add toggle for disabling newly added USB devices
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
3f86a82a 56EXPORT_SYMBOL(fs_bio_set);
1da177e4 57
bb799ca0
JA
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
389d7b26 75 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 76 unsigned int new_bio_slab_max;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 99 new_bio_slab_max = bio_slab_max << 1;
389d7b26 100 new_bio_slabs = krealloc(bio_slabs,
386bc35a 101 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
386bc35a 105 bio_slab_max = new_bio_slab_max;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
9f060e22 166 mempool_free(bv, pool);
bb799ca0
JA
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
9f060e22
KO
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
1da177e4
LT
176{
177 struct bio_vec *bvl;
1da177e4 178
7ff9345f
JA
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
9f060e22 211 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 215
0a0d96b0 216 /*
7ff9345f
JA
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
0a0d96b0 220 */
7ff9345f 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 222
0a0d96b0 223 /*
d0164adc 224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 225 * is set, retry with the 1-entry mempool
0a0d96b0 226 */
7ff9345f 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
7ff9345f
JA
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
1da177e4
LT
234 return bvl;
235}
236
4254bba1 237static void __bio_free(struct bio *bio)
1da177e4 238{
4254bba1 239 bio_disassociate_task(bio);
1da177e4 240
7ba1ba12 241 if (bio_integrity(bio))
1e2a410f 242 bio_integrity_free(bio);
4254bba1 243}
7ba1ba12 244
4254bba1
KO
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
a38352e0 253 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
bb799ca0
JA
260 p -= bs->front_pad;
261
4254bba1
KO
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
3676347a
PO
267}
268
858119e1 269void bio_init(struct bio *bio)
1da177e4 270{
2b94de55 271 memset(bio, 0, sizeof(*bio));
c4cf5261 272 atomic_set(&bio->__bi_remaining, 1);
dac56212 273 atomic_set(&bio->__bi_cnt, 1);
1da177e4 274}
a112a71d 275EXPORT_SYMBOL(bio_init);
1da177e4 276
f44b48c7
KO
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
4254bba1 291 __bio_free(bio);
f44b48c7
KO
292
293 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 294 bio->bi_flags = flags;
c4cf5261 295 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
296}
297EXPORT_SYMBOL(bio_reset);
298
4246a0b6 299static void bio_chain_endio(struct bio *bio)
196d38bc 300{
4246a0b6
CH
301 struct bio *parent = bio->bi_private;
302
303 parent->bi_error = bio->bi_error;
304 bio_endio(parent);
196d38bc
KO
305 bio_put(bio);
306}
307
326e1dbb
MS
308/*
309 * Increment chain count for the bio. Make sure the CHAIN flag update
310 * is visible before the raised count.
311 */
312static inline void bio_inc_remaining(struct bio *bio)
313{
b7c44ed9 314 bio_set_flag(bio, BIO_CHAIN);
326e1dbb
MS
315 smp_mb__before_atomic();
316 atomic_inc(&bio->__bi_remaining);
317}
318
196d38bc
KO
319/**
320 * bio_chain - chain bio completions
1051a902
RD
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
196d38bc
KO
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330void bio_chain(struct bio *bio, struct bio *parent)
331{
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
c4cf5261 336 bio_inc_remaining(parent);
196d38bc
KO
337}
338EXPORT_SYMBOL(bio_chain);
339
df2cb6da
KO
340static void bio_alloc_rescue(struct work_struct *work)
341{
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
353 generic_make_request(bio);
354 }
355}
356
357static void punt_bios_to_rescuer(struct bio_set *bs)
358{
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
362 /*
363 * In order to guarantee forward progress we must punt only bios that
364 * were allocated from this bio_set; otherwise, if there was a bio on
365 * there for a stacking driver higher up in the stack, processing it
366 * could require allocating bios from this bio_set, and doing that from
367 * our own rescuer would be bad.
368 *
369 * Since bio lists are singly linked, pop them all instead of trying to
370 * remove from the middle of the list:
371 */
372
373 bio_list_init(&punt);
374 bio_list_init(&nopunt);
375
5cca175b 376 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 377 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
5cca175b 378 current->bio_list[0] = nopunt;
df2cb6da 379
5cca175b
N
380 bio_list_init(&nopunt);
381 while ((bio = bio_list_pop(&current->bio_list[1])))
382 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 current->bio_list[1] = nopunt;
df2cb6da
KO
384
385 spin_lock(&bs->rescue_lock);
386 bio_list_merge(&bs->rescue_list, &punt);
387 spin_unlock(&bs->rescue_lock);
388
389 queue_work(bs->rescue_workqueue, &bs->rescue_work);
390}
391
1da177e4
LT
392/**
393 * bio_alloc_bioset - allocate a bio for I/O
394 * @gfp_mask: the GFP_ mask given to the slab allocator
395 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 396 * @bs: the bio_set to allocate from.
1da177e4
LT
397 *
398 * Description:
3f86a82a
KO
399 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
400 * backed by the @bs's mempool.
401 *
d0164adc
MG
402 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
403 * always be able to allocate a bio. This is due to the mempool guarantees.
404 * To make this work, callers must never allocate more than 1 bio at a time
405 * from this pool. Callers that need to allocate more than 1 bio must always
406 * submit the previously allocated bio for IO before attempting to allocate
407 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 408 *
df2cb6da
KO
409 * Note that when running under generic_make_request() (i.e. any block
410 * driver), bios are not submitted until after you return - see the code in
411 * generic_make_request() that converts recursion into iteration, to prevent
412 * stack overflows.
413 *
414 * This would normally mean allocating multiple bios under
415 * generic_make_request() would be susceptible to deadlocks, but we have
416 * deadlock avoidance code that resubmits any blocked bios from a rescuer
417 * thread.
418 *
419 * However, we do not guarantee forward progress for allocations from other
420 * mempools. Doing multiple allocations from the same mempool under
421 * generic_make_request() should be avoided - instead, use bio_set's front_pad
422 * for per bio allocations.
423 *
3f86a82a
KO
424 * RETURNS:
425 * Pointer to new bio on success, NULL on failure.
