, pte, addr);
1155 if (unlikely(!page))
1156 continue;
1da177e4 1157 if (PageAnon(page))
d559db08 1158 rss[MM_ANONPAGES]--;
6237bcd9 1159 else {
1cf35d47
LT
1160 if (pte_dirty(ptent)) {
1161 force_flush = 1;
6237bcd9 1162 set_page_dirty(page);
1cf35d47 1163 }
4917e5d0 1164 if (pte_young(ptent) &&
64363aad 1165 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1166 mark_page_accessed(page);
d559db08 1167 rss[MM_FILEPAGES]--;
6237bcd9 1168 }
edc315fd 1169 page_remove_rmap(page);
3dc14741
HD
1170 if (unlikely(page_mapcount(page) < 0))
1171 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1172 if (unlikely(!__tlb_remove_page(tlb, page))) {
1173 force_flush = 1;
ce9ec37b 1174 addr += PAGE_SIZE;
d16dfc55 1175 break;
1cf35d47 1176 }
1da177e4
LT
1177 continue;
1178 }
8a5f14a2 1179 /* If details->check_mapping, we leave swap entries. */
1da177e4
LT
1180 if (unlikely(details))
1181 continue;
b084d435 1182
8a5f14a2
KS
1183 entry = pte_to_swp_entry(ptent);
1184 if (!non_swap_entry(entry))
1185 rss[MM_SWAPENTS]--;
1186 else if (is_migration_entry(entry)) {
1187 struct page *page;
9f9f1acd 1188
8a5f14a2 1189 page = migration_entry_to_page(entry);
9f9f1acd 1190
8a5f14a2
KS
1191 if (PageAnon(page))
1192 rss[MM_ANONPAGES]--;
1193 else
1194 rss[MM_FILEPAGES]--;
b084d435 1195 }
8a5f14a2
KS
1196 if (unlikely(!free_swap_and_cache(entry)))
1197 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1198 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1199 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1200
d559db08 1201 add_mm_rss_vec(mm, rss);
6606c3e0 1202 arch_leave_lazy_mmu_mode();
51c6f666 1203
1cf35d47 1204 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1205 if (force_flush)
1cf35d47 1206 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1207 pte_unmap_unlock(start_pte, ptl);
1208
1209 /*
1210 * If we forced a TLB flush (either due to running out of
1211 * batch buffers or because we needed to flush dirty TLB
1212 * entries before releasing the ptl), free the batched
1213 * memory too. Restart if we didn't do everything.
1214 */
1215 if (force_flush) {
1216 force_flush = 0;
1217 tlb_flush_mmu_free(tlb);
2b047252
LT
1218
1219 if (addr != end)
d16dfc55
PZ
1220 goto again;
1221 }
1222
51c6f666 1223 return addr;
1da177e4
LT
1224}
1225
51c6f666 1226static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1227 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1228 unsigned long addr, unsigned long end,
97a89413 1229 struct zap_details *details)
1da177e4
LT
1230{
1231 pmd_t *pmd;
1232 unsigned long next;
1233
1234 pmd = pmd_offset(pud, addr);
1235 do {
1236 next = pmd_addr_end(addr, end);
71e3aac0 1237 if (pmd_trans_huge(*pmd)) {
1a5a9906 1238 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1239#ifdef CONFIG_DEBUG_VM
1240 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1241 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1242 __func__, addr, end,
1243 vma->vm_start,
1244 vma->vm_end);
1245 BUG();
1246 }
1247#endif
e180377f 1248 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1249 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1250 goto next;
71e3aac0
AA
1251 /* fall through */
1252 }
1a5a9906
AA
1253 /*
1254 * Here there can be other concurrent MADV_DONTNEED or
1255 * trans huge page faults running, and if the pmd is
1256 * none or trans huge it can change under us. This is
1257 * because MADV_DONTNEED holds the mmap_sem in read
1258 * mode.
1259 */
1260 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1261 goto next;
97a89413 1262 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1263next:
97a89413
PZ
1264 cond_resched();
1265 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1266
1267 return addr;
1da177e4
LT
1268}
1269
51c6f666 1270static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1271 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1272 unsigned long addr, unsigned long end,
97a89413 1273 struct zap_details *details)
1da177e4
LT
1274{
1275 pud_t *pud;
1276 unsigned long next;
1277
1278 pud = pud_offset(pgd, addr);
1279 do {
1280 next = pud_addr_end(addr, end);
97a89413 1281 if (pud_none_or_clear_bad(pud))
1da177e4 1282 continue;
97a89413
PZ
1283 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1284 } while (pud++, addr = next, addr != end);
51c6f666
RH
1285
1286 return addr;
1da177e4
LT
1287}
1288
038c7aa1
AV
1289static void unmap_page_range(struct mmu_gather *tlb,
1290 struct vm_area_struct *vma,
1291 unsigned long addr, unsigned long end,
1292 struct zap_details *details)
1da177e4
LT
1293{
1294 pgd_t *pgd;
1295 unsigned long next;
1296
8a5f14a2 1297 if (details && !details->check_mapping)
1da177e4
LT
1298 details = NULL;
1299
1300 BUG_ON(addr >= end);
1301 tlb_start_vma(tlb, vma);
1302 pgd = pgd_offset(vma->vm_mm, addr);
1303 do {
1304 next = pgd_addr_end(addr, end);
97a89413 1305 if (pgd_none_or_clear_bad(pgd))
1da177e4 1306 continue;
97a89413
PZ
1307 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1309 tlb_end_vma(tlb, vma);
1310}
51c6f666 1311
f5cc4eef
AV
1312
1313static void unmap_single_vma(struct mmu_gather *tlb,
1314 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1315 unsigned long end_addr,
f5cc4eef
AV
1316 struct zap_details *details)
1317{
1318 unsigned long start = max(vma->vm_start, start_addr);
1319 unsigned long end;
1320
1321 if (start >= vma->vm_end)
1322 return;
1323 end = min(vma->vm_end, end_addr);
1324 if (end <= vma->vm_start)
1325 return;
1326
cbc91f71
SD
1327 if (vma->vm_file)
1328 uprobe_munmap(vma, start, end);
1329
b3b9c293 1330 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1331 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1332
1333 if (start != end) {
1334 if (unlikely(is_vm_hugetlb_page(vma))) {
1335 /*
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
7aa6b4ad 1339 * cleanup path of mmap_region. When
f5cc4eef 1340 * hugetlbfs ->mmap method fails,
7aa6b4ad 1341 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1345 */
24669e58 1346 if (vma->vm_file) {
83cde9e8 1347 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1348 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1349 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1350 }
f5cc4eef
AV
1351 } else
1352 unmap_page_range(tlb, vma, start, end, details);
1353 }
1da177e4
LT
1354}
1355
1da177e4
LT
1356/**
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1358 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1da177e4 1362 *
508034a3 1363 * Unmap all pages in the vma list.
1da177e4 1364 *
1da177e4
LT
1365 * Only addresses between `start' and `end' will be unmapped.
1366 *
1367 * The VMA list must be sorted in ascending virtual address order.
1368 *
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1373 */
6e8bb019 1374void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1375 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1376 unsigned long end_addr)
1da177e4 1377{
cddb8a5c 1378 struct mm_struct *mm = vma->vm_mm;
1da177e4 1379
cddb8a5c 1380 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1381 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1382 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1383 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1384}
1385
1386/**
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1389 * @start: starting address of pages to zap
1da177e4 1390 * @size: number of bytes to zap
8a5f14a2 1391 * @details: details of shared cache invalidation
f5cc4eef
AV
1392 *
1393 * Caller must protect the VMA list
1da177e4 1394 */
7e027b14 1395void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1396 unsigned long size, struct zap_details *details)
1397{
1398 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1399 struct mmu_gather tlb;
7e027b14 1400 unsigned long end = start + size;
1da177e4 1401
1da177e4 1402 lru_add_drain();
2b047252 1403 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1404 update_hiwater_rss(mm);
7e027b14
LT
1405 mmu_notifier_invalidate_range_start(mm, start, end);
1406 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1407 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1408 mmu_notifier_invalidate_range_end(mm, start, end);
1409 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1410}
1411
f5cc4eef
AV
1412/**
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
8a5f14a2 1417 * @details: details of shared cache invalidation
f5cc4eef
AV
1418 *
1419 * The range must fit into one VMA.
1da177e4 1420 */
f5cc4eef 1421static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1422 unsigned long size, struct zap_details *details)
1423{
1424 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1425 struct mmu_gather tlb;
1da177e4 1426 unsigned long end = address + size;
1da177e4 1427
1da177e4 1428 lru_add_drain();
2b047252 1429 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1430 update_hiwater_rss(mm);
f5cc4eef 1431 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1432 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1433 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1434 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1435}
1436
c627f9cc
JS
1437/**
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1442 *
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444 *
1445 * The entire address range must be fully contained within the vma.
1446 *
1447 * Returns 0 if successful.
1448 */
1449int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 unsigned long size)
1451{
1452 if (address < vma->vm_start || address + size > vma->vm_end ||
1453 !(vma->vm_flags & VM_PFNMAP))
1454 return -1;
f5cc4eef 1455 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1456 return 0;
1457}
1458EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
25ca1d6c 1460pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1461 spinlock_t **ptl)
c9cfcddf
LT
1462{
1463 pgd_t * pgd = pgd_offset(mm, addr);
1464 pud_t * pud = pud_alloc(mm, pgd, addr);
1465 if (pud) {
49c91fb0 1466 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1467 if (pmd) {
1468 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1469 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1470 }
c9cfcddf
LT
1471 }
1472 return NULL;
1473}
1474
238f58d8
LT
1475/*
1476 * This is the old fallback for page remapping.
1477 *
1478 * For historical reasons, it only allows reserved pages. Only
1479 * old drivers should use this, and they needed to mark their
1480 * pages reserved for the old functions anyway.
1481 */
423bad60
NP
1482static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1483 struct page *page, pgprot_t prot)
238f58d8 1484{
423bad60 1485 struct mm_struct *mm = vma->vm_mm;
238f58d8 1486 int retval;
c9cfcddf 1487 pte_t *pte;
8a9f3ccd
BS
1488 spinlock_t *ptl;
1489
238f58d8 1490 retval = -EINVAL;
a145dd41 1491 if (PageAnon(page))
5b4e655e 1492 goto out;
238f58d8
LT
1493 retval = -ENOMEM;
1494 flush_dcache_page(page);
c9cfcddf 1495 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1496 if (!pte)
5b4e655e 1497 goto out;
238f58d8
LT
1498 retval = -EBUSY;
1499 if (!pte_none(*pte))
1500 goto out_unlock;
1501
1502 /* Ok, finally just insert the thing.. */
1503 get_page(page);
34e55232 1504 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1505 page_add_file_rmap(page);
1506 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1507
1508 retval = 0;
8a9f3ccd
BS
1509 pte_unmap_unlock(pte, ptl);
1510 return retval;
238f58d8
LT
1511out_unlock:
1512 pte_unmap_unlock(pte, ptl);
1513out:
1514 return retval;
1515}
1516
bfa5bf6d
REB
1517/**
1518 * vm_insert_page - insert single page into user vma
1519 * @vma: user vma to map to
1520 * @addr: target user address of this page
1521 * @page: source kernel page
1522 *
a145dd41
LT
1523 * This allows drivers to insert individual pages they've allocated
1524 * into a user vma.
