asoc: abox: check abox power domain status before resuming
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / exit.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/mm.h>
8#include <linux/slab.h>
4eb5aaa3 9#include <linux/sched/autogroup.h>
6e84f315 10#include <linux/sched/mm.h>
03441a34 11#include <linux/sched/stat.h>
29930025 12#include <linux/sched/task.h>
68db0cf1 13#include <linux/sched/task_stack.h>
32ef5517 14#include <linux/sched/cputime.h>
1da177e4 15#include <linux/interrupt.h>
1da177e4 16#include <linux/module.h>
c59ede7b 17#include <linux/capability.h>
1da177e4
LT
18#include <linux/completion.h>
19#include <linux/personality.h>
20#include <linux/tty.h>
da9cbc87 21#include <linux/iocontext.h>
1da177e4 22#include <linux/key.h>
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/acct.h>
8f0ab514 25#include <linux/tsacct_kern.h>
1da177e4 26#include <linux/file.h>
9f3acc31 27#include <linux/fdtable.h>
80d26af8 28#include <linux/freezer.h>
1da177e4 29#include <linux/binfmts.h>
ab516013 30#include <linux/nsproxy.h>
84d73786 31#include <linux/pid_namespace.h>
1da177e4
LT
32#include <linux/ptrace.h>
33#include <linux/profile.h>
34#include <linux/mount.h>
35#include <linux/proc_fs.h>
49d769d5 36#include <linux/kthread.h>
1da177e4 37#include <linux/mempolicy.h>
c757249a 38#include <linux/taskstats_kern.h>
ca74e92b 39#include <linux/delayacct.h>
b4f48b63 40#include <linux/cgroup.h>
1da177e4 41#include <linux/syscalls.h>
7ed20e1a 42#include <linux/signal.h>
6a14c5c9 43#include <linux/posix-timers.h>
9f46080c 44#include <linux/cn_proc.h>
de5097c2 45#include <linux/mutex.h>
0771dfef 46#include <linux/futex.h>
b92ce558 47#include <linux/pipe_fs_i.h>
fa84cb93 48#include <linux/audit.h> /* for audit_free() */
83cc5ed3 49#include <linux/resource.h>
0d67a46d 50#include <linux/blkdev.h>
6eaeeaba 51#include <linux/task_io_accounting_ops.h>
30199f5a 52#include <linux/tracehook.h>
5ad4e53b 53#include <linux/fs_struct.h>
d84f4f99 54#include <linux/init_task.h>
cdd6c482 55#include <linux/perf_event.h>
ad8d75ff 56#include <trace/events/sched.h>
24f1e32c 57#include <linux/hw_breakpoint.h>
3d5992d2 58#include <linux/oom.h>
54848d73 59#include <linux/writeback.h>
40401530 60#include <linux/shm.h>
5c9a8750 61#include <linux/kcov.h>
53d3eaa3 62#include <linux/random.h>
8f95c90c 63#include <linux/rcuwait.h>
7e95a225 64#include <linux/compat.h>
0a548a53
PB
65#include <linux/cpufreq_times.h>
66#include <linux/ems.h>
1da177e4 67
7c0f6ba6 68#include <linux/uaccess.h>
1da177e4
LT
69#include <asm/unistd.h>
70#include <asm/pgtable.h>
71#include <asm/mmu_context.h>
72
d40e48e0 73static void __unhash_process(struct task_struct *p, bool group_dead)
1da177e4
LT
74{
75 nr_threads--;
50d75f8d 76 detach_pid(p, PIDTYPE_PID);
d40e48e0 77 if (group_dead) {
1da177e4
LT
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
c97d9893 80
5e85d4ab 81 list_del_rcu(&p->tasks);
9cd80bbb 82 list_del_init(&p->sibling);
909ea964 83 __this_cpu_dec(process_counts);
1da177e4 84 }
47e65328 85 list_del_rcu(&p->thread_group);
0c740d0a 86 list_del_rcu(&p->thread_node);
1da177e4
LT
87}
88
6a14c5c9
ON
89/*
90 * This function expects the tasklist_lock write-locked.