426 */
dd0fc66f 427struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 428{
df2cb6da 429 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
430 unsigned front_pad;
431 unsigned inline_vecs;
451a9ebf 432 unsigned long idx = BIO_POOL_NONE;
34053979 433 struct bio_vec *bvl = NULL;
451a9ebf
TH
434 struct bio *bio;
435 void *p;
436
3f86a82a
KO
437 if (!bs) {
438 if (nr_iovecs > UIO_MAXIOV)
439 return NULL;
440
441 p = kmalloc(sizeof(struct bio) +
442 nr_iovecs * sizeof(struct bio_vec),
443 gfp_mask);
444 front_pad = 0;
445 inline_vecs = nr_iovecs;
446 } else {
d8f429e1
JN
447 /* should not use nobvec bioset for nr_iovecs > 0 */
448 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
449 return NULL;
df2cb6da
KO
450 /*
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
d0164adc
MG
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
df2cb6da
KO
469 */
470
5cca175b
N
471 if (current->bio_list &&
472 (!bio_list_empty(&current->bio_list[0]) ||
473 !bio_list_empty(&current->bio_list[1])))
d0164adc 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 475
3f86a82a 476 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 }
482
3f86a82a
KO
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
451a9ebf
TH
487 if (unlikely(!p))
488 return NULL;
1da177e4 489
3f86a82a 490 bio = p + front_pad;
34053979
IM
491 bio_init(bio);
492
3f86a82a 493 if (nr_iovecs > inline_vecs) {
9f060e22 494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
9f060e22 498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
499 }
500
34053979
IM
501 if (unlikely(!bvl))
502 goto err_free;
a38352e0 503
b7c44ed9 504 bio_set_flag(bio, BIO_OWNS_VEC);
3f86a82a
KO
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
1da177e4 507 }
3f86a82a
KO
508
509 bio->bi_pool = bs;
34053979
IM
510 bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 bio->bi_max_vecs = nr_iovecs;
34053979 512 bio->bi_io_vec = bvl;
1da177e4 513 return bio;
34053979
IM
514
515err_free:
451a9ebf 516 mempool_free(p, bs->bio_pool);
34053979 517 return NULL;
1da177e4 518}
a112a71d 519EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 520
1da177e4
LT
521void zero_fill_bio(struct bio *bio)
522{
523 unsigned long flags;
7988613b
KO
524 struct bio_vec bv;
525 struct bvec_iter iter;
1da177e4 526
7988613b
KO
527 bio_for_each_segment(bv, bio, iter) {
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
1da177e4
LT
531 bvec_kunmap_irq(data, &flags);
532 }
533}
534EXPORT_SYMBOL(zero_fill_bio);
535
536/**
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
539 *
540 * Description:
541 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
543 **/
544void bio_put(struct bio *bio)
545{
dac56212 546 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 547 bio_free(bio);
dac56212
JA
548 else {
549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550
551 /*
552 * last put frees it
553 */
554 if (atomic_dec_and_test(&bio->__bi_cnt))
555 bio_free(bio);
556 }
1da177e4 557}
a112a71d 558EXPORT_SYMBOL(bio_put);
1da177e4 559
165125e1 560inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
561{
562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 blk_recount_segments(q, bio);
564
565 return bio->bi_phys_segments;
566}
a112a71d 567EXPORT_SYMBOL(bio_phys_segments);
1da177e4 568
59d276fe
KO
569/**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581{
582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583
584 /*
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 589 bio_set_flag(bio, BIO_CLONED);
1cac41cb
MB
590#ifdef CONFIG_JOURNAL_DATA_TAG
591 bio->bi_flags |= bio_src->bi_flags & BIO_JOURNAL_TAG_MASK;
592#endif
593 bio->bi_flags |= bio_src->bi_flags & 1UL << BIO_BYPASS;
59d276fe
KO
594 bio->bi_rw = bio_src->bi_rw;
595 bio->bi_iter = bio_src->bi_iter;
596 bio->bi_io_vec = bio_src->bi_io_vec;
1cac41cb
MB
597 bio->bi_dio_inode = bio_src->bi_dio_inode;
598 bio->private_enc_mode = bio_src->private_enc_mode;
599 bio->private_algo_mode = bio_src->private_algo_mode;
600 bio->key = bio_src->key;
601 bio->key_length = bio_src->key_length;
01daea92 602 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
603}
604EXPORT_SYMBOL(__bio_clone_fast);
605
606/**
607 * bio_clone_fast - clone a bio that shares the original bio's biovec
608 * @bio: bio to clone
609 * @gfp_mask: allocation priority
610 * @bs: bio_set to allocate from
611 *
612 * Like __bio_clone_fast, only also allocates the returned bio
613 */
614struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
615{
616 struct bio *b;
617
618 b = bio_alloc_bioset(gfp_mask, 0, bs);
619 if (!b)
620 return NULL;
621
622 __bio_clone_fast(b, bio);
623
624 if (bio_integrity(bio)) {
625 int ret;
626
627 ret = bio_integrity_clone(b, bio, gfp_mask);
628
629 if (ret < 0) {
630 bio_put(b);
631 return NULL;
632 }
633 }
634
635 return b;
636}
637EXPORT_SYMBOL(bio_clone_fast);
638
1da177e4 639/**
bdb53207
KO
640 * bio_clone_bioset - clone a bio
641 * @bio_src: bio to clone
1da177e4 642 * @gfp_mask: allocation priority
bf800ef1 643 * @bs: bio_set to allocate from
1da177e4 644 *
bdb53207
KO
645 * Clone bio. Caller will own the returned bio, but not the actual data it
646 * points to. Reference count of returned bio will be one.
1da177e4 647 */
bdb53207 648struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 649 struct bio_set *bs)
1da177e4 650{
bdb53207
KO
651 struct bvec_iter iter;
652 struct bio_vec bv;
653 struct bio *bio;
1da177e4 654
bdb53207
KO
655 /*
656 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
657 * bio_src->bi_io_vec to bio->bi_io_vec.
658 *
659 * We can't do that anymore, because:
660 *
661 * - The point of cloning the biovec is to produce a bio with a biovec
662 * the caller can modify: bi_idx and bi_bvec_done should be 0.
663 *
664 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
665 * we tried to clone the whole thing bio_alloc_bioset() would fail.
666 * But the clone should succeed as long as the number of biovecs we
667 * actually need to allocate is fewer than BIO_MAX_PAGES.
668 *
669 * - Lastly, bi_vcnt should not be looked at or relied upon by code
670 * that does not own the bio - reason being drivers don't use it for
671 * iterating over the biovec anymore, so expecting it to be kept up
672 * to date (i.e. for clones that share the parent biovec) is just
673 * asking for trouble and would force extra work on
674 * __bio_clone_fast() anyways.
675 */
676
8423ae3d 677 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 678 if (!bio)
7ba1ba12
MP
679 return NULL;
680
bdb53207
KO
681 bio->bi_bdev = bio_src->bi_bdev;
682 bio->bi_rw = bio_src->bi_rw;
683 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
684 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
1cac41cb
MB
685 bio->bi_dio_inode = bio_src->bi_dio_inode;
686#ifdef CONFIG_JOURNAL_DATA_TAG
687 bio->bi_flags |= bio_src->bi_flags & BIO_JOURNAL_TAG_MASK;
688#endif
689 bio->bi_flags |= bio_src->bi_flags & 1UL << BIO_BYPASS;
7ba1ba12 690
8423ae3d
KO
691 if (bio->bi_rw & REQ_DISCARD)
692 goto integrity_clone;
693
694 if (bio->bi_rw & REQ_WRITE_SAME) {
695 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
696 goto integrity_clone;
697 }
698
bdb53207
KO
699 bio_for_each_segment(bv, bio_src, iter)
700 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 701
8423ae3d 702integrity_clone:
bdb53207
KO
703 if (bio_integrity(bio_src)) {
704 int ret;
7ba1ba12 705
bdb53207 706 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 707 if (ret < 0) {
bdb53207 708 bio_put(bio);
7ba1ba12 709 return NULL;
059ea331 710 }
3676347a 711 }
1da177e4 712
01daea92
PV
713 bio_clone_blkcg_association(bio, bio_src);
714
bdb53207 715 return bio;
1da177e4 716}
bf800ef1 717EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
718
719/**
c66a14d0
KO
720 * bio_add_pc_page - attempt to add page to bio
721 * @q: the target queue
722 * @bio: destination bio
723 * @page: page to add
724 * @len: vec entry length
725 * @offset: vec entry offset
1da177e4 726 *
c66a14d0
KO
727 * Attempt to add a page to the bio_vec maplist. This can fail for a
728 * number of reasons, such as the bio being full or target block device
729 * limitations. The target block device must allow bio's up to PAGE_SIZE,
730 * so it is always possible to add a single page to an empty bio.