1525 *
1526 * The page has to be a nice clean _individual_ kernel allocation.
1527 * If you allocate a compound page, you need to have marked it as
1528 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1529 * (see split_page()).
a145dd41
LT
1530 *
1531 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1532 * took an arbitrary page protection parameter. This doesn't allow
1533 * that. Your vma protection will have to be set up correctly, which
1534 * means that if you want a shared writable mapping, you'd better
1535 * ask for a shared writable mapping!
1536 *
1537 * The page does not need to be reserved.
4b6e1e37
KK
1538 *
1539 * Usually this function is called from f_op->mmap() handler
1540 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1541 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1542 * function from other places, for example from page-fault handler.
a145dd41 1543 */
423bad60
NP
1544int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1545 struct page *page)
a145dd41
LT
1546{
1547 if (addr < vma->vm_start || addr >= vma->vm_end)
1548 return -EFAULT;
1549 if (!page_count(page))
1550 return -EINVAL;
4b6e1e37
KK
1551 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1552 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1553 BUG_ON(vma->vm_flags & VM_PFNMAP);
1554 vma->vm_flags |= VM_MIXEDMAP;
1555 }
423bad60 1556 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1557}
e3c3374f 1558EXPORT_SYMBOL(vm_insert_page);
a145dd41 1559
423bad60
NP
1560static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1561 unsigned long pfn, pgprot_t prot)
1562{
1563 struct mm_struct *mm = vma->vm_mm;
1564 int retval;
1565 pte_t *pte, entry;
1566 spinlock_t *ptl;
1567
1568 retval = -ENOMEM;
1569 pte = get_locked_pte(mm, addr, &ptl);
1570 if (!pte)
1571 goto out;
1572 retval = -EBUSY;
1573 if (!pte_none(*pte))
1574 goto out_unlock;
1575
1576 /* Ok, finally just insert the thing.. */
1577 entry = pte_mkspecial(pfn_pte(pfn, prot));
1578 set_pte_at(mm, addr, pte, entry);
4b3073e1 1579 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1580
1581 retval = 0;
1582out_unlock:
1583 pte_unmap_unlock(pte, ptl);
1584out:
1585 return retval;
1586}
1587
e0dc0d8f
NP
1588/**
1589 * vm_insert_pfn - insert single pfn into user vma
1590 * @vma: user vma to map to
1591 * @addr: target user address of this page
1592 * @pfn: source kernel pfn
1593 *
c462f179 1594 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1595 * they've allocated into a user vma. Same comments apply.
1596 *
1597 * This function should only be called from a vm_ops->fault handler, and
1598 * in that case the handler should return NULL.
0d71d10a
NP
1599 *
1600 * vma cannot be a COW mapping.
1601 *
1602 * As this is called only for pages that do not currently exist, we
1603 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1604 */
1605int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1606 unsigned long pfn)
e0dc0d8f 1607{
2ab64037 1608 int ret;
e4b866ed 1609 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1610 /*
1611 * Technically, architectures with pte_special can avoid all these
1612 * restrictions (same for remap_pfn_range). However we would like
1613 * consistency in testing and feature parity among all, so we should
1614 * try to keep these invariants in place for everybody.
1615 */
b379d790
JH
1616 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618 (VM_PFNMAP|VM_MIXEDMAP));
1619 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1621
423bad60
NP
1622 if (addr < vma->vm_start || addr >= vma->vm_end)
1623 return -EFAULT;
5180da41 1624 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1625 return -EINVAL;
1626
e4b866ed 1627 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1628
2ab64037 1629 return ret;
423bad60
NP
1630}
1631EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1632
423bad60
NP
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 unsigned long pfn)
1635{
1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1637
423bad60
NP
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return -EFAULT;
e0dc0d8f 1640
423bad60
NP
1641 /*
1642 * If we don't have pte special, then we have to use the pfn_valid()
1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1646 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1647 */
1648 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1649 struct page *page;
1650
1651 page = pfn_to_page(pfn);
1652 return insert_page(vma, addr, page, vma->vm_page_prot);
1653 }
1654 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1655}
423bad60 1656EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1657
1da177e4
LT
1658/*
1659 * maps a range of physical memory into the requested pages. the old
1660 * mappings are removed. any references to nonexistent pages results
1661 * in null mappings (currently treated as "copy-on-access")
1662 */
1663static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1664 unsigned long addr, unsigned long end,
1665 unsigned long pfn, pgprot_t prot)
1666{
1667 pte_t *pte;
c74df32c 1668 spinlock_t *ptl;
1da177e4 1669
c74df32c 1670 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1671 if (!pte)
1672 return -ENOMEM;
6606c3e0 1673 arch_enter_lazy_mmu_mode();
1da177e4
LT
1674 do {
1675 BUG_ON(!pte_none(*pte));
7e675137 1676 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1677 pfn++;
1678 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1679 arch_leave_lazy_mmu_mode();
c74df32c 1680 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1681 return 0;
1682}
1683
1684static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1685 unsigned long addr, unsigned long end,
1686 unsigned long pfn, pgprot_t prot)
1687{
1688 pmd_t *pmd;
1689 unsigned long next;
1690
1691 pfn -= addr >> PAGE_SHIFT;
1692 pmd = pmd_alloc(mm, pud, addr);
1693 if (!pmd)
1694 return -ENOMEM;
f66055ab 1695 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1696 do {
1697 next = pmd_addr_end(addr, end);
1698 if (remap_pte_range(mm, pmd, addr, next,
1699 pfn + (addr >> PAGE_SHIFT), prot))
1700 return -ENOMEM;
1701 } while (pmd++, addr = next, addr != end);
1702 return 0;
1703}
1704
1705static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1706 unsigned long addr, unsigned long end,
1707 unsigned long pfn, pgprot_t prot)
1708{
1709 pud_t *pud;
1710 unsigned long next;
1711
1712 pfn -= addr >> PAGE_SHIFT;
1713 pud = pud_alloc(mm, pgd, addr);
1714 if (!pud)
1715 return -ENOMEM;
1716 do {
1717 next = pud_addr_end(addr, end);
1718 if (remap_pmd_range(mm, pud, addr, next,
1719 pfn + (addr >> PAGE_SHIFT), prot))
1720 return -ENOMEM;
1721 } while (pud++, addr = next, addr != end);
1722 return 0;
1723}
1724
bfa5bf6d
REB
1725/**
1726 * remap_pfn_range - remap kernel memory to userspace
1727 * @vma: user vma to map to
1728 * @addr: target user address to start at
1729 * @pfn: physical address of kernel memory
1730 * @size: size of map area
1731 * @prot: page protection flags for this mapping
1732 *
1733 * Note: this is only safe if the mm semaphore is held when called.
1734 */
1da177e4
LT
1735int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1736 unsigned long pfn, unsigned long size, pgprot_t prot)
1737{
1738 pgd_t *pgd;
1739 unsigned long next;
2d15cab8 1740 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1741 struct mm_struct *mm = vma->vm_mm;
1742 int err;
1743
1744 /*
1745 * Physically remapped pages are special. Tell the
1746 * rest of the world about it:
1747 * VM_IO tells people not to look at these pages
1748 * (accesses can have side effects).
6aab341e
LT
1749 * VM_PFNMAP tells the core MM that the base pages are just
1750 * raw PFN mappings, and do not have a "struct page" associated
1751 * with them.
314e51b9
KK
1752 * VM_DONTEXPAND
1753 * Disable vma merging and expanding with mremap().
1754 * VM_DONTDUMP
1755 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1756 *
1757 * There's a horrible special case to handle copy-on-write
1758 * behaviour that some programs depend on. We mark the "original"
1759 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1760 * See vm_normal_page() for details.
1da177e4 1761 */
b3b9c293
KK
1762 if (is_cow_mapping(vma->vm_flags)) {
1763 if (addr != vma->vm_start || end != vma->vm_end)
1764 return -EINVAL;
fb155c16 1765 vma->vm_pgoff = pfn;
b3b9c293
KK
1766 }
1767
1768 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1769 if (err)
3c8bb73a 1770 return -EINVAL;
fb155c16 1771
314e51b9 1772 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1773
1774 BUG_ON(addr >= end);
1775 pfn -= addr >> PAGE_SHIFT;
1776 pgd = pgd_offset(mm, addr);
1777 flush_cache_range(vma, addr, end);
1da177e4
LT
1778 do {
1779 next = pgd_addr_end(addr, end);
1780 err = remap_pud_range(mm, pgd, addr, next,
1781 pfn + (addr >> PAGE_SHIFT), prot);
1782 if (err)
1783 break;
1784 } while (pgd++, addr = next, addr != end);
2ab64037 1785
1786 if (err)
5180da41 1787 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1788
1da177e4
LT
1789 return err;
1790}
1791EXPORT_SYMBOL(remap_pfn_range);
1792
b4cbb197
LT
1793/**
1794 * vm_iomap_memory - remap memory to userspace
1795 * @vma: user vma to map to
1796 * @start: start of area
1797 * @len: size of area
1798 *
1799 * This is a simplified io_remap_pfn_range() for common driver use. The
1800 * driver just needs to give us the physical memory range to be mapped,
1801 * we'll figure out the rest from the vma information.
1802 *
1803 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1804 * whatever write-combining details or similar.
1805 */
1806int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1807{
1808 unsigned long vm_len, pfn, pages;
1809
1810 /* Check that the physical memory area passed in looks valid */
1811 if (start + len < start)
1812 return -EINVAL;
1813 /*
1814 * You *really* shouldn't map things that aren't page-aligned,
1815 * but we've historically allowed it because IO memory might
1816 * just have smaller alignment.
1817 */
1818 len += start & ~PAGE_MASK;
1819 pfn = start >> PAGE_SHIFT;
1820 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1821 if (pfn + pages < pfn)
1822 return -EINVAL;
1823
1824 /* We start the mapping 'vm_pgoff' pages into the area */
1825 if (vma->vm_pgoff > pages)
1826 return -EINVAL;
1827 pfn += vma->vm_pgoff;
1828 pages -= vma->vm_pgoff;
1829
1830 /* Can we fit all of the mapping? */
1831 vm_len = vma->vm_end - vma->vm_start;
1832 if (vm_len >> PAGE_SHIFT > pages)
1833 return -EINVAL;
1834
1835 /* Ok, let it rip */
1836 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1837}
1838EXPORT_SYMBOL(vm_iomap_memory);
1839
aee16b3c
JF
1840static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1841 unsigned long addr, unsigned long end,
1842 pte_fn_t fn, void *data)
1843{
1844 pte_t *pte;
1845 int err;
2f569afd 1846 pgtable_t token;
94909914 1847 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1848
1849 pte = (mm == &init_mm) ?
