audit: return on memory error to avoid null pointer dereference
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / sync.c
CommitLineData
f79e2abb
AM
1/*
2 * High-level sync()-related operations
3 */
4
5#include <linux/kernel.h>
6#include <linux/file.h>
7#include <linux/fs.h>
5a0e3ad6 8#include <linux/slab.h>
630d9c47 9#include <linux/export.h>
b7ed78f5 10#include <linux/namei.h>
914e2637 11#include <linux/sched.h>
f79e2abb
AM
12#include <linux/writeback.h>
13#include <linux/syscalls.h>
14#include <linux/linkage.h>
15#include <linux/pagemap.h>
cf9a2ae8 16#include <linux/quotaops.h>
5129a469 17#include <linux/backing-dev.h>
5a3e5cb8 18#include "internal.h"
f79e2abb
AM
19
20#define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
21 SYNC_FILE_RANGE_WAIT_AFTER)
22
1cac41cb
MB
23/* Interruptible sync for Samsung Mobile Device */
24#ifdef CONFIG_INTERRUPTIBLE_SYNC
25
26#include <linux/workqueue.h>
27#include <linux/suspend.h>
28#include <linux/delay.h>
29
30//#define CONFIG_INTR_SYNC_DEBUG
31
32#ifdef CONFIG_INTR_SYNC_DEBUG
33#define dbg_print printk
34#else
35#define dbg_print(...)
36#endif
37
38enum {
39 INTR_SYNC_STATE_IDLE = 0,
40 INTR_SYNC_STATE_QUEUED,
41 INTR_SYNC_STATE_RUNNING,
42 INTR_SYNC_STATE_MAX
43};
44
45struct interruptible_sync_work {
46 int id;
47 int ret;
48 unsigned int waiter;
49 unsigned int state;
50 unsigned long version;
51 spinlock_t lock;
52 struct completion done;
53 struct work_struct work;
54};
55
56/* Initially, intr_sync_work has zero pending */
57static struct interruptible_sync_work intr_sync_work[2];
58
59/* Last work start time */
60static atomic_t running_work_idx;
61
62/* intr_sync_wq will be created when intr_sync() is called at first time.
63 * And it is alive till system shutdown */
64static struct workqueue_struct *intr_sync_wq;
65
66/* It prevents double allocation of intr_sync_wq */
67static DEFINE_MUTEX(intr_sync_wq_lock);
68
69static inline struct interruptible_sync_work *INTR_SYNC_WORK(struct work_struct *work)
70{
71 return container_of(work, struct interruptible_sync_work, work);
72}
73
74static void do_intr_sync(struct work_struct *work)
75{
76 struct interruptible_sync_work *sync_work = INTR_SYNC_WORK(work);
77 int ret = 0;
78 unsigned int waiter;
79
80 spin_lock(&sync_work->lock);
81 atomic_set(&running_work_idx, sync_work->id);
82 sync_work->state = INTR_SYNC_STATE_RUNNING;
83 waiter = sync_work->waiter;
84 spin_unlock(&sync_work->lock);
85
86 dbg_print("\nintr_sync: %s: call sys_sync on work[%d]-%ld\n",
87 __func__, sync_work->id, sync_work->version);
88
89 /* if no one waits, do not call sync() */
90 if (waiter) {
91 ret = sys_sync();
92 dbg_print("\nintr_sync: %s: done sys_sync on work[%d]-%ld\n",
93 __func__, sync_work->id, sync_work->version);
94 } else {
95 dbg_print("\nintr_sync: %s: cancel,no_wait on work[%d]-%ld\n",
96 __func__, sync_work->id, sync_work->version);
97 }
98
99 spin_lock(&sync_work->lock);
100 sync_work->version++;
101 sync_work->ret = ret;
102 sync_work->state = INTR_SYNC_STATE_IDLE;
103 complete_all(&sync_work->done);
104 spin_unlock(&sync_work->lock);
105}
106
107/* wakeup functions that depend on PM facilities
108 *
109 * struct intr_wakeup_data : wrapper structure for variables for PM
110 * each thread has own instance of it
111 * __prepare_wakeup_event() : prepare and check intr_wakeup_data
112 * __check_wakeup_event() : check wakeup-event with intr_wakeup_data
113 */
114struct intr_wakeup_data {
115 unsigned int cnt;
116};
117
118static inline int __prepare_wakeup_event(struct intr_wakeup_data *wd)
119{
120 if (pm_get_wakeup_count(&wd->cnt, false))
121 return 0;
122