731 *
732 * This should only be used by REQ_PC bios.
1da177e4 733 */
c66a14d0
KO
734int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
735 *page, unsigned int len, unsigned int offset)
1da177e4
LT
736{
737 int retried_segments = 0;
738 struct bio_vec *bvec;
739
740 /*
741 * cloned bio must not modify vec list
742 */
743 if (unlikely(bio_flagged(bio, BIO_CLONED)))
744 return 0;
745
c66a14d0 746 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
747 return 0;
748
80cfd548
JA
749 /*
750 * For filesystems with a blocksize smaller than the pagesize
751 * we will often be called with the same page as last time and
752 * a consecutive offset. Optimize this special case.
753 */
754 if (bio->bi_vcnt > 0) {
755 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
756
757 if (page == prev->bv_page &&
758 offset == prev->bv_offset + prev->bv_len) {
759 prev->bv_len += len;
fcbf6a08 760 bio->bi_iter.bi_size += len;
80cfd548
JA
761 goto done;
762 }
66cb45aa
JA
763
764 /*
765 * If the queue doesn't support SG gaps and adding this
766 * offset would create a gap, disallow it.
767 */
03100aad 768 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 769 return 0;
80cfd548
JA
770 }
771
772 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
773 return 0;
774
775 /*
fcbf6a08
ML
776 * setup the new entry, we might clear it again later if we
777 * cannot add the page
778 */
779 bvec = &bio->bi_io_vec[bio->bi_vcnt];
780 bvec->bv_page = page;
781 bvec->bv_len = len;
782 bvec->bv_offset = offset;
783 bio->bi_vcnt++;
784 bio->bi_phys_segments++;
785 bio->bi_iter.bi_size += len;
786
787 /*
788 * Perform a recount if the number of segments is greater
789 * than queue_max_segments(q).
1da177e4
LT
790 */
791
fcbf6a08 792 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
793
794 if (retried_segments)
fcbf6a08 795 goto failed;
1da177e4
LT
796
797 retried_segments = 1;
798 blk_recount_segments(q, bio);
799 }
800
1da177e4 801 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 802 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 803 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 804
80cfd548 805 done:
1da177e4 806 return len;
fcbf6a08
ML
807
808 failed:
809 bvec->bv_page = NULL;
810 bvec->bv_len = 0;
811 bvec->bv_offset = 0;
812 bio->bi_vcnt--;
813 bio->bi_iter.bi_size -= len;
814 blk_recount_segments(q, bio);
815 return 0;
1da177e4 816}
a112a71d 817EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 818
1da177e4
LT
819/**
820 * bio_add_page - attempt to add page to bio
821 * @bio: destination bio
822 * @page: page to add
823 * @len: vec entry length
824 * @offset: vec entry offset
825 *
c66a14d0
KO
826 * Attempt to add a page to the bio_vec maplist. This will only fail
827 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 828 */
c66a14d0
KO
829int bio_add_page(struct bio *bio, struct page *page,
830 unsigned int len, unsigned int offset)
1da177e4 831{
c66a14d0
KO
832 struct bio_vec *bv;
833
834 /*
835 * cloned bio must not modify vec list
836 */
837 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
838 return 0;
762380ad 839
c66a14d0
KO
840 /*
841 * For filesystems with a blocksize smaller than the pagesize
842 * we will often be called with the same page as last time and
843 * a consecutive offset. Optimize this special case.
844 */
845 if (bio->bi_vcnt > 0) {
846 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 847
c66a14d0
KO
848 if (page == bv->bv_page &&
849 offset == bv->bv_offset + bv->bv_len) {
850 bv->bv_len += len;
851 goto done;
852 }
853 }
854
855 if (bio->bi_vcnt >= bio->bi_max_vecs)
856 return 0;
857
858 bv = &bio->bi_io_vec[bio->bi_vcnt];
859 bv->bv_page = page;
860 bv->bv_len = len;
861 bv->bv_offset = offset;
862
863 bio->bi_vcnt++;
864done:
865 bio->bi_iter.bi_size += len;
866 return len;
1da177e4 867}
a112a71d 868EXPORT_SYMBOL(bio_add_page);
1da177e4 869
9e882242
KO
870struct submit_bio_ret {
871 struct completion event;
872 int error;
873};
874
4246a0b6 875static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
876{
877 struct submit_bio_ret *ret = bio->bi_private;
878
4246a0b6 879 ret->error = bio->bi_error;
9e882242
KO
880 complete(&ret->event);
881}
882
883/**
884 * submit_bio_wait - submit a bio, and wait until it completes
885 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
886 * @bio: The &struct bio which describes the I/O
887 *
888 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
889 * bio_endio() on failure.
890 */
891int submit_bio_wait(int rw, struct bio *bio)
892{
893 struct submit_bio_ret ret;
894
895 rw |= REQ_SYNC;
896 init_completion(&ret.event);
897 bio->bi_private = &ret;
898 bio->bi_end_io = submit_bio_wait_endio;
899 submit_bio(rw, bio);
900 wait_for_completion(&ret.event);
901
902 return ret.error;
903}
904EXPORT_SYMBOL(submit_bio_wait);
905
054bdf64
KO
906/**
907 * bio_advance - increment/complete a bio by some number of bytes
908 * @bio: bio to advance
909 * @bytes: number of bytes to complete
910 *
911 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
912 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
913 * be updated on the last bvec as well.
914 *
915 * @bio will then represent the remaining, uncompleted portion of the io.
916 */
917void bio_advance(struct bio *bio, unsigned bytes)
918{
919 if (bio_integrity(bio))
920 bio_integrity_advance(bio, bytes);
921
4550dd6c 922 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
923}
924EXPORT_SYMBOL(bio_advance);
925
a0787606
KO
926/**
927 * bio_alloc_pages - allocates a single page for each bvec in a bio
928 * @bio: bio to allocate pages for
929 * @gfp_mask: flags for allocation
930 *
931 * Allocates pages up to @bio->bi_vcnt.
932 *
933 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
934 * freed.
935 */
936int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
937{
938 int i;
939 struct bio_vec *bv;
940
941 bio_for_each_segment_all(bv, bio, i) {
942 bv->bv_page = alloc_page(gfp_mask);
943 if (!bv->bv_page) {
944 while (--bv >= bio->bi_io_vec)
945 __free_page(bv->bv_page);
946 return -ENOMEM;
947 }
948 }
949
950 return 0;
951}
952EXPORT_SYMBOL(bio_alloc_pages);
953
16ac3d63
KO
954/**
955 * bio_copy_data - copy contents of data buffers from one chain of bios to
956 * another
957 * @src: source bio list
958 * @dst: destination bio list
959 *
960 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
961 * @src and @dst as linked lists of bios.