1850 pte_alloc_kernel(pmd, addr) :
1851 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1852 if (!pte)
1853 return -ENOMEM;
1854
1855 BUG_ON(pmd_huge(*pmd));
1856
38e0edb1
JF
1857 arch_enter_lazy_mmu_mode();
1858
2f569afd 1859 token = pmd_pgtable(*pmd);
aee16b3c
JF
1860
1861 do {
c36987e2 1862 err = fn(pte++, token, addr, data);
aee16b3c
JF
1863 if (err)
1864 break;
c36987e2 1865 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1866
38e0edb1
JF
1867 arch_leave_lazy_mmu_mode();
1868
aee16b3c
JF
1869 if (mm != &init_mm)
1870 pte_unmap_unlock(pte-1, ptl);
1871 return err;
1872}
1873
1874static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1875 unsigned long addr, unsigned long end,
1876 pte_fn_t fn, void *data)
1877{
1878 pmd_t *pmd;
1879 unsigned long next;
1880 int err;
1881
ceb86879
AK
1882 BUG_ON(pud_huge(*pud));
1883
aee16b3c
JF
1884 pmd = pmd_alloc(mm, pud, addr);
1885 if (!pmd)
1886 return -ENOMEM;
1887 do {
1888 next = pmd_addr_end(addr, end);
1889 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1890 if (err)
1891 break;
1892 } while (pmd++, addr = next, addr != end);
1893 return err;
1894}
1895
1896static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1897 unsigned long addr, unsigned long end,
1898 pte_fn_t fn, void *data)
1899{
1900 pud_t *pud;
1901 unsigned long next;
1902 int err;
1903
1904 pud = pud_alloc(mm, pgd, addr);
1905 if (!pud)
1906 return -ENOMEM;
1907 do {
1908 next = pud_addr_end(addr, end);
1909 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1910 if (err)
1911 break;
1912 } while (pud++, addr = next, addr != end);
1913 return err;
1914}
1915
1916/*
1917 * Scan a region of virtual memory, filling in page tables as necessary
1918 * and calling a provided function on each leaf page table.
1919 */
1920int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1921 unsigned long size, pte_fn_t fn, void *data)
1922{
1923 pgd_t *pgd;
1924 unsigned long next;
57250a5b 1925 unsigned long end = addr + size;
aee16b3c
JF
1926 int err;
1927
1928 BUG_ON(addr >= end);
1929 pgd = pgd_offset(mm, addr);
1930 do {
1931 next = pgd_addr_end(addr, end);
1932 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1933 if (err)
1934 break;
1935 } while (pgd++, addr = next, addr != end);
57250a5b 1936
aee16b3c
JF
1937 return err;
1938}
1939EXPORT_SYMBOL_GPL(apply_to_page_range);
1940
8f4e2101 1941/*
9b4bdd2f
KS
1942 * handle_pte_fault chooses page fault handler according to an entry which was
1943 * read non-atomically. Before making any commitment, on those architectures
1944 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1945 * parts, do_swap_page must check under lock before unmapping the pte and
1946 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1947 * and do_anonymous_page can safely check later on).
8f4e2101 1948 */
4c21e2f2 1949static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1950 pte_t *page_table, pte_t orig_pte)
1951{
1952 int same = 1;
1953#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1954 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1955 spinlock_t *ptl = pte_lockptr(mm, pmd);
1956 spin_lock(ptl);
8f4e2101 1957 same = pte_same(*page_table, orig_pte);
4c21e2f2 1958 spin_unlock(ptl);
8f4e2101
HD
1959 }
1960#endif
1961 pte_unmap(page_table);
1962 return same;
1963}
1964
9de455b2 1965static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1966{
0abdd7a8
DW
1967 debug_dma_assert_idle(src);
1968
6aab341e
LT
1969 /*
1970 * If the source page was a PFN mapping, we don't have
1971 * a "struct page" for it. We do a best-effort copy by
1972 * just copying from the original user address. If that
1973 * fails, we just zero-fill it. Live with it.
1974 */
1975 if (unlikely(!src)) {
9b04c5fe 1976 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1977 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1978
1979 /*
1980 * This really shouldn't fail, because the page is there
1981 * in the page tables. But it might just be unreadable,
1982 * in which case we just give up and fill the result with
1983 * zeroes.
1984 */
1985 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1986 clear_page(kaddr);
9b04c5fe 1987 kunmap_atomic(kaddr);
c4ec7b0d 1988 flush_dcache_page(dst);
0ed361de
NP
1989 } else
1990 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1991}
1992
fb09a464
KS
1993/*
1994 * Notify the address space that the page is about to become writable so that
1995 * it can prohibit this or wait for the page to get into an appropriate state.
1996 *
1997 * We do this without the lock held, so that it can sleep if it needs to.
1998 */
1999static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2000 unsigned long address)
2001{
2002 struct vm_fault vmf;
2003 int ret;
2004
2005 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2006 vmf.pgoff = page->index;
2007 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2008 vmf.page = page;
2e4cdab0 2009 vmf.cow_page = NULL;
fb09a464
KS
2010
2011 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2013 return ret;
2014 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2015 lock_page(page);
2016 if (!page->mapping) {
2017 unlock_page(page);
2018 return 0; /* retry */
2019 }
2020 ret |= VM_FAULT_LOCKED;
2021 } else
2022 VM_BUG_ON_PAGE(!PageLocked(page), page);
2023 return ret;
2024}
2025
4e047f89
SR
2026/*
2027 * Handle write page faults for pages that can be reused in the current vma
2028 *
2029 * This can happen either due to the mapping being with the VM_SHARED flag,
2030 * or due to us being the last reference standing to the page. In either
2031 * case, all we need to do here is to mark the page as writable and update
2032 * any related book-keeping.
2033 */
2034static inline int wp_page_reuse(struct mm_struct *mm,
2035 struct vm_area_struct *vma, unsigned long address,
2036 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2037 struct page *page, int page_mkwrite,
2038 int dirty_shared)
2039 __releases(ptl)
2040{
2041 pte_t entry;
2042 /*
2043 * Clear the pages cpupid information as the existing
2044 * information potentially belongs to a now completely
2045 * unrelated process.
2046 */
2047 if (page)
2048 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2049
2050 flush_cache_page(vma, address, pte_pfn(orig_pte));
2051 entry = pte_mkyoung(orig_pte);
2052 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2053 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2054 update_mmu_cache(vma, address, page_table);
2055 pte_unmap_unlock(page_table, ptl);
2056
2057 if (dirty_shared) {
2058 struct address_space *mapping;
2059 int dirtied;
2060
2061 if (!page_mkwrite)
2062 lock_page(page);
2063
2064 dirtied = set_page_dirty(page);
2065 VM_BUG_ON_PAGE(PageAnon(page), page);
2066 mapping = page->mapping;
2067 unlock_page(page);
2068 page_cache_release(page);
2069
2070 if ((dirtied || page_mkwrite) && mapping) {
2071 /*
2072 * Some device drivers do not set page.mapping
2073 * but still dirty their pages
2074 */
2075 balance_dirty_pages_ratelimited(mapping);
2076 }
2077
2078 if (!page_mkwrite)
2079 file_update_time(vma->vm_file);
2080 }
2081
2082 return VM_FAULT_WRITE;
2083}
2084
2f38ab2c
SR
2085/*
2086 * Handle the case of a page which we actually need to copy to a new page.
2087 *
2088 * Called with mmap_sem locked and the old page referenced, but
2089 * without the ptl held.
2090 *
2091 * High level logic flow:
2092 *
2093 * - Allocate a page, copy the content of the old page to the new one.
2094 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2095 * - Take the PTL. If the pte changed, bail out and release the allocated page
2096 * - If the pte is still the way we remember it, update the page table and all
2097 * relevant references. This includes dropping the reference the page-table
2098 * held to the old page, as well as updating the rmap.
2099 * - In any case, unlock the PTL and drop the reference we took to the old page.
2100 */
2101static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2102 unsigned long address, pte_t *page_table, pmd_t *pmd,
2103 pte_t orig_pte, struct page *old_page)
2104{
2105 struct page *new_page = NULL;
2106 spinlock_t *ptl = NULL;
2107 pte_t entry;
2108 int page_copied = 0;
2109 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2110 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2111 struct mem_cgroup *memcg;
2112
2113 if (unlikely(anon_vma_prepare(vma)))
2114 goto oom;
2115
2116 if (is_zero_pfn(pte_pfn(orig_pte))) {
2117 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2118 if (!new_page)
2119 goto oom;
2120 } else {
2121 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2122 if (!new_page)
2123 goto oom;
2124 cow_user_page(new_page, old_page, address, vma);
2125 }
2f38ab2c
SR
2126
2127 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2128 goto oom_free_new;
2129
eb3c24f3
MG
2130 __SetPageUptodate(new_page);
2131
2f38ab2c
SR
2132 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2133
2134 /*
2135 * Re-check the pte - we dropped the lock
2136 */
2137 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2138 if (likely(pte_same(*page_table, orig_pte))) {
2139 if (old_page) {
2140 if (!PageAnon(old_page)) {
2141 dec_mm_counter_fast(mm, MM_FILEPAGES);
2142 inc_mm_counter_fast(mm, MM_ANONPAGES);
2143 }
2144 } else {
2145 inc_mm_counter_fast(mm, MM_ANONPAGES);
2146 }
2147 flush_cache_page(vma, address, pte_pfn(orig_pte));
2148 entry = mk_pte(new_page, vma->vm_page_prot);
2149 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 /*
2151 * Clear the pte entry and flush it first, before updating the
2152 * pte with the new entry. This will avoid a race condition
2153 * seen in the presence of one thread doing SMC and another
2154 * thread doing COW.
2155 */
2156 ptep_clear_flush_notify(vma, address, page_table);
2157 page_add_new_anon_rmap(new_page, vma, address);
2158 mem_cgroup_commit_charge(new_page, memcg, false);
2159 lru_cache_add_active_or_unevictable(new_page, vma);
2160 /*
2161 * We call the notify macro here because, when using secondary
2162 * mmu page tables (such as kvm shadow page tables), we want the
2163 * new page to be mapped directly into the secondary page table.
2164 */
2165 set_pte_at_notify(mm, address, page_table, entry);
2166 update_mmu_cache(vma, address, page_table);
2167 if (old_page) {
2168 /*
2169 * Only after switching the pte to the new page may
2170 * we remove the mapcount here. Otherwise another
2171 * process may come and find the rmap count decremented
2172 * before the pte is switched to the new page, and
2173 * "reuse" the old page writing into it while our pte
2174 * here still points into it and can be read by other
2175 * threads.
2176 *
2177 * The critical issue is to order this
2178 * page_remove_rmap with the ptp_clear_flush above.
2179 * Those stores are ordered by (if nothing else,)
2180 * the barrier present in the atomic_add_negative
2181 * in page_remove_rmap.
2182 *
2183 * Then the TLB flush in ptep_clear_flush ensures that
2184 * no process can access the old page before the
2185 * decremented mapcount is visible. And the old page
2186 * cannot be reused until after the decremented
2187 * mapcount is visible. So transitively, TLBs to
2188 * old page will be flushed before it can be reused.
2189 */
2190 page_remove_rmap(old_page);
2191 }
2192
2193 /* Free the old page.. */
2194 new_page = old_page;
2195 page_copied = 1;
2196 } else {
2197 mem_cgroup_cancel_charge(new_page, memcg);
2198 }
2199
2200 if (new_page)
2201 page_cache_release(new_page);
2202
2203 pte_unmap_unlock(page_table, ptl);
2204 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2205 if (old_page) {
2206 /*
2207 * Don't let another task, with possibly unlocked vma,
2208 * keep the mlocked page.