123 pr_info("intr_sync: detected wakeup events before sync\n");
124 pm_print_active_wakeup_sources();
125 return -EBUSY;
126}
127
128static inline int __check_wakeup_event(struct intr_wakeup_data *wd)
129{
130 unsigned int cnt, no_inpr;
131
132 no_inpr = pm_get_wakeup_count(&cnt, false);
133 if (no_inpr && (cnt == wd->cnt))
134 return 0;
135
136 pr_info("intr_sync: detected wakeup events(no_inpr: %u cnt: %u->%u)\n",
137 no_inpr, wd->cnt, cnt);
138 pm_print_active_wakeup_sources();
139 return -EBUSY;
140}
141
142/* Interruptible Sync
143 *
144 * intr_sync() is same function as sys_sync() except that it can wakeup.
145 * It's possible because of inter_syncd workqueue.
146 *
147 * If system gets wakeup event while sync_work is running,
148 * just return -EBUSY, otherwise 0.
149 *
150 * If intr_sync() is called again while sync_work is running, it will enqueue
151 * idle sync_work to work_queue and wait the completion of it.
152 * If there is not idle sync_work but queued one, it just increases waiter by 1,
153 * and waits the completion of queued sync_work.
154 *
155 * If you want to know returned value of sys_sync(),
156 * you can get it from the argument, sync_ret
157 */
158
159int intr_sync(int *sync_ret)
160{
161 int ret;
162enqueue_sync_wait:
163 /* If the workqueue exists, try to enqueue work and wait */
164 if (likely(intr_sync_wq)) {
165 struct interruptible_sync_work *sync_work;
166 struct intr_wakeup_data wd;
167 int work_idx;
168 int work_ver;
169find_idle:
170 work_idx = !atomic_read(&running_work_idx);
171 sync_work = &intr_sync_work[work_idx];
172
173 /* Prepare intr_wakeup_data and check wakeup event:
174 * If a wakeup-event is detected, wake up right now
175 */
176 if (__prepare_wakeup_event(&wd)) {
177 dbg_print("intr_sync: detect wakeup event "
178 "before waiting work[%d]\n", work_idx);
179 return -EBUSY;
180 }
181
182 dbg_print("\nintr_sync: try to wait work[%d]\n", work_idx);
183
184 spin_lock(&sync_work->lock);
185 work_ver = sync_work->version;
186 if (sync_work->state == INTR_SYNC_STATE_RUNNING) {
187 spin_unlock(&sync_work->lock);
188 dbg_print("intr_sync: work[%d] is already running, "
189 "find idle work\n", work_idx);
190 goto find_idle;
191 }
192
193 sync_work->waiter++;
194 if (sync_work->state == INTR_SYNC_STATE_IDLE) {
195 dbg_print("intr_sync: enqueue work[%d]\n", work_idx);
196 sync_work->state = INTR_SYNC_STATE_QUEUED;
197 reinit_completion(&sync_work->done);
198 queue_work(intr_sync_wq, &sync_work->work);
199 }
200 spin_unlock(&sync_work->lock);
201
202 do {
203 /* Check wakeup event first before waiting:
204 * If a wakeup-event is detected, wake up right now
205 */
206 if (__check_wakeup_event(&wd)) {
207 spin_lock(&sync_work->lock);
208 sync_work->waiter--;
209 spin_unlock(&sync_work->lock);
210 dbg_print("intr_sync: detect wakeup event "
211 "while waiting work[%d]\n", work_idx);
212 return -EBUSY;
213 }
214
215// dbg_print("intr_sync: waiting work[%d]\n", work_idx);
216 /* Return 0 if timed out, or positive if completed. */
217 ret = wait_for_completion_io_timeout(
218 &sync_work->done, HZ/10);
219 /* A work that we are waiting for has done. */
220 if ((ret > 0) || (sync_work->version != work_ver))
221 break;
222// dbg_print("intr_sync: timeout work[%d]\n", work_idx);
223 } while (1);
224
225 spin_lock(&sync_work->lock);
226 sync_work->waiter--;
227 if (sync_ret)
228 *sync_ret = sync_work->ret;
229 spin_unlock(&sync_work->lock);
230 dbg_print("intr_sync: sync work[%d] is done with ret(%d)\n",
231 work_idx, sync_work->ret);
232 return 0;
233 }
234
235 /* check whether a workqueue exists or not under locked state.