962 *
963 * Stops when it reaches the end of either @src or @dst - that is, copies
964 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
965 */
966void bio_copy_data(struct bio *dst, struct bio *src)
967{
1cb9dda4
KO
968 struct bvec_iter src_iter, dst_iter;
969 struct bio_vec src_bv, dst_bv;
16ac3d63 970 void *src_p, *dst_p;
1cb9dda4 971 unsigned bytes;
16ac3d63 972
1cb9dda4
KO
973 src_iter = src->bi_iter;
974 dst_iter = dst->bi_iter;
16ac3d63
KO
975
976 while (1) {
1cb9dda4
KO
977 if (!src_iter.bi_size) {
978 src = src->bi_next;
979 if (!src)
980 break;
16ac3d63 981
1cb9dda4 982 src_iter = src->bi_iter;
16ac3d63
KO
983 }
984
1cb9dda4
KO
985 if (!dst_iter.bi_size) {
986 dst = dst->bi_next;
987 if (!dst)
988 break;
16ac3d63 989
1cb9dda4 990 dst_iter = dst->bi_iter;
16ac3d63
KO
991 }
992
1cb9dda4
KO
993 src_bv = bio_iter_iovec(src, src_iter);
994 dst_bv = bio_iter_iovec(dst, dst_iter);
995
996 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 997
1cb9dda4
KO
998 src_p = kmap_atomic(src_bv.bv_page);
999 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1000
1cb9dda4
KO
1001 memcpy(dst_p + dst_bv.bv_offset,
1002 src_p + src_bv.bv_offset,
16ac3d63
KO
1003 bytes);
1004
1005 kunmap_atomic(dst_p);
1006 kunmap_atomic(src_p);
1007
1cb9dda4
KO
1008 bio_advance_iter(src, &src_iter, bytes);
1009 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1010 }
1011}
1012EXPORT_SYMBOL(bio_copy_data);
1013
1da177e4 1014struct bio_map_data {
152e283f 1015 int is_our_pages;
26e49cfc
KO
1016 struct iov_iter iter;
1017 struct iovec iov[];
1da177e4
LT
1018};
1019
7410b3c6 1020static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1021 gfp_t gfp_mask)
1da177e4 1022{
f3f63c1c
JA
1023 if (iov_count > UIO_MAXIOV)
1024 return NULL;
1da177e4 1025
c8db4448 1026 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1027 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1028}
1029
9124d3fe
DP
1030/**
1031 * bio_copy_from_iter - copy all pages from iov_iter to bio
1032 * @bio: The &struct bio which describes the I/O as destination
1033 * @iter: iov_iter as source
1034 *
1035 * Copy all pages from iov_iter to bio.
1036 * Returns 0 on success, or error on failure.
1037 */
1038static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1039{
9124d3fe 1040 int i;
c5dec1c3 1041 struct bio_vec *bvec;
c5dec1c3 1042
d74c6d51 1043 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1044 ssize_t ret;
c5dec1c3 1045
9124d3fe
DP
1046 ret = copy_page_from_iter(bvec->bv_page,
1047 bvec->bv_offset,
1048 bvec->bv_len,
1049 &iter);
1050
1051 if (!iov_iter_count(&iter))
1052 break;
1053
1054 if (ret < bvec->bv_len)
1055 return -EFAULT;
c5dec1c3
FT
1056 }
1057
9124d3fe
DP
1058 return 0;
1059}
1060
1061/**
1062 * bio_copy_to_iter - copy all pages from bio to iov_iter
1063 * @bio: The &struct bio which describes the I/O as source
1064 * @iter: iov_iter as destination
1065 *
1066 * Copy all pages from bio to iov_iter.
1067 * Returns 0 on success, or error on failure.
1068 */
1069static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1070{
1071 int i;
1072 struct bio_vec *bvec;
1073
1074 bio_for_each_segment_all(bvec, bio, i) {
1075 ssize_t ret;
1076
1077 ret = copy_page_to_iter(bvec->bv_page,
1078 bvec->bv_offset,
1079 bvec->bv_len,
1080 &iter);
1081
1082 if (!iov_iter_count(&iter))
1083 break;
1084
1085 if (ret < bvec->bv_len)
1086 return -EFAULT;
1087 }
1088
1089 return 0;
c5dec1c3
FT
1090}
1091
1dfa0f68
CH
1092static void bio_free_pages(struct bio *bio)
1093{
1094 struct bio_vec *bvec;
1095 int i;
1096
1097 bio_for_each_segment_all(bvec, bio, i)
1098 __free_page(bvec->bv_page);
1099}
1100
1da177e4
LT
1101/**
1102 * bio_uncopy_user - finish previously mapped bio
1103 * @bio: bio being terminated
1104 *
ddad8dd0 1105 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1106 * to user space in case of a read.
1107 */
1108int bio_uncopy_user(struct bio *bio)
1109{
1110 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1111 int ret = 0;
1da177e4 1112
35dc2483
RD
1113 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1114 /*
1115 * if we're in a workqueue, the request is orphaned, so
3e643b5c
HR
1116 * don't copy into a random user address space, just free
1117 * and return -EINTR so user space doesn't expect any data.
35dc2483 1118 */
3e643b5c
HR
1119 if (!current->mm)
1120 ret = -EINTR;
1121 else if (bio_data_dir(bio) == READ)
9124d3fe 1122 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1123 if (bmd->is_our_pages)
1124 bio_free_pages(bio);
35dc2483 1125 }
c8db4448 1126 kfree(bmd);
1da177e4
LT
1127 bio_put(bio);
1128 return ret;
1129}
a112a71d 1130EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1131
1132/**
c5dec1c3 1133 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1134 * @q: destination block queue
1135 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1136 * @iter: iovec iterator
1137 * @gfp_mask: memory allocation flags
1da177e4
LT
1138 *
1139 * Prepares and returns a bio for indirect user io, bouncing data
1140 * to/from kernel pages as necessary. Must be paired with
1141 * call bio_uncopy_user() on io completion.
1142 */
152e283f
FT
1143struct bio *bio_copy_user_iov(struct request_queue *q,
1144 struct rq_map_data *map_data,
26e49cfc
KO
1145 const struct iov_iter *iter,
1146 gfp_t gfp_mask)
1da177e4 1147{
1da177e4 1148 struct bio_map_data *bmd;
1da177e4
LT
1149 struct page *page;
1150 struct bio *bio;
1151 int i, ret;
c5dec1c3 1152 int nr_pages = 0;
26e49cfc 1153 unsigned int len = iter->count;
56c451f4 1154 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1155
26e49cfc 1156 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1157 unsigned long uaddr;
1158 unsigned long end;
1159 unsigned long start;
1160
26e49cfc
KO
1161 uaddr = (unsigned long) iter->iov[i].iov_base;
1162 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1163 >> PAGE_SHIFT;
c5dec1c3
FT
1164 start = uaddr >> PAGE_SHIFT;
1165
cb4644ca
JA
1166 /*
1167 * Overflow, abort
1168 */
1169 if (end < start)
1170 return ERR_PTR(-EINVAL);
1171
c5dec1c3 1172 nr_pages += end - start;
c5dec1c3
FT
1173 }
1174
69838727
FT
1175 if (offset)
1176 nr_pages++;
1177
26e49cfc 1178 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1179 if (!bmd)
1180 return ERR_PTR(-ENOMEM);
1181
26e49cfc
KO
1182 /*
1183 * We need to do a deep copy of the iov_iter including the iovecs.
1184 * The caller provided iov might point to an on-stack or otherwise
1185 * shortlived one.