2209 */
2210 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2211 lock_page(old_page); /* LRU manipulation */
2212 munlock_vma_page(old_page);
2213 unlock_page(old_page);
2214 }
2215 page_cache_release(old_page);
2216 }
2217 return page_copied ? VM_FAULT_WRITE : 0;
2218oom_free_new:
2219 page_cache_release(new_page);
2220oom:
2221 if (old_page)
2222 page_cache_release(old_page);
2223 return VM_FAULT_OOM;
2224}
2225
dd906184
BH
2226/*
2227 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2228 * mapping
2229 */
2230static int wp_pfn_shared(struct mm_struct *mm,
2231 struct vm_area_struct *vma, unsigned long address,
2232 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2233 pmd_t *pmd)
2234{
2235 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2236 struct vm_fault vmf = {
2237 .page = NULL,
2238 .pgoff = linear_page_index(vma, address),
2239 .virtual_address = (void __user *)(address & PAGE_MASK),
2240 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2241 };
2242 int ret;
2243
2244 pte_unmap_unlock(page_table, ptl);
2245 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2246 if (ret & VM_FAULT_ERROR)
2247 return ret;
2248 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2249 /*
2250 * We might have raced with another page fault while we
2251 * released the pte_offset_map_lock.
2252 */
2253 if (!pte_same(*page_table, orig_pte)) {
2254 pte_unmap_unlock(page_table, ptl);
2255 return 0;
2256 }
2257 }
2258 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2259 NULL, 0, 0);
2260}
2261
93e478d4
SR
2262static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2263 unsigned long address, pte_t *page_table,
2264 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2265 struct page *old_page)
2266 __releases(ptl)
2267{
2268 int page_mkwrite = 0;
2269
2270 page_cache_get(old_page);
2271
2272 /*
2273 * Only catch write-faults on shared writable pages,
2274 * read-only shared pages can get COWed by
2275 * get_user_pages(.write=1, .force=1).
2276 */
2277 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2278 int tmp;
2279
2280 pte_unmap_unlock(page_table, ptl);
2281 tmp = do_page_mkwrite(vma, old_page, address);
2282 if (unlikely(!tmp || (tmp &
2283 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2284 page_cache_release(old_page);
2285 return tmp;
2286 }
2287 /*
2288 * Since we dropped the lock we need to revalidate
2289 * the PTE as someone else may have changed it. If
2290 * they did, we just return, as we can count on the
2291 * MMU to tell us if they didn't also make it writable.
2292 */
2293 page_table = pte_offset_map_lock(mm, pmd, address,
2294 &ptl);
2295 if (!pte_same(*page_table, orig_pte)) {
2296 unlock_page(old_page);
2297 pte_unmap_unlock(page_table, ptl);
2298 page_cache_release(old_page);
2299 return 0;
2300 }
2301 page_mkwrite = 1;
2302 }
2303
2304 return wp_page_reuse(mm, vma, address, page_table, ptl,
2305 orig_pte, old_page, page_mkwrite, 1);
2306}
2307
1da177e4
LT
2308/*
2309 * This routine handles present pages, when users try to write
2310 * to a shared page. It is done by copying the page to a new address
2311 * and decrementing the shared-page counter for the old page.
2312 *
1da177e4
LT
2313 * Note that this routine assumes that the protection checks have been
2314 * done by the caller (the low-level page fault routine in most cases).
2315 * Thus we can safely just mark it writable once we've done any necessary
2316 * COW.
2317 *
2318 * We also mark the page dirty at this point even though the page will
2319 * change only once the write actually happens. This avoids a few races,
2320 * and potentially makes it more efficient.
2321 *
8f4e2101
HD
2322 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2323 * but allow concurrent faults), with pte both mapped and locked.
2324 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2325 */
65500d23
HD
2326static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2327 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2328 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2329 __releases(ptl)
1da177e4 2330{
2f38ab2c 2331 struct page *old_page;
1da177e4 2332
6aab341e 2333 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2334 if (!old_page) {
2335 /*
64e45507
PF
2336 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2337 * VM_PFNMAP VMA.
251b97f5
PZ
2338 *
2339 * We should not cow pages in a shared writeable mapping.
dd906184 2340 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2341 */
2342 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2343 (VM_WRITE|VM_SHARED))
dd906184
BH
2344 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2345 orig_pte, pmd);
2f38ab2c
SR
2346
2347 pte_unmap_unlock(page_table, ptl);
2348 return wp_page_copy(mm, vma, address, page_table, pmd,
2349 orig_pte, old_page);
251b97f5 2350 }
1da177e4 2351
d08b3851 2352 /*
ee6a6457
PZ
2353 * Take out anonymous pages first, anonymous shared vmas are
2354 * not dirty accountable.
d08b3851 2355 */
9a840895 2356 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2357 if (!trylock_page(old_page)) {
2358 page_cache_get(old_page);
2359 pte_unmap_unlock(page_table, ptl);
2360 lock_page(old_page);
2361 page_table = pte_offset_map_lock(mm, pmd, address,
2362 &ptl);
2363 if (!pte_same(*page_table, orig_pte)) {
2364 unlock_page(old_page);
28766805
SR
2365 pte_unmap_unlock(page_table, ptl);
2366 page_cache_release(old_page);
2367 return 0;
ab967d86
HD
2368 }
2369 page_cache_release(old_page);
ee6a6457 2370 }
b009c024 2371 if (reuse_swap_page(old_page)) {
c44b6743
RR
2372 /*
2373 * The page is all ours. Move it to our anon_vma so
2374 * the rmap code will not search our parent or siblings.
2375 * Protected against the rmap code by the page lock.
2376 */
2377 page_move_anon_rmap(old_page, vma, address);
b009c024 2378 unlock_page(old_page);
4e047f89
SR
2379 return wp_page_reuse(mm, vma, address, page_table, ptl,
2380 orig_pte, old_page, 0, 0);
b009c024 2381 }
ab967d86 2382 unlock_page(old_page);
ee6a6457 2383 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2384 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2385 return wp_page_shared(mm, vma, address, page_table, pmd,
2386 ptl, orig_pte, old_page);
1da177e4 2387 }
1da177e4
LT
2388
2389 /*
2390 * Ok, we need to copy. Oh, well..
2391 */
b5810039 2392 page_cache_get(old_page);
28766805 2393
8f4e2101 2394 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2395 return wp_page_copy(mm, vma, address, page_table, pmd,
2396 orig_pte, old_page);
1da177e4
LT
2397}
2398
97a89413 2399static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2400 unsigned long start_addr, unsigned long end_addr,
2401 struct zap_details *details)
2402{
f5cc4eef 2403 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2404}
2405
6b2dbba8 2406static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2407 struct zap_details *details)
2408{
2409 struct vm_area_struct *vma;
1da177e4
LT
2410 pgoff_t vba, vea, zba, zea;
2411
6b2dbba8 2412 vma_interval_tree_foreach(vma, root,
1da177e4 2413 details->first_index, details->last_index) {
1da177e4
LT
2414
2415 vba = vma->vm_pgoff;
d6e93217 2416 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2417 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2418 zba = details->first_index;
2419 if (zba < vba)
2420 zba = vba;
2421 zea = details->last_index;
2422 if (zea > vea)
2423 zea = vea;
2424
97a89413 2425 unmap_mapping_range_vma(vma,
1da177e4
LT
2426 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2427 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2428 details);
1da177e4
LT
2429 }
2430}
2431
1da177e4 2432/**
8a5f14a2
KS
2433 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2434 * address_space corresponding to the specified page range in the underlying
2435 * file.
2436 *
3d41088f 2437 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2438 * @holebegin: byte in first page to unmap, relative to the start of
2439 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2440 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2441 * must keep the partial page. In contrast, we must get rid of
2442 * partial pages.
2443 * @holelen: size of prospective hole in bytes. This will be rounded
2444 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2445 * end of the file.
2446 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2447 * but 0 when invalidating pagecache, don't throw away private data.
2448 */
2449void unmap_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen, int even_cows)
2451{
2452 struct zap_details details;
2453 pgoff_t hba = holebegin >> PAGE_SHIFT;
2454 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2455
2456 /* Check for overflow. */
2457 if (sizeof(holelen) > sizeof(hlen)) {
2458 long long holeend =
2459 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2460 if (holeend & ~(long long)ULONG_MAX)
2461 hlen = ULONG_MAX - hba + 1;
2462 }
2463
2464 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2465 details.first_index = hba;
2466 details.last_index = hba + hlen - 1;
2467 if (details.last_index < details.first_index)
2468 details.last_index = ULONG_MAX;
1da177e4 2469
0f90cc66
RZ
2470
2471 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
46c043ed 2472 i_mmap_lock_write(mapping);
6b2dbba8 2473 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2474 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2475 i_mmap_unlock_write(mapping);
1da177e4
LT
2476}
2477EXPORT_SYMBOL(unmap_mapping_range);
2478
1da177e4 2479/*
8f4e2101
HD
2480 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2481 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2482 * We return with pte unmapped and unlocked.
2483 *
2484 * We return with the mmap_sem locked or unlocked in the same cases
2485 * as does filemap_fault().
1da177e4 2486 */
65500d23
HD
2487static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2488 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2489 unsigned int flags, pte_t orig_pte)
1da177e4 2490{
8f4e2101 2491 spinlock_t *ptl;
56f31801 2492 struct page *page, *swapcache;
00501b53 2493 struct mem_cgroup *memcg;
65500d23 2494 swp_entry_t entry;
1da177e4 2495 pte_t pte;
d065bd81 2496 int locked;
ad8c2ee8 2497 int exclusive = 0;
83c54070 2498 int ret = 0;
1da177e4 2499
4c21e2f2 2500 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2501 goto out;
65500d23
HD
2502
2503 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2504 if (unlikely(non_swap_entry(entry))) {
2505 if (is_migration_entry(entry)) {
2506 migration_entry_wait(mm, pmd, address);
2507 } else if (is_hwpoison_entry(entry)) {
2508 ret = VM_FAULT_HWPOISON;
2509 } else {
2510 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2511 ret = VM_FAULT_SIGBUS;
d1737fdb 2512 }
0697212a
CL
2513 goto out;
2514 }
0ff92245 2515 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2516 page = lookup_swap_cache(entry);
2517 if (!page) {
02098fea
HD
2518 page = swapin_readahead(entry,
2519 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2520 if (!page) {
2521 /*
8f4e2101
HD
2522 * Back out if somebody else faulted in this pte
2523 * while we released the pte lock.
1da177e4 2524 */
8f4e2101 2525 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2526 if (likely(pte_same(*page_table, orig_pte)))
2527 ret = VM_FAULT_OOM;
0ff92245 2528 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2529 goto unlock;
1da177e4
LT
2530 }
2531
2532 /* Had to read the page from swap area: Major fault */
2533 ret = VM_FAULT_MAJOR;
f8891e5e 2534 count_vm_event(PGMAJFAULT);
456f998e 2535 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2536 } else if (PageHWPoison(page)) {
71f72525
WF
2537 /*
2538 * hwpoisoned dirty swapcache pages are kept for killing
2539 * owner processes (which may be unknown at hwpoison time)
2540 */
d1737fdb
AK
2541 ret = VM_FAULT_HWPOISON;
2542 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2543 swapcache = page;
4779cb31 2544 goto out_release;
1da177e4
LT
2545 }
2546
56f31801 2547 swapcache = page;
d065bd81 2548 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2549
073e587e 2550 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2551 if (!locked) {
2552 ret |= VM_FAULT_RETRY;
2553 goto out_release;
2554 }
073e587e 2555
4969c119 2556 /*
31c4a3d3
HD
2557 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2558 * release the swapcache from under us. The page pin, and pte_same
2559 * test below, are not enough to exclude that. Even if it is still
2560 * swapcache, we need to check that the page's swap has not changed.