236 * Create new one if a workqueue is not created yet.
237 */
238 mutex_lock(&intr_sync_wq_lock);
239 if (likely(!intr_sync_wq)) {
240 intr_sync_work[0].id = 0;
241 intr_sync_work[1].id = 1;
242 INIT_WORK(&intr_sync_work[0].work, do_intr_sync);
243 INIT_WORK(&intr_sync_work[1].work, do_intr_sync);
244 spin_lock_init(&intr_sync_work[0].lock);
245 spin_lock_init(&intr_sync_work[1].lock);
246 init_completion(&intr_sync_work[0].done);
247 init_completion(&intr_sync_work[1].done);
248 intr_sync_wq = alloc_ordered_workqueue("intr_syncd", WQ_MEM_RECLAIM);
249 dbg_print("\nintr_sync: try to allocate intr_sync_queue\n");
250 }
251 mutex_unlock(&intr_sync_wq_lock);
252
253 /* try to enqueue work again if the workqueue is created successfully */
254 if (likely(intr_sync_wq))
255 goto enqueue_sync_wait;
256
257 printk("\nintr_sync: allocation failed, just call sync()\n");
258 ret = sys_sync();
259 if (sync_ret)
260 *sync_ret = ret;
261 return 0;
262}
263#else /* CONFIG_INTERRUPTIBLE_SYNC */
264int intr_sync(int *sync_ret)
265{
266 int ret = sys_sync();
267 if (sync_ret)
268 *sync_ret = ret;
269 return 0;
270}
271#endif /* CONFIG_INTERRUPTIBLE_SYNC */
272
c15c54f5 273/*
d8a8559c
JA
274 * Do the filesystem syncing work. For simple filesystems
275 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
276 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
277 * wait == 1 case since in that case write_inode() functions do
278 * sync_dirty_buffer() and thus effectively write one block at a time.
c15c54f5 279 */
0dc83bd3 280static int __sync_filesystem(struct super_block *sb, int wait)
c15c54f5 281{
5fb324ad 282 if (wait)
0dc83bd3 283 sync_inodes_sb(sb);
5fb324ad 284 else
0e175a18 285 writeback_inodes_sb(sb, WB_REASON_SYNC);
5fb324ad 286
c15c54f5
JK
287 if (sb->s_op->sync_fs)
288 sb->s_op->sync_fs(sb, wait);
289 return __sync_blockdev(sb->s_bdev, wait);
290}
291
292/*
293 * Write out and wait upon all dirty data associated with this
294 * superblock. Filesystem data as well as the underlying block
295 * device. Takes the superblock lock.
296 */
60b0680f 297int sync_filesystem(struct super_block *sb)
c15c54f5
JK
298{
299 int ret;
300
5af7926f
CH
301 /*
302 * We need to be protected against the filesystem going from
303 * r/o to r/w or vice versa.