1186 */
1187 bmd->is_our_pages = map_data ? 0 : 1;
1188 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1189 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1190 iter->nr_segs, iter->count);
1191
1da177e4 1192 ret = -ENOMEM;
a9e9dc24 1193 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1194 if (!bio)
1195 goto out_bmd;
1196
26e49cfc 1197 if (iter->type & WRITE)
7b6d91da 1198 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1199
1200 ret = 0;
56c451f4
FT
1201
1202 if (map_data) {
e623ddb4 1203 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1204 i = map_data->offset / PAGE_SIZE;
1205 }
1da177e4 1206 while (len) {
e623ddb4 1207 unsigned int bytes = PAGE_SIZE;
1da177e4 1208
56c451f4
FT
1209 bytes -= offset;
1210
1da177e4
LT
1211 if (bytes > len)
1212 bytes = len;
1213
152e283f 1214 if (map_data) {
e623ddb4 1215 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1216 ret = -ENOMEM;
1217 break;
1218 }
e623ddb4
FT
1219
1220 page = map_data->pages[i / nr_pages];
1221 page += (i % nr_pages);
1222
1223 i++;
1224 } else {
152e283f 1225 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1226 if (!page) {
1227 ret = -ENOMEM;
1228 break;
1229 }
1da177e4
LT
1230 }
1231
56c451f4 1232 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1233 break;
1da177e4
LT
1234
1235 len -= bytes;
56c451f4 1236 offset = 0;
1da177e4
LT
1237 }
1238
1239 if (ret)
1240 goto cleanup;
1241
1242 /*
1243 * success
1244 */
26e49cfc 1245 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1246 (map_data && map_data->from_user)) {
9124d3fe 1247 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1248 if (ret)
1249 goto cleanup;
1da177e4
LT
1250 }
1251
26e49cfc 1252 bio->bi_private = bmd;
1da177e4
LT
1253 return bio;
1254cleanup:
152e283f 1255 if (!map_data)
1dfa0f68 1256 bio_free_pages(bio);
1da177e4
LT
1257 bio_put(bio);
1258out_bmd:
c8db4448 1259 kfree(bmd);
1da177e4
LT
1260 return ERR_PTR(ret);
1261}
1262
37f19e57
CH
1263/**
1264 * bio_map_user_iov - map user iovec into bio
1265 * @q: the struct request_queue for the bio
1266 * @iter: iovec iterator
1267 * @gfp_mask: memory allocation flags
1268 *
1269 * Map the user space address into a bio suitable for io to a block
1270 * device. Returns an error pointer in case of error.
1271 */
1272struct bio *bio_map_user_iov(struct request_queue *q,
1273 const struct iov_iter *iter,
1274 gfp_t gfp_mask)
1da177e4 1275{
26e49cfc 1276 int j;
f1970baf 1277 int nr_pages = 0;
1da177e4
LT
1278 struct page **pages;
1279 struct bio *bio;
f1970baf
JB
1280 int cur_page = 0;
1281 int ret, offset;
26e49cfc
KO
1282 struct iov_iter i;
1283 struct iovec iov;
047a7bb1 1284 struct bio_vec *bvec;
1da177e4 1285
26e49cfc
KO
1286 iov_for_each(iov, i, *iter) {
1287 unsigned long uaddr = (unsigned long) iov.iov_base;
1288 unsigned long len = iov.iov_len;
f1970baf
JB
1289 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290 unsigned long start = uaddr >> PAGE_SHIFT;
1291
cb4644ca
JA
1292 /*
1293 * Overflow, abort
1294 */
1295 if (end < start)
1296 return ERR_PTR(-EINVAL);
1297
f1970baf
JB
1298 nr_pages += end - start;
1299 /*
ad2d7225 1300 * buffer must be aligned to at least hardsector size for now
f1970baf 1301 */
ad2d7225 1302 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1303 return ERR_PTR(-EINVAL);
1304 }
1305
1306 if (!nr_pages)
1da177e4
LT
1307 return ERR_PTR(-EINVAL);
1308
a9e9dc24 1309 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1310 if (!bio)
1311 return ERR_PTR(-ENOMEM);
1312
1313 ret = -ENOMEM;
a3bce90e 1314 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1315 if (!pages)
1316 goto out;
1317
26e49cfc
KO
1318 iov_for_each(iov, i, *iter) {
1319 unsigned long uaddr = (unsigned long) iov.iov_base;
1320 unsigned long len = iov.iov_len;
f1970baf
JB
1321 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1322 unsigned long start = uaddr >> PAGE_SHIFT;
1323 const int local_nr_pages = end - start;
1324 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1325
f5dd33c4 1326 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1327 (iter->type & WRITE) != WRITE,
1328 &pages[cur_page]);
047a7bb1
AV
1329 if (unlikely(ret < local_nr_pages)) {
1330 for (j = cur_page; j < page_limit; j++) {
1331 if (!pages[j])
1332 break;
1333 put_page(pages[j]);
1334 }
99172157 1335 ret = -EFAULT;
f1970baf 1336 goto out_unmap;
99172157 1337 }
f1970baf
JB
1338
1339 offset = uaddr & ~PAGE_MASK;
1340 for (j = cur_page; j < page_limit; j++) {
1341 unsigned int bytes = PAGE_SIZE - offset;
399c4609 1342 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf
JB
1343
1344 if (len <= 0)
1345 break;
1346
1347 if (bytes > len)
1348 bytes = len;
1349
1350 /*
1351 * sorry...
1352 */
defd94b7
MC
1353 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1354 bytes)
f1970baf
JB
1355 break;
1356
399c4609
VM
1357 /*
1358 * check if vector was merged with previous
1359 * drop page reference if needed
1360 */
1361 if (bio->bi_vcnt == prev_bi_vcnt)
1362 put_page(pages[j]);
1363
f1970baf
JB
1364 len -= bytes;
1365 offset = 0;
1366 }
1da177e4 1367
f1970baf 1368 cur_page = j;
1da177e4 1369 /*
f1970baf 1370 * release the pages we didn't map into the bio, if any
1da177e4 1371 */
f1970baf
JB
1372 while (j < page_limit)
1373 page_cache_release(pages[j++]);
1da177e4
LT
1374 }
1375
1da177e4
LT
1376 kfree(pages);
1377
1378 /*
1379 * set data direction, and check if mapped pages need bouncing
1380 */
26e49cfc 1381 if (iter->type & WRITE)
7b6d91da 1382 bio->bi_rw |= REQ_WRITE;
1da177e4 1383
b7c44ed9 1384 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1385
1386 /*
1387 * subtle -- if __bio_map_user() ended up bouncing a bio,
1388 * it would normally disappear when its bi_end_io is run.
1389 * however, we need it for the unmap, so grab an extra
1390 * reference to it
1391 */
1392 bio_get(bio);
1da177e4 1393 return bio;
f1970baf
JB
1394
1395 out_unmap:
047a7bb1
AV
1396 bio_for_each_segment_all(bvec, bio, j) {
1397 put_page(bvec->bv_page);
f1970baf
JB
1398 }
1399 out:
1da177e4
LT
1400 kfree(pages);
1401 bio_put(bio);
1402 return ERR_PTR(ret);
1403}
1404
1da177e4
LT
1405static void __bio_unmap_user(struct bio *bio)
1406{
1407 struct bio_vec *bvec;
1408 int i;
1409
1410 /*
1411 * make sure we dirty pages we wrote to
1412 */
d74c6d51 1413 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1414 if (bio_data_dir(bio) == READ)
1415 set_page_dirty_lock(bvec->bv_page);
1416
1417 page_cache_release(bvec->bv_page);
1418 }
1419
1420 bio_put(bio);
1421}
1422
1423/**
1424 * bio_unmap_user - unmap a bio
1425 * @bio: the bio being unmapped
1426 *
1427 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1428 * a process context.