91 */
92static void __exit_signal(struct task_struct *tsk)
93{
94 struct signal_struct *sig = tsk->signal;
d40e48e0 95 bool group_dead = thread_group_leader(tsk);
6a14c5c9 96 struct sighand_struct *sighand;
4ada856f 97 struct tty_struct *uninitialized_var(tty);
5613fda9 98 u64 utime, stime;
6a14c5c9 99
d11c563d 100 sighand = rcu_dereference_check(tsk->sighand,
db1466b3 101 lockdep_tasklist_lock_is_held());
6a14c5c9
ON
102 spin_lock(&sighand->siglock);
103
baa73d9e 104#ifdef CONFIG_POSIX_TIMERS
6a14c5c9 105 posix_cpu_timers_exit(tsk);
d40e48e0 106 if (group_dead) {
6a14c5c9 107 posix_cpu_timers_exit_group(tsk);
4a599942 108 } else {
e0a70217
ON
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
baa73d9e
NP
116 }
117#endif
e0a70217 118
baa73d9e
NP
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
6a14c5c9
ON
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
d344193a 127 if (sig->notify_count > 0 && !--sig->notify_count)
6a14c5c9 128 wake_up_process(sig->group_exit_task);
6db840fa 129
6a14c5c9
ON
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
6a14c5c9
ON
132 }
133
53d3eaa3
NP
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
90ed9cbe 137 /*
26e75b5c
ON
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
90ed9cbe
RR
142 */
143 task_cputime(tsk, &utime, &stime);
e78c3496 144 write_seqlock(&sig->stats_lock);
90ed9cbe
RR
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
b3ac022c 156 sig->nr_threads--;
d40e48e0 157 __unhash_process(tsk, group_dead);
e78c3496 158 write_sequnlock(&sig->stats_lock);
5876700c 159
da7978b0
ON
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
a7e5328a 165 tsk->sighand = NULL;
6a14c5c9 166 spin_unlock(&sighand->siglock);
6a14c5c9 167
a7e5328a 168 __cleanup_sighand(sighand);
a0be55de 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
d40e48e0 170 if (group_dead) {
6a14c5c9 171 flush_sigqueue(&sig->shared_pending);
4ada856f 172 tty_kref_put(tty);
6a14c5c9
ON
173 }
174}
175
8c7904a0
EB
176static void delayed_put_task_struct(struct rcu_head *rhp)
177{
0a16b607
MD
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
4e231c79 180 perf_event_delayed_put(tsk);
0a16b607
MD
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
8c7904a0
EB
183}
184
f470021a 185
a0be55de 186void release_task(struct task_struct *p)
1da177e4 187{
36c8b586 188 struct task_struct *leader;
1da177e4 189 int zap_leader;
1f09f974 190repeat:
c69e8d9c 191 /* don't need to get the RCU readlock here - the process is dead and
d11c563d
PM
192 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 rcu_read_lock();
c69e8d9c 194 atomic_dec(&__task_cred(p)->user->processes);
d11c563d 195 rcu_read_unlock();
c69e8d9c 196
60347f67 197 proc_flush_task(p);
0203026b 198
1da177e4 199 write_lock_irq(&tasklist_lock);
a288eecc 200 ptrace_release_task(p);
1da177e4 201 __exit_signal(p);
35f5cad8 202
1da177e4
LT
203 /*
204 * If we are the last non-leader member of the thread
205 * group, and the leader is zombie, then notify the
206 * group leader's parent process. (if it wants notification.)
207 */
208 zap_leader = 0;
209 leader = p->group_leader;
a0be55de
IA
210 if (leader != p && thread_group_empty(leader)
211 && leader->exit_state == EXIT_ZOMBIE) {
1da177e4
LT
212 /*
213 * If we were the last child thread and the leader has
214 * exited already, and the leader's parent ignores SIGCHLD,
215 * then we are the one who should release the leader.
dae33574 216 */
86773473 217 zap_leader = do_notify_parent(leader, leader->exit_signal);
dae33574
RM
218 if (zap_leader)
219 leader->exit_state = EXIT_DEAD;
1da177e4
LT
220 }
221
1da177e4 222 write_unlock_irq(&tasklist_lock);
f3b3b543 223 cgroup_release(p);
1da177e4 224 release_thread(p);
8c7904a0 225 call_rcu(&p->rcu, delayed_put_task_struct);
1da177e4
LT
226
227 p = leader;
228 if (unlikely(zap_leader))
229 goto repeat;
230}
231
150593bf
ON
232/*
233 * Note that if this function returns a valid task_struct pointer (!NULL)
234 * task->usage must remain >0 for the duration of the RCU critical section.
235 */
236struct task_struct *task_rcu_dereference(struct task_struct **ptask)
237{
238 struct sighand_struct *sighand;
239 struct task_struct *task;
240
241 /*
242 * We need to verify that release_task() was not called and thus
243 * delayed_put_task_struct() can't run and drop the last reference
244 * before rcu_read_unlock(). We check task->sighand != NULL,
245 * but we can read the already freed and reused memory.