4969c119 2561 */
31c4a3d3 2562 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2563 goto out_page;
2564
cbf86cfe
HD
2565 page = ksm_might_need_to_copy(page, vma, address);
2566 if (unlikely(!page)) {
2567 ret = VM_FAULT_OOM;
2568 page = swapcache;
cbf86cfe 2569 goto out_page;
5ad64688
HD
2570 }
2571
00501b53 2572 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
8a9f3ccd 2573 ret = VM_FAULT_OOM;
bc43f75c 2574 goto out_page;
8a9f3ccd
BS
2575 }
2576
1da177e4 2577 /*
8f4e2101 2578 * Back out if somebody else already faulted in this pte.
1da177e4 2579 */
8f4e2101 2580 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2581 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2582 goto out_nomap;
b8107480
KK
2583
2584 if (unlikely(!PageUptodate(page))) {
2585 ret = VM_FAULT_SIGBUS;
2586 goto out_nomap;
1da177e4
LT
2587 }
2588
8c7c6e34
KH
2589 /*
2590 * The page isn't present yet, go ahead with the fault.
2591 *
2592 * Be careful about the sequence of operations here.
2593 * To get its accounting right, reuse_swap_page() must be called
2594 * while the page is counted on swap but not yet in mapcount i.e.
2595 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2596 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2597 */
1da177e4 2598
34e55232 2599 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2600 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2601 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2602 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2603 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2604 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2605 ret |= VM_FAULT_WRITE;
ad8c2ee8 2606 exclusive = 1;
1da177e4 2607 }
1da177e4 2608 flush_icache_page(vma, page);
179ef71c
CG
2609 if (pte_swp_soft_dirty(orig_pte))
2610 pte = pte_mksoft_dirty(pte);
1da177e4 2611 set_pte_at(mm, address, page_table, pte);
00501b53 2612 if (page == swapcache) {
af34770e 2613 do_page_add_anon_rmap(page, vma, address, exclusive);
00501b53
JW
2614 mem_cgroup_commit_charge(page, memcg, true);
2615 } else { /* ksm created a completely new copy */
56f31801 2616 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2617 mem_cgroup_commit_charge(page, memcg, false);
2618 lru_cache_add_active_or_unevictable(page, vma);
2619 }
1da177e4 2620
c475a8ab 2621 swap_free(entry);
b291f000 2622 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2623 try_to_free_swap(page);
c475a8ab 2624 unlock_page(page);
56f31801 2625 if (page != swapcache) {
4969c119
AA
2626 /*
2627 * Hold the lock to avoid the swap entry to be reused
2628 * until we take the PT lock for the pte_same() check
2629 * (to avoid false positives from pte_same). For
2630 * further safety release the lock after the swap_free
2631 * so that the swap count won't change under a
2632 * parallel locked swapcache.
2633 */
2634 unlock_page(swapcache);
2635 page_cache_release(swapcache);
2636 }
c475a8ab 2637
30c9f3a9 2638 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2639 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2640 if (ret & VM_FAULT_ERROR)
2641 ret &= VM_FAULT_ERROR;
1da177e4
LT
2642 goto out;
2643 }
2644
2645 /* No need to invalidate - it was non-present before */
4b3073e1 2646 update_mmu_cache(vma, address, page_table);
65500d23 2647unlock:
8f4e2101 2648 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2649out:
2650 return ret;
b8107480 2651out_nomap:
00501b53 2652 mem_cgroup_cancel_charge(page, memcg);
8f4e2101 2653 pte_unmap_unlock(page_table, ptl);
bc43f75c 2654out_page:
b8107480 2655 unlock_page(page);
4779cb31 2656out_release:
b8107480 2657 page_cache_release(page);
56f31801 2658 if (page != swapcache) {
4969c119
AA
2659 unlock_page(swapcache);
2660 page_cache_release(swapcache);
2661 }
65500d23 2662 return ret;
1da177e4
LT
2663}
2664
2665/*
8f4e2101
HD
2666 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2667 * but allow concurrent faults), and pte mapped but not yet locked.
2668 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2669 */
65500d23
HD
2670static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2671 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2672 unsigned int flags)
1da177e4 2673{
00501b53 2674 struct mem_cgroup *memcg;
8f4e2101
HD
2675 struct page *page;
2676 spinlock_t *ptl;
1da177e4 2677 pte_t entry;
1da177e4 2678
11ac5524
LT
2679 pte_unmap(page_table);
2680
6b7339f4
KS
2681 /* File mapping without ->vm_ops ? */
2682 if (vma->vm_flags & VM_SHARED)
2683 return VM_FAULT_SIGBUS;
2684
11ac5524 2685 /* Use the zero-page for reads */
593befa6 2686 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2687 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2688 vma->vm_page_prot));
11ac5524 2689 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2690 if (!pte_none(*page_table))
2691 goto unlock;
6b251fc9
AA
2692 /* Deliver the page fault to userland, check inside PT lock */
2693 if (userfaultfd_missing(vma)) {
2694 pte_unmap_unlock(page_table, ptl);
2695 return handle_userfault(vma, address, flags,
2696 VM_UFFD_MISSING);
2697 }
a13ea5b7
HD
2698 goto setpte;
2699 }
2700
557ed1fa 2701 /* Allocate our own private page. */
557ed1fa
NP
2702 if (unlikely(anon_vma_prepare(vma)))
2703 goto oom;
2704 page = alloc_zeroed_user_highpage_movable(vma, address);
2705 if (!page)
2706 goto oom;
eb3c24f3
MG
2707
2708 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2709 goto oom_free_page;
2710
52f37629
MK
2711 /*
2712 * The memory barrier inside __SetPageUptodate makes sure that
2713 * preceeding stores to the page contents become visible before
2714 * the set_pte_at() write.
2715 */
0ed361de 2716 __SetPageUptodate(page);
8f4e2101 2717
557ed1fa 2718 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2719 if (vma->vm_flags & VM_WRITE)
2720 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2721
557ed1fa 2722 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2723 if (!pte_none(*page_table))
557ed1fa 2724 goto release;
9ba69294 2725
6b251fc9
AA
2726 /* Deliver the page fault to userland, check inside PT lock */
2727 if (userfaultfd_missing(vma)) {
2728 pte_unmap_unlock(page_table, ptl);
2729 mem_cgroup_cancel_charge(page, memcg);
2730 page_cache_release(page);
2731 return handle_userfault(vma, address, flags,
2732 VM_UFFD_MISSING);
2733 }
2734
34e55232 2735 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2736 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2737 mem_cgroup_commit_charge(page, memcg, false);
2738 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2739setpte:
65500d23 2740 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2741
2742 /* No need to invalidate - it was non-present before */
4b3073e1 2743 update_mmu_cache(vma, address, page_table);
65500d23 2744unlock:
8f4e2101 2745 pte_unmap_unlock(page_table, ptl);
83c54070 2746 return 0;
8f4e2101 2747release:
00501b53 2748 mem_cgroup_cancel_charge(page, memcg);
8f4e2101
HD
2749 page_cache_release(page);
2750 goto unlock;
8a9f3ccd 2751oom_free_page:
6dbf6d3b 2752 page_cache_release(page);
65500d23 2753oom:
1da177e4
LT
2754 return VM_FAULT_OOM;
2755}
2756
9a95f3cf
PC
2757/*
2758 * The mmap_sem must have been held on entry, and may have been
2759 * released depending on flags and vma->vm_ops->fault() return value.
2760 * See filemap_fault() and __lock_page_retry().
2761 */
7eae74af 2762static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0
MW
2763 pgoff_t pgoff, unsigned int flags,
2764 struct page *cow_page, struct page **page)
7eae74af
KS
2765{
2766 struct vm_fault vmf;
2767 int ret;
2768
2769 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2770 vmf.pgoff = pgoff;
2771 vmf.flags = flags;
2772 vmf.page = NULL;
2e4cdab0 2773 vmf.cow_page = cow_page;
7eae74af
KS
2774
2775 ret = vma->vm_ops->fault(vma, &vmf);
2776 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2777 return ret;
2e4cdab0
MW
2778 if (!vmf.page)
2779 goto out;
7eae74af
KS
2780
2781 if (unlikely(PageHWPoison(vmf.page))) {
2782 if (ret & VM_FAULT_LOCKED)
2783 unlock_page(vmf.page);
2784 page_cache_release(vmf.page);
2785 return VM_FAULT_HWPOISON;
2786 }
2787
2788 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2789 lock_page(vmf.page);
2790 else
2791 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2792
2e4cdab0 2793 out:
7eae74af
KS
2794 *page = vmf.page;
2795 return ret;
2796}
2797
8c6e50b0
KS
2798/**
2799 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2800 *
2801 * @vma: virtual memory area
2802 * @address: user virtual address
2803 * @page: page to map
2804 * @pte: pointer to target page table entry
2805 * @write: true, if new entry is writable
2806 * @anon: true, if it's anonymous page
2807 *
2808 * Caller must hold page table lock relevant for @pte.
2809 *
2810 * Target users are page handler itself and implementations of
2811 * vm_ops->map_pages.
2812 */
2813void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2814 struct page *page, pte_t *pte, bool write, bool anon)
2815{
2816 pte_t entry;
2817
2818 flush_icache_page(vma, page);
2819 entry = mk_pte(page, vma->vm_page_prot);
2820 if (write)
2821 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2822 if (anon) {
2823 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2824 page_add_new_anon_rmap(page, vma, address);
2825 } else {
2826 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2827 page_add_file_rmap(page);
2828 }
2829 set_pte_at(vma->vm_mm, address, pte, entry);
2830
2831 /* no need to invalidate: a not-present page won't be cached */
2832 update_mmu_cache(vma, address, pte);
2833}
2834
3a91053a
KS
2835static unsigned long fault_around_bytes __read_mostly =
2836 rounddown_pow_of_two(65536);
a9b0f861 2837
a9b0f861
KS
2838#ifdef CONFIG_DEBUG_FS
2839static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2840{
a9b0f861 2841 *val = fault_around_bytes;
1592eef0
KS
2842 return 0;
2843}
2844
b4903d6e
AR
2845/*
2846 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2847 * rounded down to nearest page order. It's what do_fault_around() expects to
2848 * see.
2849 */
a9b0f861 2850static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2851{
a9b0f861 2852 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2853 return -EINVAL;
b4903d6e
AR
2854 if (val > PAGE_SIZE)
2855 fault_around_bytes = rounddown_pow_of_two(val);
2856 else
2857 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2858 return 0;
2859}
a9b0f861
KS
2860DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2861 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2862
2863static int __init fault_around_debugfs(void)
2864{
2865 void *ret;
2866
a9b0f861
KS
2867 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2868 &fault_around_bytes_fops);
1592eef0 2869 if (!ret)
a9b0f861 2870 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2871 return 0;
2872}
2873late_initcall(fault_around_debugfs);
1592eef0 2874#endif
8c6e50b0 2875
1fdb412b
KS
2876/*
2877 * do_fault_around() tries to map few pages around the fault address. The hope
2878 * is that the pages will be needed soon and this will lower the number of
2879 * faults to handle.
2880 *
2881 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2882 * not ready to be mapped: not up-to-date, locked, etc.
2883 *
2884 * This function is called with the page table lock taken. In the split ptlock
2885 * case the page table lock only protects only those entries which belong to
2886 * the page table corresponding to the fault address.