1429 *
1430 * bio_unmap_user() may sleep.
1431 */
1432void bio_unmap_user(struct bio *bio)
1433{
1434 __bio_unmap_user(bio);
1435 bio_put(bio);
1436}
a112a71d 1437EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1438
4246a0b6 1439static void bio_map_kern_endio(struct bio *bio)
b823825e 1440{
b823825e 1441 bio_put(bio);
b823825e
JA
1442}
1443
75c72b83
CH
1444/**
1445 * bio_map_kern - map kernel address into bio
1446 * @q: the struct request_queue for the bio
1447 * @data: pointer to buffer to map
1448 * @len: length in bytes
1449 * @gfp_mask: allocation flags for bio allocation
1450 *
1451 * Map the kernel address into a bio suitable for io to a block
1452 * device. Returns an error pointer in case of error.
1453 */
1454struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1455 gfp_t gfp_mask)
df46b9a4
MC
1456{
1457 unsigned long kaddr = (unsigned long)data;
1458 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1459 unsigned long start = kaddr >> PAGE_SHIFT;
1460 const int nr_pages = end - start;
1461 int offset, i;
1462 struct bio *bio;
1463
a9e9dc24 1464 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1465 if (!bio)
1466 return ERR_PTR(-ENOMEM);
1467
1468 offset = offset_in_page(kaddr);
1469 for (i = 0; i < nr_pages; i++) {
1470 unsigned int bytes = PAGE_SIZE - offset;
1471
1472 if (len <= 0)
1473 break;
1474
1475 if (bytes > len)
1476 bytes = len;
1477
defd94b7 1478 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1479 offset) < bytes) {
1480 /* we don't support partial mappings */
1481 bio_put(bio);
1482 return ERR_PTR(-EINVAL);
1483 }
df46b9a4
MC
1484
1485 data += bytes;
1486 len -= bytes;
1487 offset = 0;
1488 }
1489
b823825e 1490 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1491 return bio;
1492}
a112a71d 1493EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1494
4246a0b6 1495static void bio_copy_kern_endio(struct bio *bio)
68154e90 1496{
1dfa0f68
CH
1497 bio_free_pages(bio);
1498 bio_put(bio);
1499}
1500
4246a0b6 1501static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1502{
42d2683a 1503 char *p = bio->bi_private;
1dfa0f68 1504 struct bio_vec *bvec;
68154e90
FT
1505 int i;
1506
d74c6d51 1507 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1508 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1509 p += bvec->bv_len;
68154e90
FT
1510 }
1511
4246a0b6 1512 bio_copy_kern_endio(bio);
68154e90
FT
1513}
1514
1515/**
1516 * bio_copy_kern - copy kernel address into bio
1517 * @q: the struct request_queue for the bio
1518 * @data: pointer to buffer to copy
1519 * @len: length in bytes
1520 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1521 * @reading: data direction is READ
68154e90
FT
1522 *
1523 * copy the kernel address into a bio suitable for io to a block
1524 * device. Returns an error pointer in case of error.
1525 */
1526struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1527 gfp_t gfp_mask, int reading)
1528{
42d2683a
CH
1529 unsigned long kaddr = (unsigned long)data;
1530 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1531 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1532 struct bio *bio;
1533 void *p = data;
1dfa0f68 1534 int nr_pages = 0;
68154e90 1535
42d2683a
CH
1536 /*
1537 * Overflow, abort
1538 */
1539 if (end < start)
1540 return ERR_PTR(-EINVAL);
68154e90 1541
42d2683a
CH
1542 nr_pages = end - start;
1543 bio = bio_kmalloc(gfp_mask, nr_pages);
1544 if (!bio)
1545 return ERR_PTR(-ENOMEM);
68154e90 1546
42d2683a
CH
1547 while (len) {
1548 struct page *page;
1549 unsigned int bytes = PAGE_SIZE;
68154e90 1550
42d2683a
CH
1551 if (bytes > len)
1552 bytes = len;
1553
1554 page = alloc_page(q->bounce_gfp | gfp_mask);
1555 if (!page)
1556 goto cleanup;
1557
1558 if (!reading)
1559 memcpy(page_address(page), p, bytes);
1560
1561 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1562 break;
1563
1564 len -= bytes;
1565 p += bytes;
68154e90
FT
1566 }
1567
1dfa0f68
CH
1568 if (reading) {
1569 bio->bi_end_io = bio_copy_kern_endio_read;
1570 bio->bi_private = data;
1571 } else {
1572 bio->bi_end_io = bio_copy_kern_endio;
42d2683a 1573 bio->bi_rw |= REQ_WRITE;
1dfa0f68 1574 }
76029ff3 1575
68154e90 1576 return bio;
42d2683a
CH
1577
1578cleanup:
1dfa0f68 1579 bio_free_pages(bio);
42d2683a
CH
1580 bio_put(bio);
1581 return ERR_PTR(-ENOMEM);
68154e90 1582}
a112a71d 1583EXPORT_SYMBOL(bio_copy_kern);
68154e90 1584
1da177e4
LT
1585/*
1586 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1587 * for performing direct-IO in BIOs.
1588 *
1589 * The problem is that we cannot run set_page_dirty() from interrupt context
1590 * because the required locks are not interrupt-safe. So what we can do is to
1591 * mark the pages dirty _before_ performing IO. And in interrupt context,
1592 * check that the pages are still dirty. If so, fine. If not, redirty them
1593 * in process context.
1594 *
1595 * We special-case compound pages here: normally this means reads into hugetlb
1596 * pages. The logic in here doesn't really work right for compound pages
1597 * because the VM does not uniformly chase down the head page in all cases.
1598 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1599 * handle them at all. So we skip compound pages here at an early stage.
1600 *
1601 * Note that this code is very hard to test under normal circumstances because
1602 * direct-io pins the pages with get_user_pages(). This makes
1603 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1604 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1605 * pagecache.
1606 *
1607 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1608 * deferred bio dirtying paths.
1609 */
1610
1611/*
1612 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1613 */
1614void bio_set_pages_dirty(struct bio *bio)
1615{
cb34e057 1616 struct bio_vec *bvec;
1da177e4
LT
1617 int i;
1618
cb34e057
KO
1619 bio_for_each_segment_all(bvec, bio, i) {
1620 struct page *page = bvec->bv_page;
1da177e4
LT
1621
1622 if (page && !PageCompound(page))
1623 set_page_dirty_lock(page);
1624 }
1625}
1626
86b6c7a7 1627static void bio_release_pages(struct bio *bio)
1da177e4 1628{
cb34e057 1629 struct bio_vec *bvec;
1da177e4
LT
1630 int i;
1631
cb34e057
KO
1632 bio_for_each_segment_all(bvec, bio, i) {
1633 struct page *page = bvec->bv_page;
1da177e4
LT
1634
1635 if (page)
1636 put_page(page);
1637 }
1638}
1639
1640/*
1641 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1642 * If they are, then fine. If, however, some pages are clean then they must
1643 * have been written out during the direct-IO read. So we take another ref on
1644 * the BIO and the offending pages and re-dirty the pages in process context.
1645 *
1646 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1647 * here on. It will run one page_cache_release() against each page and will
1648 * run one bio_put() against the BIO.