304 */
305 WARN_ON(!rwsem_is_locked(&sb->s_umount));
306
307 /*
308 * No point in syncing out anything if the filesystem is read-only.
309 */
310 if (sb->s_flags & MS_RDONLY)
311 return 0;
312
0dc83bd3 313 ret = __sync_filesystem(sb, 0);
c15c54f5
JK
314 if (ret < 0)
315 return ret;
0dc83bd3 316 return __sync_filesystem(sb, 1);
c15c54f5 317}
10096fb1 318EXPORT_SYMBOL(sync_filesystem);
c15c54f5 319
b3de6531 320static void sync_inodes_one_sb(struct super_block *sb, void *arg)
01a05b33 321{
95f28604 322 if (!(sb->s_flags & MS_RDONLY))
0dc83bd3 323 sync_inodes_sb(sb);
01a05b33 324}
b3de6531 325
b3de6531
JK
326static void sync_fs_one_sb(struct super_block *sb, void *arg)
327{
328 if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
329 sb->s_op->sync_fs(sb, *(int *)arg);
330}
331
d0e91b13 332static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
b3de6531 333{
d0e91b13 334 filemap_fdatawrite(bdev->bd_inode->i_mapping);
a8c7176b
JK
335}
336
d0e91b13 337static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
a8c7176b 338{
aa750fd7
JN
339 /*
340 * We keep the error status of individual mapping so that
341 * applications can catch the writeback error using fsync(2).
342 * See filemap_fdatawait_keep_errors() for details.
343 */
344 filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
c15c54f5
JK
345}
346
3beab0b4 347/*
4ea425b6
JK
348 * Sync everything. We start by waking flusher threads so that most of
349 * writeback runs on all devices in parallel. Then we sync all inodes reliably
350 * which effectively also waits for all flusher threads to finish doing
351 * writeback. At this point all data is on disk so metadata should be stable
352 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
353 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
354 * just write metadata (such as inodes or bitmaps) to block device page cache
355 * and do not sync it on their own in ->sync_fs().
3beab0b4 356 */
5cee5815 357SYSCALL_DEFINE0(sync)
cf9a2ae8 358{
b3de6531
JK
359 int nowait = 0, wait = 1;
360
0e175a18 361 wakeup_flusher_threads(0, WB_REASON_SYNC);
0dc83bd3 362 iterate_supers(sync_inodes_one_sb, NULL);
4ea425b6 363 iterate_supers(sync_fs_one_sb, &nowait);
b3de6531 364 iterate_supers(sync_fs_one_sb, &wait);
d0e91b13
JK
365 iterate_bdevs(fdatawrite_one_bdev, NULL);
366 iterate_bdevs(fdatawait_one_bdev, NULL);
cf9a2ae8
DH
367 if (unlikely(laptop_mode))
368 laptop_sync_completion();
cf9a2ae8
DH
369 return 0;
370}
371
a2a9537a
JA
372static void do_sync_work(struct work_struct *work)
373{
b3de6531
JK
374 int nowait = 0;
375
5cee5815
JK
376 /*
377 * Sync twice to reduce the possibility we skipped some inodes / pages
378 * because they were temporarily locked
379 */
b3de6531
JK
380 iterate_supers(sync_inodes_one_sb, &nowait);
381 iterate_supers(sync_fs_one_sb, &nowait);
d0e91b13 382 iterate_bdevs(fdatawrite_one_bdev, NULL);
b3de6531
JK
383 iterate_supers(sync_inodes_one_sb, &nowait);
384 iterate_supers(sync_fs_one_sb, &nowait);
d0e91b13 385 iterate_bdevs(fdatawrite_one_bdev, NULL);
5cee5815 386 printk("Emergency Sync complete\n");
a2a9537a
JA
387 kfree(work);
388}
389
cf9a2ae8
DH
390void emergency_sync(void)
391{
a2a9537a
JA
392 struct work_struct *work;
393
394 work = kmalloc(sizeof(*work), GFP_ATOMIC);
395 if (work) {
396 INIT_WORK(work, do_sync_work);
397 schedule_work(work);
398 }
cf9a2ae8
DH
399}
400