2887 *
2888 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2889 * only once.
2890 *
2891 * fault_around_pages() defines how many pages we'll try to map.
2892 * do_fault_around() expects it to return a power of two less than or equal to
2893 * PTRS_PER_PTE.
2894 *
2895 * The virtual address of the area that we map is naturally aligned to the
2896 * fault_around_pages() value (and therefore to page order). This way it's
2897 * easier to guarantee that we don't cross page table boundaries.
2898 */
8c6e50b0
KS
2899static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2900 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2901{
aecd6f44 2902 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2903 pgoff_t max_pgoff;
2904 struct vm_fault vmf;
2905 int off;
2906
4db0c3c2 2907 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2908 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2909
2910 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2911 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2912 pte -= off;
2913 pgoff -= off;
2914
2915 /*
2916 * max_pgoff is either end of page table or end of vma
850e9c69 2917 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2918 */
2919 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2920 PTRS_PER_PTE - 1;
2921 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2922 pgoff + nr_pages - 1);
8c6e50b0
KS
2923
2924 /* Check if it makes any sense to call ->map_pages */
2925 while (!pte_none(*pte)) {
2926 if (++pgoff > max_pgoff)
2927 return;
2928 start_addr += PAGE_SIZE;
2929 if (start_addr >= vma->vm_end)
2930 return;
2931 pte++;
2932 }
2933
2934 vmf.virtual_address = (void __user *) start_addr;
2935 vmf.pte = pte;
2936 vmf.pgoff = pgoff;
2937 vmf.max_pgoff = max_pgoff;
2938 vmf.flags = flags;
2939 vma->vm_ops->map_pages(vma, &vmf);
2940}
2941
e655fb29
KS
2942static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2943 unsigned long address, pmd_t *pmd,
2944 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2945{
2946 struct page *fault_page;
2947 spinlock_t *ptl;
3bb97794 2948 pte_t *pte;
8c6e50b0
KS
2949 int ret = 0;
2950
2951 /*
2952 * Let's call ->map_pages() first and use ->fault() as fallback
2953 * if page by the offset is not ready to be mapped (cold cache or
2954 * something).
2955 */
9b4bdd2f 2956 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2957 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2958 do_fault_around(vma, address, pte, pgoff, flags);
2959 if (!pte_same(*pte, orig_pte))
2960 goto unlock_out;
2961 pte_unmap_unlock(pte, ptl);
2962 }
e655fb29 2963
2e4cdab0 2964 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
e655fb29
KS
2965 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2966 return ret;
2967
2968 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2969 if (unlikely(!pte_same(*pte, orig_pte))) {
2970 pte_unmap_unlock(pte, ptl);
2971 unlock_page(fault_page);
2972 page_cache_release(fault_page);
2973 return ret;
2974 }
3bb97794 2975 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2976 unlock_page(fault_page);
8c6e50b0
KS
2977unlock_out:
2978 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2979 return ret;
2980}
2981
ec47c3b9
KS
2982static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2983 unsigned long address, pmd_t *pmd,
2984 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2985{
2986 struct page *fault_page, *new_page;
00501b53 2987 struct mem_cgroup *memcg;
ec47c3b9 2988 spinlock_t *ptl;
3bb97794 2989 pte_t *pte;
ec47c3b9
KS
2990 int ret;
2991
2992 if (unlikely(anon_vma_prepare(vma)))
2993 return VM_FAULT_OOM;
2994
2995 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2996 if (!new_page)
2997 return VM_FAULT_OOM;
2998
00501b53 2999 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
ec47c3b9
KS
3000 page_cache_release(new_page);
3001 return VM_FAULT_OOM;
3002 }
3003
2e4cdab0 3004 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
ec47c3b9
KS
3005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3006 goto uncharge_out;
3007
2e4cdab0
MW
3008 if (fault_page)
3009 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
3010 __SetPageUptodate(new_page);
3011
3012 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3013 if (unlikely(!pte_same(*pte, orig_pte))) {
3014 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3015 if (fault_page) {
3016 unlock_page(fault_page);
3017 page_cache_release(fault_page);
3018 } else {
3019 /*
3020 * The fault handler has no page to lock, so it holds
0df9d41a 3021 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3022 */
0df9d41a 3023 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3024 }
ec47c3b9
KS
3025 goto uncharge_out;
3026 }
3bb97794 3027 do_set_pte(vma, address, new_page, pte, true, true);
00501b53
JW
3028 mem_cgroup_commit_charge(new_page, memcg, false);
3029 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3030 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3031 if (fault_page) {
3032 unlock_page(fault_page);
3033 page_cache_release(fault_page);
3034 } else {
3035 /*
3036 * The fault handler has no page to lock, so it holds
0df9d41a 3037 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3038 */
0df9d41a 3039 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3040 }
ec47c3b9
KS
3041 return ret;
3042uncharge_out:
00501b53 3043 mem_cgroup_cancel_charge(new_page, memcg);
ec47c3b9
KS
3044 page_cache_release(new_page);
3045 return ret;
3046}
3047
f0c6d4d2 3048static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3049 unsigned long address, pmd_t *pmd,
54cb8821 3050 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3051{
f0c6d4d2
KS
3052 struct page *fault_page;
3053 struct address_space *mapping;
8f4e2101 3054 spinlock_t *ptl;
3bb97794 3055 pte_t *pte;
f0c6d4d2 3056 int dirtied = 0;
f0c6d4d2 3057 int ret, tmp;
1d65f86d 3058
2e4cdab0 3059 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
7eae74af 3060 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3061 return ret;
1da177e4
LT
3062
3063 /*
f0c6d4d2
KS
3064 * Check if the backing address space wants to know that the page is
3065 * about to become writable
1da177e4 3066 */
fb09a464
KS
3067 if (vma->vm_ops->page_mkwrite) {
3068 unlock_page(fault_page);
3069 tmp = do_page_mkwrite(vma, fault_page, address);
3070 if (unlikely(!tmp ||
3071 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3072 page_cache_release(fault_page);
fb09a464 3073 return tmp;
4294621f 3074 }
fb09a464
KS
3075 }
3076
f0c6d4d2
KS
3077 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078 if (unlikely(!pte_same(*pte, orig_pte))) {
3079 pte_unmap_unlock(pte, ptl);
3080 unlock_page(fault_page);
3081 page_cache_release(fault_page);
3082 return ret;
1da177e4 3083 }
3bb97794 3084 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3085 pte_unmap_unlock(pte, ptl);
b827e496 3086
f0c6d4d2
KS
3087 if (set_page_dirty(fault_page))
3088 dirtied = 1;
d82fa87d
AM
3089 /*
3090 * Take a local copy of the address_space - page.mapping may be zeroed
3091 * by truncate after unlock_page(). The address_space itself remains
3092 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3093 * release semantics to prevent the compiler from undoing this copying.
3094 */
f0c6d4d2
KS
3095 mapping = fault_page->mapping;
3096 unlock_page(fault_page);
3097 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3098 /*
3099 * Some device drivers do not set page.mapping but still
3100 * dirty their pages
3101 */
3102 balance_dirty_pages_ratelimited(mapping);
d08b3851 3103 }
d00806b1 3104
74ec6751 3105 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3106 file_update_time(vma->vm_file);
b827e496 3107
1d65f86d 3108 return ret;
54cb8821 3109}
d00806b1 3110
9a95f3cf
PC
3111/*
3112 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3113 * but allow concurrent faults).
3114 * The mmap_sem may have been released depending on flags and our
3115 * return value. See filemap_fault() and __lock_page_or_retry().
3116 */
9b4bdd2f 3117static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3118 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3119 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3120{
3121 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3122 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3123
16abfa08 3124 pte_unmap(page_table);
6b7339f4
KS
3125 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3126 if (!vma->vm_ops->fault)
3127 return VM_FAULT_SIGBUS;
e655fb29
KS
3128 if (!(flags & FAULT_FLAG_WRITE))
3129 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3130 orig_pte);
ec47c3b9
KS
3131 if (!(vma->vm_flags & VM_SHARED))
3132 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3133 orig_pte);
f0c6d4d2 3134 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3135}
3136
b19a9939 3137static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3138 unsigned long addr, int page_nid,
3139 int *flags)
9532fec1
MG
3140{
3141 get_page(page);
3142
3143 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3144 if (page_nid == numa_node_id()) {
9532fec1 3145 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3146 *flags |= TNF_FAULT_LOCAL;
3147 }
9532fec1
MG
3148
3149 return mpol_misplaced(page, vma, addr);
3150}
3151
b19a9939 3152static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3153 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3154{
4daae3b4 3155 struct page *page = NULL;
d10e63f2 3156 spinlock_t *ptl;
8191acbd 3157 int page_nid = -1;
90572890 3158 int last_cpupid;
cbee9f88 3159 int target_nid;
b8593bfd 3160 bool migrated = false;
b191f9b1 3161 bool was_writable = pte_write(pte);
6688cc05 3162 int flags = 0;
d10e63f2 3163
c0e7cad9
MG
3164 /* A PROT_NONE fault should not end up here */
3165 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3166
d10e63f2
MG
3167 /*
3168 * The "pte" at this point cannot be used safely without
3169 * validation through pte_unmap_same(). It's of NUMA type but
3170 * the pfn may be screwed if the read is non atomic.
3171 *
4d942466
MG
3172 * We can safely just do a "set_pte_at()", because the old
3173 * page table entry is not accessible, so there would be no
3174 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3175 */
3176 ptl = pte_lockptr(mm, pmd);
3177 spin_lock(ptl);
4daae3b4
MG
3178 if (unlikely(!pte_same(*ptep, pte))) {
3179 pte_unmap_unlock(ptep, ptl);
3180 goto out;
3181 }
3182
4d942466
MG
3183 /* Make it present again */
3184 pte = pte_modify(pte, vma->vm_page_prot);
3185 pte = pte_mkyoung(pte);
b191f9b1
MG
3186 if (was_writable)
3187 pte = pte_mkwrite(pte);
d10e63f2
MG
3188 set_pte_at(mm, addr, ptep, pte);
3189 update_mmu_cache(vma, addr, ptep);
3190
3191 page = vm_normal_page(vma, addr, pte);
3192 if (!page) {
3193 pte_unmap_unlock(ptep, ptl);
3194 return 0;
3195 }
3196
6688cc05 3197 /*
bea66fbd
MG
3198 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3199 * much anyway since they can be in shared cache state. This misses
3200 * the case where a mapping is writable but the process never writes
3201 * to it but pte_write gets cleared during protection updates and
3202 * pte_dirty has unpredictable behaviour between PTE scan updates,
3203 * background writeback, dirty balancing and application behaviour.