1649 */
1650
65f27f38 1651static void bio_dirty_fn(struct work_struct *work);
1da177e4 1652
65f27f38 1653static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1654static DEFINE_SPINLOCK(bio_dirty_lock);
1655static struct bio *bio_dirty_list;
1656
1657/*
1658 * This runs in process context
1659 */
65f27f38 1660static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1661{
1662 unsigned long flags;
1663 struct bio *bio;
1664
1665 spin_lock_irqsave(&bio_dirty_lock, flags);
1666 bio = bio_dirty_list;
1667 bio_dirty_list = NULL;
1668 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1669
1670 while (bio) {
1671 struct bio *next = bio->bi_private;
1672
1673 bio_set_pages_dirty(bio);
1674 bio_release_pages(bio);
1675 bio_put(bio);
1676 bio = next;
1677 }
1678}
1679
1680void bio_check_pages_dirty(struct bio *bio)
1681{
cb34e057 1682 struct bio_vec *bvec;
1da177e4
LT
1683 int nr_clean_pages = 0;
1684 int i;
1685
cb34e057
KO
1686 bio_for_each_segment_all(bvec, bio, i) {
1687 struct page *page = bvec->bv_page;
1da177e4
LT
1688
1689 if (PageDirty(page) || PageCompound(page)) {
1690 page_cache_release(page);
cb34e057 1691 bvec->bv_page = NULL;
1da177e4
LT
1692 } else {
1693 nr_clean_pages++;
1694 }
1695 }
1696
1697 if (nr_clean_pages) {
1698 unsigned long flags;
1699
1700 spin_lock_irqsave(&bio_dirty_lock, flags);
1701 bio->bi_private = bio_dirty_list;
1702 bio_dirty_list = bio;
1703 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1704 schedule_work(&bio_dirty_work);
1705 } else {
1706 bio_put(bio);
1707 }
1708}
1709
394ffa50
GZ
1710void generic_start_io_acct(int rw, unsigned long sectors,
1711 struct hd_struct *part)
1712{
1713 int cpu = part_stat_lock();
1714
1715 part_round_stats(cpu, part);
1716 part_stat_inc(cpu, part, ios[rw]);
1717 part_stat_add(cpu, part, sectors[rw], sectors);
1718 part_inc_in_flight(part, rw);
1719
1720 part_stat_unlock();
1721}
1722EXPORT_SYMBOL(generic_start_io_acct);
1723
1724void generic_end_io_acct(int rw, struct hd_struct *part,
1725 unsigned long start_time)
1726{
1727 unsigned long duration = jiffies - start_time;
1728 int cpu = part_stat_lock();
1729
1730 part_stat_add(cpu, part, ticks[rw], duration);
1731 part_round_stats(cpu, part);
1732 part_dec_in_flight(part, rw);
1733
1734 part_stat_unlock();
1735}
1736EXPORT_SYMBOL(generic_end_io_acct);
1737
2d4dc890
IL
1738#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1739void bio_flush_dcache_pages(struct bio *bi)
1740{
7988613b
KO
1741 struct bio_vec bvec;
1742 struct bvec_iter iter;
2d4dc890 1743
7988613b
KO
1744 bio_for_each_segment(bvec, bi, iter)
1745 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1746}
1747EXPORT_SYMBOL(bio_flush_dcache_pages);
1748#endif
1749
c4cf5261
JA
1750static inline bool bio_remaining_done(struct bio *bio)
1751{
1752 /*
1753 * If we're not chaining, then ->__bi_remaining is always 1 and
1754 * we always end io on the first invocation.
1755 */
1756 if (!bio_flagged(bio, BIO_CHAIN))
1757 return true;
1758
1759 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1760
326e1dbb 1761 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1762 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1763 return true;
326e1dbb 1764 }
c4cf5261
JA
1765
1766 return false;
1767}
1768
1da177e4
LT
1769/**
1770 * bio_endio - end I/O on a bio
1771 * @bio: bio
1da177e4
LT
1772 *
1773 * Description:
4246a0b6
CH
1774 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1775 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1776 * bio unless they own it and thus know that it has an end_io function.
1da177e4 1777 **/
4246a0b6 1778void bio_endio(struct bio *bio)
1da177e4 1779{
196d38bc 1780 while (bio) {
c4cf5261
JA
1781 if (unlikely(!bio_remaining_done(bio)))
1782 break;
1da177e4 1783
196d38bc
KO
1784 /*
1785 * Need to have a real endio function for chained bios,
1786 * otherwise various corner cases will break (like stacking
1787 * block devices that save/restore bi_end_io) - however, we want
1788 * to avoid unbounded recursion and blowing the stack. Tail call
1789 * optimization would handle this, but compiling with frame
1790 * pointers also disables gcc's sibling call optimization.
1791 */
1792 if (bio->bi_end_io == bio_chain_endio) {
1793 struct bio *parent = bio->bi_private;
4246a0b6 1794 parent->bi_error = bio->bi_error;
196d38bc
KO
1795 bio_put(bio);
1796 bio = parent;
1797 } else {
1798 if (bio->bi_end_io)
4246a0b6 1799 bio->bi_end_io(bio);
196d38bc
KO
1800 bio = NULL;
1801 }
1802 }
1da177e4 1803}
a112a71d 1804EXPORT_SYMBOL(bio_endio);
1da177e4 1805
20d0189b
KO
1806/**
1807 * bio_split - split a bio
1808 * @bio: bio to split
1809 * @sectors: number of sectors to split from the front of @bio
1810 * @gfp: gfp mask
1811 * @bs: bio set to allocate from
1812 *
1813 * Allocates and returns a new bio which represents @sectors from the start of
1814 * @bio, and updates @bio to represent the remaining sectors.
1815 *
f3f5da62
MP
1816 * Unless this is a discard request the newly allocated bio will point
1817 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1818 * @bio is not freed before the split.
20d0189b
KO
1819 */
1820struct bio *bio_split(struct bio *bio, int sectors,
1821 gfp_t gfp, struct bio_set *bs)
1822{
1823 struct bio *split = NULL;
1824
1825 BUG_ON(sectors <= 0);
1826 BUG_ON(sectors >= bio_sectors(bio));
1827
f3f5da62
MP
1828 /*
1829 * Discards need a mutable bio_vec to accommodate the payload
1830 * required by the DSM TRIM and UNMAP commands.
1831 */
1832 if (bio->bi_rw & REQ_DISCARD)
1833 split = bio_clone_bioset(bio, gfp, bs);
1834 else
1835 split = bio_clone_fast(bio, gfp, bs);
1836
20d0189b
KO
1837 if (!split)
1838 return NULL;
1839
1840 split->bi_iter.bi_size = sectors << 9;
1841
1842 if (bio_integrity(split))
1843 bio_integrity_trim(split, 0, sectors);
1844
1845 bio_advance(bio, split->bi_iter.bi_size);
1846
1847 return split;
1848}
1849EXPORT_SYMBOL(bio_split);
1850
6678d83f
KO
1851/**
1852 * bio_trim - trim a bio
1853 * @bio: bio to trim
1854 * @offset: number of sectors to trim from the front of @bio
1855 * @size: size we want to trim @bio to, in sectors
1856 */
1857void bio_trim(struct bio *bio, int offset, int size)
1858{
1859 /* 'bio' is a cloned bio which we need to trim to match
1860 * the given offset and size.