246 */
247retry:
248 task = rcu_dereference(*ptask);
249 if (!task)
250 return NULL;
251
252 probe_kernel_address(&task->sighand, sighand);
253
254 /*
255 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 * was already freed we can not miss the preceding update of this
257 * pointer.
258 */
259 smp_rmb();
260 if (unlikely(task != READ_ONCE(*ptask)))
261 goto retry;
262
263 /*
264 * We've re-checked that "task == *ptask", now we have two different
265 * cases:
266 *
267 * 1. This is actually the same task/task_struct. In this case
268 * sighand != NULL tells us it is still alive.
269 *
270 * 2. This is another task which got the same memory for task_struct.
271 * We can't know this of course, and we can not trust
272 * sighand != NULL.
273 *
274 * In this case we actually return a random value, but this is
275 * correct.
276 *
277 * If we return NULL - we can pretend that we actually noticed that
278 * *ptask was updated when the previous task has exited. Or pretend
279 * that probe_slab_address(&sighand) reads NULL.
280 *
281 * If we return the new task (because sighand is not NULL for any
282 * reason) - this is fine too. This (new) task can't go away before
283 * another gp pass.
284 *
285 * And note: We could even eliminate the false positive if re-read
286 * task->sighand once again to avoid the falsely NULL. But this case
287 * is very unlikely so we don't care.
288 */
289 if (!sighand)
290 return NULL;
291
292 return task;
293}
294
8f95c90c
DB
295void rcuwait_wake_up(struct rcuwait *w)
296{
297 struct task_struct *task;
298
299 rcu_read_lock();
300
301 /*
302 * Order condition vs @task, such that everything prior to the load
303 * of @task is visible. This is the condition as to why the user called
304 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 * barrier (A) in rcuwait_wait_event().
306 *
307 * WAIT WAKE
308 * [S] tsk = current [S] cond = true
309 * MB (A) MB (B)
310 * [L] cond [L] tsk
311 */
635d29f4 312 smp_mb(); /* (B) */
8f95c90c
DB
313
314 /*
315 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 * see comment in rcuwait_wait_event() regarding ->exit_state.
317 */
318 task = rcu_dereference(w->task);
319 if (task)
320 wake_up_process(task);
321 rcu_read_unlock();
322}
323
1da177e4
LT
324/*
325 * Determine if a process group is "orphaned", according to the POSIX
326 * definition in 2.2.2.52. Orphaned process groups are not to be affected
327 * by terminal-generated stop signals. Newly orphaned process groups are
328 * to receive a SIGHUP and a SIGCONT.
329 *
330 * "I ask you, have you ever known what it is to be an orphan?"
331 */
a0be55de
IA
332static int will_become_orphaned_pgrp(struct pid *pgrp,
333 struct task_struct *ignored_task)
1da177e4
LT
334{
335 struct task_struct *p;
1da177e4 336
0475ac08 337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
05e83df6
ON
338 if ((p == ignored_task) ||
339 (p->exit_state && thread_group_empty(p)) ||
340 is_global_init(p->real_parent))
1da177e4 341 continue;
05e83df6 342
0475ac08 343 if (task_pgrp(p->real_parent) != pgrp &&
05e83df6
ON
344 task_session(p->real_parent) == task_session(p))
345 return 0;
0475ac08 346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
05e83df6
ON
347
348 return 1;
1da177e4
LT
349}
350
3e7cd6c4 351int is_current_pgrp_orphaned(void)
1da177e4
LT
352{
353 int retval;
354
355 read_lock(&tasklist_lock);
3e7cd6c4 356 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
1da177e4
LT
357 read_unlock(&tasklist_lock);
358
359 return retval;
360}
361
961c4675 362static bool has_stopped_jobs(struct pid *pgrp)
1da177e4 363{
1da177e4
LT
364 struct task_struct *p;
365
0475ac08 366 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
961c4675
ON
367 if (p->signal->flags & SIGNAL_STOP_STOPPED)
368 return true;
0475ac08 369 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
961c4675
ON
370
371 return false;
1da177e4
LT
372}
373
f49ee505
ON
374/*
375 * Check to see if any process groups have become orphaned as
376 * a result of our exiting, and if they have any stopped jobs,
377 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
378 */
379static void
380kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
381{
382 struct pid *pgrp = task_pgrp(tsk);
383 struct task_struct *ignored_task = tsk;
384
385 if (!parent)
a0be55de
IA
386 /* exit: our father is in a different pgrp than
387 * we are and we were the only connection outside.