6688cc05 3204 */
bea66fbd 3205 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3206 flags |= TNF_NO_GROUP;
3207
dabe1d99
RR
3208 /*
3209 * Flag if the page is shared between multiple address spaces. This
3210 * is later used when determining whether to group tasks together
3211 */
3212 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3213 flags |= TNF_SHARED;
3214
90572890 3215 last_cpupid = page_cpupid_last(page);
8191acbd 3216 page_nid = page_to_nid(page);
04bb2f94 3217 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3218 pte_unmap_unlock(ptep, ptl);
4daae3b4 3219 if (target_nid == -1) {
4daae3b4
MG
3220 put_page(page);
3221 goto out;
3222 }
3223
3224 /* Migrate to the requested node */
1bc115d8 3225 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3226 if (migrated) {
8191acbd 3227 page_nid = target_nid;
6688cc05 3228 flags |= TNF_MIGRATED;
074c2381
MG
3229 } else
3230 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3231
3232out:
8191acbd 3233 if (page_nid != -1)
6688cc05 3234 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3235 return 0;
3236}
3237
b96375f7
MW
3238static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3239 unsigned long address, pmd_t *pmd, unsigned int flags)
3240{
fb6dd5fa 3241 if (vma_is_anonymous(vma))
b96375f7
MW
3242 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3243 if (vma->vm_ops->pmd_fault)
3244 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3245 return VM_FAULT_FALLBACK;
3246}
3247
3248static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3249 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3250 unsigned int flags)
3251{
fb6dd5fa 3252 if (vma_is_anonymous(vma))
b96375f7
MW
3253 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3254 if (vma->vm_ops->pmd_fault)
3255 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3256 return VM_FAULT_FALLBACK;
3257}
3258
1da177e4
LT
3259/*
3260 * These routines also need to handle stuff like marking pages dirty
3261 * and/or accessed for architectures that don't do it in hardware (most
3262 * RISC architectures). The early dirtying is also good on the i386.
3263 *
3264 * There is also a hook called "update_mmu_cache()" that architectures
3265 * with external mmu caches can use to update those (ie the Sparc or
3266 * PowerPC hashed page tables that act as extended TLBs).
3267 *
c74df32c
HD
3268 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3269 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3270 * We return with pte unmapped and unlocked.
3271 *
3272 * The mmap_sem may have been released depending on flags and our
3273 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3274 */
c0292554 3275static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3276 struct vm_area_struct *vma, unsigned long address,
3277 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3278{
3279 pte_t entry;
8f4e2101 3280 spinlock_t *ptl;
1da177e4 3281
e37c6982
CB
3282 /*
3283 * some architectures can have larger ptes than wordsize,
3284 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3285 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3286 * The code below just needs a consistent view for the ifs and
3287 * we later double check anyway with the ptl lock held. So here
3288 * a barrier will do.
3289 */
3290 entry = *pte;
3291 barrier();
1da177e4 3292 if (!pte_present(entry)) {
65500d23 3293 if (pte_none(entry)) {
b5330628
ON
3294 if (vma_is_anonymous(vma))
3295 return do_anonymous_page(mm, vma, address,
3296 pte, pmd, flags);
3297 else
6b7339f4
KS
3298 return do_fault(mm, vma, address, pte, pmd,
3299 flags, entry);
65500d23 3300 }
65500d23 3301 return do_swap_page(mm, vma, address,
30c9f3a9 3302 pte, pmd, flags, entry);
1da177e4
LT
3303 }
3304
8a0516ed 3305 if (pte_protnone(entry))
d10e63f2
MG
3306 return do_numa_page(mm, vma, address, entry, pte, pmd);
3307
4c21e2f2 3308 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3309 spin_lock(ptl);
3310 if (unlikely(!pte_same(*pte, entry)))
3311 goto unlock;
30c9f3a9 3312 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3313 if (!pte_write(entry))
8f4e2101
HD
3314 return do_wp_page(mm, vma, address,
3315 pte, pmd, ptl, entry);
1da177e4
LT
3316 entry = pte_mkdirty(entry);
3317 }
3318 entry = pte_mkyoung(entry);
30c9f3a9 3319 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3320 update_mmu_cache(vma, address, pte);
1a44e149
AA
3321 } else {
3322 /*
3323 * This is needed only for protection faults but the arch code
3324 * is not yet telling us if this is a protection fault or not.
3325 * This still avoids useless tlb flushes for .text page faults
3326 * with threads.
3327 */
30c9f3a9 3328 if (flags & FAULT_FLAG_WRITE)
61c77326 3329 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3330 }
8f4e2101
HD
3331unlock:
3332 pte_unmap_unlock(pte, ptl);
83c54070 3333 return 0;
1da177e4
LT
3334}
3335
3336/*
3337 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3338 *
3339 * The mmap_sem may have been released depending on flags and our
3340 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3341 */
519e5247
JW
3342static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3343 unsigned long address, unsigned int flags)
1da177e4
LT
3344{
3345 pgd_t *pgd;
3346 pud_t *pud;
3347 pmd_t *pmd;
3348 pte_t *pte;
3349
ac9b9c66 3350 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3351 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3352
1da177e4 3353 pgd = pgd_offset(mm, address);
1da177e4
LT
3354 pud = pud_alloc(mm, pgd, address);
3355 if (!pud)
c74df32c 3356 return VM_FAULT_OOM;
1da177e4
LT
3357 pmd = pmd_alloc(mm, pud, address);
3358 if (!pmd)
c74df32c 3359 return VM_FAULT_OOM;
71e3aac0 3360 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3361 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3362 if (!(ret & VM_FAULT_FALLBACK))
3363 return ret;
71e3aac0
AA
3364 } else {
3365 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3366 int ret;
3367
71e3aac0
AA
3368 barrier();
3369 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3370 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3371
e53289c0
LT
3372 /*
3373 * If the pmd is splitting, return and retry the
3374 * the fault. Alternative: wait until the split
3375 * is done, and goto retry.
3376 */
3377 if (pmd_trans_splitting(orig_pmd))
3378 return 0;
3379
8a0516ed 3380 if (pmd_protnone(orig_pmd))
4daae3b4 3381 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3382 orig_pmd, pmd);
3383
3d59eebc 3384 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3385 ret = wp_huge_pmd(mm, vma, address, pmd,
3386 orig_pmd, flags);
9845cbbd
KS
3387 if (!(ret & VM_FAULT_FALLBACK))
3388 return ret;
a1dd450b
WD
3389 } else {
3390 huge_pmd_set_accessed(mm, vma, address, pmd,
3391 orig_pmd, dirty);
9845cbbd 3392 return 0;
1f1d06c3 3393 }
71e3aac0
AA
3394 }
3395 }
3396
3397 /*
3398 * Use __pte_alloc instead of pte_alloc_map, because we can't
3399 * run pte_offset_map on the pmd, if an huge pmd could
3400 * materialize from under us from a different thread.
3401 */
4fd01770
MG
3402 if (unlikely(pmd_none(*pmd)) &&
3403 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3404 return VM_FAULT_OOM;
915d0245
AA
3405 /*
3406 * If a huge pmd materialized under us just retry later. Use
3407 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3408 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3409 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3410 * in a different thread of this mm, in turn leading to a misleading
3411 * pmd_trans_huge() retval. All we have to ensure is that it is a
3412 * regular pmd that we can walk with pte_offset_map() and we can do that
3413 * through an atomic read in C, which is what pmd_trans_unstable()
3414 * provides.
3415 */
3416 if (unlikely(pmd_trans_unstable(pmd)))
71e3aac0
AA
3417 return 0;
3418 /*
3419 * A regular pmd is established and it can't morph into a huge pmd
3420 * from under us anymore at this point because we hold the mmap_sem
3421 * read mode and khugepaged takes it in write mode. So now it's
3422 * safe to run pte_offset_map().
3423 */
3424 pte = pte_offset_map(pmd, address);
1da177e4 3425
30c9f3a9 3426 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3427}
3428
9a95f3cf
PC
3429/*
3430 * By the time we get here, we already hold the mm semaphore
3431 *
3432 * The mmap_sem may have been released depending on flags and our
3433 * return value. See filemap_fault() and __lock_page_or_retry().
3434 */
519e5247
JW
3435int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3436 unsigned long address, unsigned int flags)
3437{
3438 int ret;
3439
3440 __set_current_state(TASK_RUNNING);
3441
3442 count_vm_event(PGFAULT);
3443 mem_cgroup_count_vm_event(mm, PGFAULT);
3444
3445 /* do counter updates before entering really critical section. */
3446 check_sync_rss_stat(current);
3447
3448 /*
3449 * Enable the memcg OOM handling for faults triggered in user
3450 * space. Kernel faults are handled more gracefully.
3451 */
3452 if (flags & FAULT_FLAG_USER)
49426420 3453 mem_cgroup_oom_enable();
519e5247
JW
3454
3455 ret = __handle_mm_fault(mm, vma, address, flags);
3456
49426420
JW
3457 if (flags & FAULT_FLAG_USER) {
3458 mem_cgroup_oom_disable();
3459 /*
3460 * The task may have entered a memcg OOM situation but
3461 * if the allocation error was handled gracefully (no
3462 * VM_FAULT_OOM), there is no need to kill anything.
3463 * Just clean up the OOM state peacefully.
3464 */
3465 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3466 mem_cgroup_oom_synchronize(false);
3467 }
3812c8c8 3468
519e5247
JW
3469 return ret;
3470}
e1d6d01a 3471EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3472
1da177e4
LT
3473#ifndef __PAGETABLE_PUD_FOLDED
3474/*
3475 * Allocate page upper directory.
872fec16 3476 * We've already handled the fast-path in-line.
1da177e4 3477 */
1bb3630e 3478int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3479{
c74df32c
HD
3480 pud_t *new = pud_alloc_one(mm, address);
3481 if (!new)
1bb3630e 3482 return -ENOMEM;
1da177e4 3483
362a61ad
NP
3484 smp_wmb(); /* See comment in __pte_alloc */
3485
872fec16 3486 spin_lock(&mm->page_table_lock);
1bb3630e 3487 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3488 pud_free(mm, new);
1bb3630e
HD
3489 else
3490 pgd_populate(mm, pgd, new);
c74df32c 3491 spin_unlock(&mm->page_table_lock);
1bb3630e 3492 return 0;
1da177e4
LT
3493}
3494#endif /* __PAGETABLE_PUD_FOLDED */
3495
3496#ifndef __PAGETABLE_PMD_FOLDED
3497/*
3498 * Allocate page middle directory.
872fec16 3499 * We've already handled the fast-path in-line.
1da177e4 3500 */
1bb3630e 3501int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3502{
c74df32c
HD
3503 pmd_t *new = pmd_alloc_one(mm, address);
3504 if (!new)
1bb3630e 3505 return -ENOMEM;
1da177e4 3506
362a61ad
NP
3507 smp_wmb(); /* See comment in __pte_alloc */
3508
872fec16 3509 spin_lock(&mm->page_table_lock);
1da177e4 3510#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3511 if (!pud_present(*pud)) {
3512 mm_inc_nr_pmds(mm);
1bb3630e 3513 pud_populate(mm, pud, new);
dc6c9a35 3514 } else /* Another has populated it */
5e541973 3515 pmd_free(mm, new);
dc6c9a35
KS
3516#else
3517 if (!pgd_present(*pud)) {
3518 mm_inc_nr_pmds(mm);
1bb3630e 3519 pgd_populate(mm, pud, new);
dc6c9a35
KS
3520 } else /* Another has populated it */
3521 pmd_free(mm, new);
1da177e4 3522#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3523 spin_unlock(&mm->page_table_lock);
1bb3630e 3524 return 0;
e0f39591 3525}
1da177e4
LT
3526#endif /* __PAGETABLE_PMD_FOLDED */
3527
1b36ba81 3528static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3529 pte_t **ptepp, spinlock_t **ptlp)
3530{
3531 pgd_t *pgd;
3532 pud_t *pud;
3533 pmd_t *pmd;
3534 pte_t *ptep;
3535
3536 pgd = pgd_offset(mm, address);
3537 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3538 goto out;
3539
3540 pud = pud_offset(pgd, address);
3541 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3542 goto out;
3543
3544 pmd = pmd_offset(pud, address);
f66055ab 3545 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3546 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3547 goto out;
3548
3549 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3550 if (pmd_huge(*pmd))
3551 goto out;
3552
3553 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3554 if (!ptep)
3555 goto out;
3556 if (!pte_present(*ptep))
3557 goto unlock;
3558 *ptepp = ptep;
3559 return 0;
3560unlock:
3561 pte_unmap_unlock(ptep, *ptlp);
3562out:
3563 return -EINVAL;
3564}
3565
1b36ba81
NK
3566static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3567 pte_t **ptepp, spinlock_t **ptlp)
3568{
3569 int res;
3570
3571 /* (void) is needed to make gcc happy */
3572 (void) __cond_lock(*ptlp,
3573 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3574 return res;
3575}
3576
3b6748e2
JW
3577/**
3578 * follow_pfn - look up PFN at a user virtual address
3579 * @vma: memory mapping
3580 * @address: user virtual address
3581 * @pfn: location to store found PFN
3582 *
3583 * Only IO mappings and raw PFN mappings are allowed.