6678d83f 1861 */
6678d83f
KO
1862
1863 size <<= 9;
4f024f37 1864 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1865 return;
1866
b7c44ed9 1867 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1868
1869 bio_advance(bio, offset << 9);
1870
4f024f37 1871 bio->bi_iter.bi_size = size;
6678d83f
KO
1872}
1873EXPORT_SYMBOL_GPL(bio_trim);
1874
1da177e4
LT
1875/*
1876 * create memory pools for biovec's in a bio_set.
1877 * use the global biovec slabs created for general use.
1878 */
a6c39cb4 1879mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1880{
7ff9345f 1881 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1882
9f060e22 1883 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1884}
1885
1886void bioset_free(struct bio_set *bs)
1887{
df2cb6da
KO
1888 if (bs->rescue_workqueue)
1889 destroy_workqueue(bs->rescue_workqueue);
1890
1da177e4
LT
1891 if (bs->bio_pool)
1892 mempool_destroy(bs->bio_pool);
1893
9f060e22
KO
1894 if (bs->bvec_pool)
1895 mempool_destroy(bs->bvec_pool);
1896
7878cba9 1897 bioset_integrity_free(bs);
bb799ca0 1898 bio_put_slab(bs);
1da177e4
LT
1899
1900 kfree(bs);
1901}
a112a71d 1902EXPORT_SYMBOL(bioset_free);
1da177e4 1903
d8f429e1
JN
1904static struct bio_set *__bioset_create(unsigned int pool_size,
1905 unsigned int front_pad,
1906 bool create_bvec_pool)
1da177e4 1907{
392ddc32 1908 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1909 struct bio_set *bs;
1da177e4 1910
1b434498 1911 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1912 if (!bs)
1913 return NULL;
1914
bb799ca0 1915 bs->front_pad = front_pad;
1b434498 1916
df2cb6da
KO
1917 spin_lock_init(&bs->rescue_lock);
1918 bio_list_init(&bs->rescue_list);
1919 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1920
392ddc32 1921 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1922 if (!bs->bio_slab) {
1923 kfree(bs);
1924 return NULL;
1925 }
1926
1927 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1928 if (!bs->bio_pool)
1929 goto bad;
1930
d8f429e1
JN
1931 if (create_bvec_pool) {
1932 bs->bvec_pool = biovec_create_pool(pool_size);
1933 if (!bs->bvec_pool)
1934 goto bad;
1935 }
df2cb6da
KO
1936
1937 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1938 if (!bs->rescue_workqueue)
1939 goto bad;
1da177e4 1940
df2cb6da 1941 return bs;
1da177e4
LT
1942bad:
1943 bioset_free(bs);
1944 return NULL;
1945}
d8f429e1
JN
1946
1947/**
1948 * bioset_create - Create a bio_set
1949 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1950 * @front_pad: Number of bytes to allocate in front of the returned bio
1951 *
1952 * Description:
1953 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1954 * to ask for a number of bytes to be allocated in front of the bio.
1955 * Front pad allocation is useful for embedding the bio inside
1956 * another structure, to avoid allocating extra data to go with the bio.
1957 * Note that the bio must be embedded at the END of that structure always,
1958 * or things will break badly.
1959 */
1960struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1961{
1962 return __bioset_create(pool_size, front_pad, true);
1963}
a112a71d 1964EXPORT_SYMBOL(bioset_create);
1da177e4 1965
d8f429e1
JN
1966/**
1967 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1968 * @pool_size: Number of bio to cache in the mempool
1969 * @front_pad: Number of bytes to allocate in front of the returned bio
1970 *
1971 * Description:
1972 * Same functionality as bioset_create() except that mempool is not
1973 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1974 */
1975struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1976{
1977 return __bioset_create(pool_size, front_pad, false);
1978}
1979EXPORT_SYMBOL(bioset_create_nobvec);
1980
852c788f 1981#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1982
1983/**
1984 * bio_associate_blkcg - associate a bio with the specified blkcg
1985 * @bio: target bio
1986 * @blkcg_css: css of the blkcg to associate
1987 *
1988 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1989 * treat @bio as if it were issued by a task which belongs to the blkcg.
1990 *
1991 * This function takes an extra reference of @blkcg_css which will be put
1992 * when @bio is released. The caller must own @bio and is responsible for
1993 * synchronizing calls to this function.
1994 */
1995int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1996{
1997 if (unlikely(bio->bi_css))
1998 return -EBUSY;
1999 css_get(blkcg_css);
2000 bio->bi_css = blkcg_css;
2001 return 0;
2002}
5aa2a96b 2003EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2004
852c788f
TH
2005/**
2006 * bio_associate_current - associate a bio with %current
2007 * @bio: target bio
2008 *
2009 * Associate @bio with %current if it hasn't been associated yet. Block
2010 * layer will treat @bio as if it were issued by %current no matter which
2011 * task actually issues it.
2012 *
2013 * This function takes an extra reference of @task's io_context and blkcg
2014 * which will be put when @bio is released. The caller must own @bio,
2015 * ensure %current->io_context exists, and is responsible for synchronizing
2016 * calls to this function.
2017 */
2018int bio_associate_current(struct bio *bio)
2019{
2020 struct io_context *ioc;
852c788f 2021
1d933cf0 2022 if (bio->bi_css)
852c788f
TH
2023 return -EBUSY;
2024
2025 ioc = current->io_context;
2026 if (!ioc)
2027 return -ENOENT;
2028
852c788f
TH
2029 get_io_context_active(ioc);
2030 bio->bi_ioc = ioc;
c165b3e3 2031 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2032 return 0;
2033}
5aa2a96b 2034EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2035
2036/**
2037 * bio_disassociate_task - undo bio_associate_current()
2038 * @bio: target bio
2039 */
2040void bio_disassociate_task(struct bio *bio)
2041{
2042 if (bio->bi_ioc) {
2043 put_io_context(bio->bi_ioc);
2044 bio->bi_ioc = NULL;
2045 }
2046 if (bio->bi_css) {
2047 css_put(bio->bi_css);
2048 bio->bi_css = NULL;
2049 }
2050}
2051
01daea92
PV
2052/**
2053 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2054 * @dst: destination bio
2055 * @src: source bio
2056 */
2057void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2058{
2059 if (src->bi_css)
2060 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2061}
2062
852c788f
TH
2063#endif /* CONFIG_BLK_CGROUP */
2064
1da177e4
LT
2065static void __init biovec_init_slabs(void)
2066{
2067 int i;
2068
2069 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2070 int size;
2071 struct biovec_slab *bvs = bvec_slabs + i;
2072
a7fcd37c
JA
2073 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2074 bvs->slab = NULL;
2075 continue;
2076 }
a7fcd37c 2077
1da177e4
LT
2078 size = bvs->nr_vecs * sizeof(struct bio_vec);
2079 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2080 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2081 }
2082}
2083
2084static int __init init_bio(void)
2085{
bb799ca0
JA
2086 bio_slab_max = 2;
2087 bio_slab_nr = 0;
2088 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2089 if (!bio_slabs)
2090 panic("bio: can't allocate bios\n");
1da177e4 2091
7878cba9 2092 bio_integrity_init();
1da177e4
LT
2093 biovec_init_slabs();
2094
bb799ca0 2095 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2096 if (!fs_bio_set)
2097 panic("bio: can't allocate bios\n");
2098
a91a2785
MP
2099 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2100 panic("bio: can't create integrity pool\n");
2101
1da177e4
LT
2102 return 0;
2103}
1da177e4 2104subsys_initcall(init_bio);