b7ed78f5
SW
401/*
402 * sync a single super
403 */
404SYSCALL_DEFINE1(syncfs, int, fd)
405{
2903ff01 406 struct fd f = fdget(fd);
b7ed78f5
SW
407 struct super_block *sb;
408 int ret;
b7ed78f5 409
2903ff01 410 if (!f.file)
b7ed78f5 411 return -EBADF;
b583043e 412 sb = f.file->f_path.dentry->d_sb;
b7ed78f5
SW
413
414 down_read(&sb->s_umount);
415 ret = sync_filesystem(sb);
416 up_read(&sb->s_umount);
417
2903ff01 418 fdput(f);
b7ed78f5
SW
419 return ret;
420}
421
4c728ef5 422/**
148f948b 423 * vfs_fsync_range - helper to sync a range of data & metadata to disk
4c728ef5 424 * @file: file to sync
148f948b
JK
425 * @start: offset in bytes of the beginning of data range to sync
426 * @end: offset in bytes of the end of data range (inclusive)
427 * @datasync: perform only datasync
4c728ef5 428 *
148f948b
JK
429 * Write back data in range @start..@end and metadata for @file to disk. If
430 * @datasync is set only metadata needed to access modified file data is
431 * written.
4c728ef5 432 */
8018ab05 433int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
cf9a2ae8 434{
0ae45f63
TT
435 struct inode *inode = file->f_mapping->host;
436
72c2d531 437 if (!file->f_op->fsync)
02c24a82 438 return -EINVAL;
0ae45f63
TT
439 if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
440 spin_lock(&inode->i_lock);
441 inode->i_state &= ~I_DIRTY_TIME;
442 spin_unlock(&inode->i_lock);
443 mark_inode_dirty_sync(inode);
444 }
02c24a82 445 return file->f_op->fsync(file, start, end, datasync);
cf9a2ae8 446}
148f948b
JK
447EXPORT_SYMBOL(vfs_fsync_range);
448
449/**
450 * vfs_fsync - perform a fsync or fdatasync on a file
451 * @file: file to sync
148f948b
JK
452 * @datasync: only perform a fdatasync operation
453 *
454 * Write back data and metadata for @file to disk. If @datasync is
455 * set only metadata needed to access modified file data is written.
148f948b 456 */
8018ab05 457int vfs_fsync(struct file *file, int datasync)
148f948b 458{
8018ab05 459 return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
148f948b 460}
4c728ef5 461EXPORT_SYMBOL(vfs_fsync);
cf9a2ae8 462
4c728ef5 463static int do_fsync(unsigned int fd, int datasync)
cf9a2ae8 464{
2903ff01 465 struct fd f = fdget(fd);
cf9a2ae8
DH
466 int ret = -EBADF;
467
2903ff01
AV
468 if (f.file) {
469 ret = vfs_fsync(f.file, datasync);
470 fdput(f);
a4f5f251 471 inc_syscfs(current);
cf9a2ae8
DH
472 }
473 return ret;
474}
475
a5f8fa9e 476SYSCALL_DEFINE1(fsync, unsigned int, fd)
cf9a2ae8 477{
4c728ef5 478 return do_fsync(fd, 0);
cf9a2ae8
DH
479}
480
a5f8fa9e 481SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
cf9a2ae8 482{
4c728ef5 483 return do_fsync(fd, 1);
cf9a2ae8
DH
484}
485
f79e2abb
AM
486/*
487 * sys_sync_file_range() permits finely controlled syncing over a segment of
488 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
489 * zero then sys_sync_file_range() will operate from offset out to EOF.
490 *
491 * The flag bits are:
492 *
493 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
494 * before performing the write.
495 *
496 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
cce77081
PM
497 * range which are not presently under writeback. Note that this may block for
498 * significant periods due to exhaustion of disk request structures.
f79e2abb
AM
499 *
500 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
501 * after performing the write.