3584 *
3585 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3586 */
3587int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3588 unsigned long *pfn)
3589{
3590 int ret = -EINVAL;
3591 spinlock_t *ptl;
3592 pte_t *ptep;
3593
3594 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3595 return ret;
3596
3597 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3598 if (ret)
3599 return ret;
3600 *pfn = pte_pfn(*ptep);
3601 pte_unmap_unlock(ptep, ptl);
3602 return 0;
3603}
3604EXPORT_SYMBOL(follow_pfn);
3605
28b2ee20 3606#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3607int follow_phys(struct vm_area_struct *vma,
3608 unsigned long address, unsigned int flags,
3609 unsigned long *prot, resource_size_t *phys)
28b2ee20 3610{
03668a4d 3611 int ret = -EINVAL;
28b2ee20
RR
3612 pte_t *ptep, pte;
3613 spinlock_t *ptl;
28b2ee20 3614
d87fe660 3615 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3616 goto out;
28b2ee20 3617
03668a4d 3618 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3619 goto out;
28b2ee20 3620 pte = *ptep;
03668a4d 3621
28b2ee20
RR
3622 if ((flags & FOLL_WRITE) && !pte_write(pte))
3623 goto unlock;
28b2ee20
RR
3624
3625 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3626 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3627
03668a4d 3628 ret = 0;
28b2ee20
RR
3629unlock:
3630 pte_unmap_unlock(ptep, ptl);
3631out:
d87fe660 3632 return ret;
28b2ee20
RR
3633}
3634
3635int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3636 void *buf, int len, int write)
3637{
3638 resource_size_t phys_addr;
3639 unsigned long prot = 0;
2bc7273b 3640 void __iomem *maddr;
28b2ee20
RR
3641 int offset = addr & (PAGE_SIZE-1);
3642
d87fe660 3643 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3644 return -EINVAL;
3645
9cb12d7b 3646 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3647 if (write)
3648 memcpy_toio(maddr + offset, buf, len);
3649 else
3650 memcpy_fromio(buf, maddr + offset, len);
3651 iounmap(maddr);
3652
3653 return len;
3654}
5a73633e 3655EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3656#endif
3657
0ec76a11 3658/*
206cb636
SW
3659 * Access another process' address space as given in mm. If non-NULL, use the
3660 * given task for page fault accounting.
0ec76a11 3661 */
206cb636
SW
3662static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3663 unsigned long addr, void *buf, int len, int write)
0ec76a11 3664{
0ec76a11 3665 struct vm_area_struct *vma;
0ec76a11
DH
3666 void *old_buf = buf;
3667
0ec76a11 3668 down_read(&mm->mmap_sem);
183ff22b 3669 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3670 while (len) {
3671 int bytes, ret, offset;
3672 void *maddr;
28b2ee20 3673 struct page *page = NULL;
0ec76a11
DH
3674
3675 ret = get_user_pages(tsk, mm, addr, 1,
3676 write, 1, &page, &vma);
28b2ee20 3677 if (ret <= 0) {
dbffcd03
RR
3678#ifndef CONFIG_HAVE_IOREMAP_PROT
3679 break;
3680#else
28b2ee20
RR
3681 /*
3682 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3683 * we can access using slightly different code.
3684 */
28b2ee20 3685 vma = find_vma(mm, addr);
fe936dfc 3686 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3687 break;
3688 if (vma->vm_ops && vma->vm_ops->access)
3689 ret = vma->vm_ops->access(vma, addr, buf,
3690 len, write);
3691 if (ret <= 0)
28b2ee20
RR
3692 break;
3693 bytes = ret;
dbffcd03 3694#endif
0ec76a11 3695 } else {
28b2ee20
RR
3696 bytes = len;
3697 offset = addr & (PAGE_SIZE-1);
3698 if (bytes > PAGE_SIZE-offset)
3699 bytes = PAGE_SIZE-offset;
3700
3701 maddr = kmap(page);
3702 if (write) {
3703 copy_to_user_page(vma, page, addr,
3704 maddr + offset, buf, bytes);
3705 set_page_dirty_lock(page);
3706 } else {
3707 copy_from_user_page(vma, page, addr,
3708 buf, maddr + offset, bytes);
3709 }
3710 kunmap(page);
3711 page_cache_release(page);
0ec76a11 3712 }
0ec76a11
DH
3713 len -= bytes;
3714 buf += bytes;
3715 addr += bytes;
3716 }
3717 up_read(&mm->mmap_sem);
0ec76a11
DH
3718
3719 return buf - old_buf;
3720}
03252919 3721
5ddd36b9 3722/**
ae91dbfc 3723 * access_remote_vm - access another process' address space
5ddd36b9
SW
3724 * @mm: the mm_struct of the target address space
3725 * @addr: start address to access
3726 * @buf: source or destination buffer
3727 * @len: number of bytes to transfer
3728 * @write: whether the access is a write
3729 *
3730 * The caller must hold a reference on @mm.
3731 */
3732int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3733 void *buf, int len, int write)
3734{
3735 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3736}
3737
206cb636
SW
3738/*
3739 * Access another process' address space.
3740 * Source/target buffer must be kernel space,
3741 * Do not walk the page table directly, use get_user_pages
3742 */
3743int access_process_vm(struct task_struct *tsk, unsigned long addr,
3744 void *buf, int len, int write)
3745{
3746 struct mm_struct *mm;
3747 int ret;
3748
3749 mm = get_task_mm(tsk);
3750 if (!mm)
3751 return 0;
3752
3753 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3754 mmput(mm);
3755
3756 return ret;
3757}
3758
03252919
AK
3759/*
3760 * Print the name of a VMA.
3761 */
3762void print_vma_addr(char *prefix, unsigned long ip)
3763{
3764 struct mm_struct *mm = current->mm;
3765 struct vm_area_struct *vma;
3766
e8bff74a
IM
3767 /*
3768 * Do not print if we are in atomic
3769 * contexts (in exception stacks, etc.):
3770 */
3771 if (preempt_count())
3772 return;
3773
03252919
AK
3774 down_read(&mm->mmap_sem);
3775 vma = find_vma(mm, ip);
3776 if (vma && vma->vm_file) {
3777 struct file *f = vma->vm_file;
3778 char *buf = (char *)__get_free_page(GFP_KERNEL);
3779 if (buf) {
2fbc57c5 3780 char *p;
03252919 3781
9bf39ab2 3782 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3783 if (IS_ERR(p))
3784 p = "?";
2fbc57c5 3785 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3786 vma->vm_start,
3787 vma->vm_end - vma->vm_start);
3788 free_page((unsigned long)buf);
3789 }
3790 }
51a07e50 3791 up_read(&mm->mmap_sem);
03252919 3792}
3ee1afa3 3793
662bbcb2 3794#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3795void __might_fault(const char *file, int line)
3ee1afa3 3796{
95156f00
PZ
3797 /*
3798 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3799 * holding the mmap_sem, this is safe because kernel memory doesn't
3800 * get paged out, therefore we'll never actually fault, and the
3801 * below annotations will generate false positives.
3802 */
3803 if (segment_eq(get_fs(), KERNEL_DS))
3804 return;
9ec23531 3805 if (pagefault_disabled())
662bbcb2 3806 return;
9ec23531
DH
3807 __might_sleep(file, line, 0);
3808#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3809 if (current->mm)
3ee1afa3 3810 might_lock_read(&current->mm->mmap_sem);
9ec23531 3811#endif
3ee1afa3 3812}
9ec23531 3813EXPORT_SYMBOL(__might_fault);
3ee1afa3 3814#endif
47ad8475
AA
3815
3816#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3817static void clear_gigantic_page(struct page *page,
3818 unsigned long addr,
3819 unsigned int pages_per_huge_page)
3820{
3821 int i;
3822 struct page *p = page;
3823
3824 might_sleep();
3825 for (i = 0; i < pages_per_huge_page;
3826 i++, p = mem_map_next(p, page, i)) {
3827 cond_resched();
3828 clear_user_highpage(p, addr + i * PAGE_SIZE);
3829 }
3830}
3831void clear_huge_page(struct page *page,
3832 unsigned long addr, unsigned int pages_per_huge_page)
3833{
3834 int i;
3835
3836 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3837 clear_gigantic_page(page, addr, pages_per_huge_page);
3838 return;
3839 }
3840
3841 might_sleep();
3842 for (i = 0; i < pages_per_huge_page; i++) {
3843 cond_resched();
3844 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3845 }
3846}
3847
3848static void copy_user_gigantic_page(struct page *dst, struct page *src,
3849 unsigned long addr,
3850 struct vm_area_struct *vma,
3851 unsigned int pages_per_huge_page)
3852{
3853 int i;
3854 struct page *dst_base = dst;
3855 struct page *src_base = src;
3856
3857 for (i = 0; i < pages_per_huge_page; ) {
3858 cond_resched();
3859 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3860
3861 i++;
3862 dst = mem_map_next(dst, dst_base, i);
3863 src = mem_map_next(src, src_base, i);
3864 }
3865}
3866
3867void copy_user_huge_page(struct page *dst, struct page *src,
3868 unsigned long addr, struct vm_area_struct *vma,
3869 unsigned int pages_per_huge_page)
3870{
3871 int i;
3872
3873 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3874 copy_user_gigantic_page(dst, src, addr, vma,
3875 pages_per_huge_page);
3876 return;
3877 }
3878
3879 might_sleep();
3880 for (i = 0; i < pages_per_huge_page; i++) {
3881 cond_resched();
3882 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3883 }
3884}
3885#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3886
40b64acd 3887#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3888
3889static struct kmem_cache *page_ptl_cachep;
3890
3891void __init ptlock_cache_init(void)
3892{
3893 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3894 SLAB_PANIC, NULL);
3895}
3896
539edb58 3897bool ptlock_alloc(struct page *page)
49076ec2
KS
3898{
3899 spinlock_t *ptl;
3900
b35f1819 3901 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3902 if (!ptl)
3903 return false;
539edb58 3904 page->ptl = ptl;
49076ec2
KS
3905 return true;
3906}
3907
539edb58 3908void ptlock_free(struct page *page)
49076ec2 3909{
b35f1819 3910 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3911}
3912#endif