388 */
f49ee505
ON
389 parent = tsk->real_parent;
390 else
391 /* reparent: our child is in a different pgrp than
392 * we are, and it was the only connection outside.
393 */
394 ignored_task = NULL;
395
396 if (task_pgrp(parent) != pgrp &&
397 task_session(parent) == task_session(tsk) &&
398 will_become_orphaned_pgrp(pgrp, ignored_task) &&
399 has_stopped_jobs(pgrp)) {
400 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
401 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
402 }
403}
404
f98bafa0 405#ifdef CONFIG_MEMCG
cf475ad2 406/*
733eda7a 407 * A task is exiting. If it owned this mm, find a new owner for the mm.
cf475ad2 408 */
cf475ad2
BS
409void mm_update_next_owner(struct mm_struct *mm)
410{
411 struct task_struct *c, *g, *p = current;
412
413retry:
733eda7a
KH
414 /*
415 * If the exiting or execing task is not the owner, it's
416 * someone else's problem.
417 */
418 if (mm->owner != p)
cf475ad2 419 return;
733eda7a
KH
420 /*
421 * The current owner is exiting/execing and there are no other
422 * candidates. Do not leave the mm pointing to a possibly
423 * freed task structure.
424 */
425 if (atomic_read(&mm->mm_users) <= 1) {
426 mm->owner = NULL;
427 return;
428 }
cf475ad2
BS
429
430 read_lock(&tasklist_lock);
431 /*
432 * Search in the children
433 */
434 list_for_each_entry(c, &p->children, sibling) {
435 if (c->mm == mm)
436 goto assign_new_owner;
437 }
438
439 /*
440 * Search in the siblings
441 */
dea33cfd 442 list_for_each_entry(c, &p->real_parent->children, sibling) {
cf475ad2
BS
443 if (c->mm == mm)
444 goto assign_new_owner;
445 }
446
447 /*
f87fb599 448 * Search through everything else, we should not get here often.
cf475ad2 449 */
39af1765
ON
450 for_each_process(g) {
451 if (g->flags & PF_KTHREAD)
452 continue;
453 for_each_thread(g, c) {
454 if (c->mm == mm)
455 goto assign_new_owner;
456 if (c->mm)
457 break;
458 }
f87fb599 459 }
cf475ad2 460 read_unlock(&tasklist_lock);
31a78f23
BS
461 /*
462 * We found no owner yet mm_users > 1: this implies that we are
463 * most likely racing with swapoff (try_to_unuse()) or /proc or
e5991371 464 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
31a78f23 465 */
31a78f23 466 mm->owner = NULL;
cf475ad2
BS
467 return;
468
469assign_new_owner:
470 BUG_ON(c == p);
471 get_task_struct(c);
472 /*
473 * The task_lock protects c->mm from changing.
474 * We always want mm->owner->mm == mm
475 */
476 task_lock(c);
e5991371
HD
477 /*
478 * Delay read_unlock() till we have the task_lock()
479 * to ensure that c does not slip away underneath us
480 */
481 read_unlock(&tasklist_lock);
cf475ad2
BS
482 if (c->mm != mm) {
483 task_unlock(c);
484 put_task_struct(c);
485 goto retry;
486 }
cf475ad2
BS
487 mm->owner = c;
488 task_unlock(c);
489 put_task_struct(c);
490}
f98bafa0 491#endif /* CONFIG_MEMCG */
cf475ad2 492
1da177e4
LT
493/*
494 * Turn us into a lazy TLB process if we
495 * aren't already..
496 */
0039962a 497static void exit_mm(void)
1da177e4 498{
0039962a 499 struct mm_struct *mm = current->mm;
b564daf8 500 struct core_state *core_state;
1da177e4 501
0039962a 502 mm_release(current, mm);
1da177e4
LT
503 if (!mm)
504 return;
4fe7efdb 505 sync_mm_rss(mm);
1da177e4
LT
506 /*
507 * Serialize with any possible pending coredump.
999d9fc1 508 * We must hold mmap_sem around checking core_state
1da177e4 509 * and clearing tsk->mm. The core-inducing thread
999d9fc1 510 * will increment ->nr_threads for each thread in the
1da177e4
LT
511 * group with ->mm != NULL.