502 *
503 * Useful combinations of the flag bits are:
504 *
505 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
506 * in the range which were dirty on entry to sys_sync_file_range() are placed
507 * under writeout. This is a start-write-for-data-integrity operation.
508 *
509 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
510 * are not presently under writeout. This is an asynchronous flush-to-disk
511 * operation. Not suitable for data integrity operations.
512 *
513 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
514 * completion of writeout of all pages in the range. This will be used after an
515 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
516 * for that operation to complete and to return the result.
517 *
518 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
519 * a traditional sync() operation. This is a write-for-data-integrity operation
520 * which will ensure that all pages in the range which were dirty on entry to
521 * sys_sync_file_range() are committed to disk.
522 *
523 *
524 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
525 * I/O errors or ENOSPC conditions and will return those to the caller, after
526 * clearing the EIO and ENOSPC flags in the address_space.
527 *
528 * It should be noted that none of these operations write out the file's
529 * metadata. So unless the application is strictly performing overwrites of
530 * already-instantiated disk blocks, there are no guarantees here that the data
531 * will be available after a crash.
532 */
4a0fd5bf
AV
533SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
534 unsigned int, flags)
f79e2abb
AM
535{
536 int ret;
2903ff01 537 struct fd f;
7a0ad10c 538 struct address_space *mapping;
f79e2abb 539 loff_t endbyte; /* inclusive */
f79e2abb
AM
540 umode_t i_mode;
541
542 ret = -EINVAL;
543 if (flags & ~VALID_FLAGS)
544 goto out;
545
546 endbyte = offset + nbytes;
547
548 if ((s64)offset < 0)
549 goto out;
550 if ((s64)endbyte < 0)
551 goto out;
552 if (endbyte < offset)
553 goto out;
554
555 if (sizeof(pgoff_t) == 4) {
556 if (offset >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
557 /*
558 * The range starts outside a 32 bit machine's
559 * pagecache addressing capabilities. Let it "succeed"
560 */
561 ret = 0;
562 goto out;
563 }
564 if (endbyte >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
565 /*
566 * Out to EOF
567 */
568 nbytes = 0;
569 }
570 }
571
572 if (nbytes == 0)
111ebb6e 573 endbyte = LLONG_MAX;
f79e2abb
AM
574 else
575 endbyte--; /* inclusive */
576
577 ret = -EBADF;
2903ff01
AV
578 f = fdget(fd);
579 if (!f.file)
f79e2abb
AM
580 goto out;
581
496ad9aa 582 i_mode = file_inode(f.file)->i_mode;
f79e2abb
AM
583 ret = -ESPIPE;
584 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
585 !S_ISLNK(i_mode))
586 goto out_put;
587
2903ff01 588 mapping = f.file->f_mapping;
7a0ad10c
CH
589 if (!mapping) {
590 ret = -EINVAL;
591 goto out_put;
592 }
593
594 ret = 0;
595 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
596 ret = filemap_fdatawait_range(mapping, offset, endbyte);
597 if (ret < 0)
598 goto out_put;
599 }
600
601 if (flags & SYNC_FILE_RANGE_WRITE) {
23d01270
JK
602 ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
603 WB_SYNC_NONE);
7a0ad10c
CH
604 if (ret < 0)
605 goto out_put;
606 }
607
608 if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
609 ret = filemap_fdatawait_range(mapping, offset, endbyte);
610
f79e2abb 611out_put:
2903ff01 612 fdput(f);
f79e2abb
AM
613out:
614 return ret;
615}
616
edd5cd4a
DW
617/* It would be nice if people remember that not all the world's an i386
618 when they introduce new system calls */
4a0fd5bf
AV
619SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
620 loff_t, offset, loff_t, nbytes)
edd5cd4a
DW
621{
622 return sys_sync_file_range(fd, offset, nbytes, flags);
623}