512 */
513 down_read(&mm->mmap_sem);
b564daf8
ON
514 core_state = mm->core_state;
515 if (core_state) {
516 struct core_thread self;
a0be55de 517
1da177e4 518 up_read(&mm->mmap_sem);
1da177e4 519
0039962a 520 self.task = current;
b564daf8
ON
521 self.next = xchg(&core_state->dumper.next, &self);
522 /*
523 * Implies mb(), the result of xchg() must be visible
524 * to core_state->dumper.
525 */
526 if (atomic_dec_and_test(&core_state->nr_threads))
527 complete(&core_state->startup);
1da177e4 528
a94e2d40 529 for (;;) {
642fa448 530 set_current_state(TASK_UNINTERRUPTIBLE);
a94e2d40
ON
531 if (!self.task) /* see coredump_finish() */
532 break;
80d26af8 533 freezable_schedule();
a94e2d40 534 }
642fa448 535 __set_current_state(TASK_RUNNING);
1da177e4
LT
536 down_read(&mm->mmap_sem);
537 }
f1f10076 538 mmgrab(mm);
0039962a 539 BUG_ON(mm != current->active_mm);
1da177e4 540 /* more a memory barrier than a real lock */
0039962a
DB
541 task_lock(current);
542 current->mm = NULL;
1da177e4
LT
543 up_read(&mm->mmap_sem);
544 enter_lazy_tlb(mm, current);
0039962a 545 task_unlock(current);
cf475ad2 546 mm_update_next_owner(mm);
1da177e4 547 mmput(mm);
c32b3cbe 548 if (test_thread_flag(TIF_MEMDIE))
38531201 549 exit_oom_victim();
1da177e4
LT
550}
551
c9dc05bf
ON
552static struct task_struct *find_alive_thread(struct task_struct *p)
553{
554 struct task_struct *t;
555
556 for_each_thread(p, t) {
557 if (!(t->flags & PF_EXITING))
558 return t;
559 }
560 return NULL;
561}
562
3d98fc4d
AV
563static struct task_struct *find_child_reaper(struct task_struct *father,
564 struct list_head *dead)
1109909c
ON
565 __releases(&tasklist_lock)
566 __acquires(&tasklist_lock)
567{
568 struct pid_namespace *pid_ns = task_active_pid_ns(father);
569 struct task_struct *reaper = pid_ns->child_reaper;
3d98fc4d 570 struct task_struct *p, *n;
1109909c
ON
571
572 if (likely(reaper != father))
573 return reaper;
574
c9dc05bf
ON
575 reaper = find_alive_thread(father);
576 if (reaper) {
1109909c
ON
577 pid_ns->child_reaper = reaper;
578 return reaper;
579 }
580
581 write_unlock_irq(&tasklist_lock);
582 if (unlikely(pid_ns == &init_pid_ns)) {
583 panic("Attempted to kill init! exitcode=0x%08x\n",
584 father->signal->group_exit_code ?: father->exit_code);
585 }
3d98fc4d
AV
586
587 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
588 list_del_init(&p->ptrace_entry);
589 release_task(p);
590 }
591
1109909c
ON
592 zap_pid_ns_processes(pid_ns);
593 write_lock_irq(&tasklist_lock);
594
595 return father;
596}
597
1da177e4 598/*
ebec18a6
LP
599 * When we die, we re-parent all our children, and try to:
600 * 1. give them to another thread in our thread group, if such a member exists
601 * 2. give it to the first ancestor process which prctl'd itself as a
602 * child_subreaper for its children (like a service manager)
603 * 3. give it to the init process (PID 1) in our pid namespace
1da177e4 604 */
1109909c
ON
605static struct task_struct *find_new_reaper(struct task_struct *father,
606 struct task_struct *child_reaper)
1da177e4 607{
c9dc05bf 608 struct task_struct *thread, *reaper;
1da177e4 609
c9dc05bf
ON
610 thread = find_alive_thread(father);
611 if (thread)
950bbabb 612 return thread;
1da177e4 613
7d24e2df 614 if (father->signal->has_child_subreaper) {
c6c70f44 615 unsigned int ns_level = task_pid(father)->level;
ebec18a6 616 /*
175aed3f 617 * Find the first ->is_child_subreaper ancestor in our pid_ns.
c6c70f44
ON
618 * We can't check reaper != child_reaper to ensure we do not
619 * cross the namespaces, the exiting parent could be injected
620 * by setns() + fork().
621 * We check pid->level, this is slightly more efficient than
622 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
ebec18a6 623 */
c6c70f44
ON
624 for (reaper = father->real_parent;
625 task_pid(reaper)->level == ns_level;
ebec18a6 626 reaper = reaper->real_parent) {
175aed3f 627 if (reaper == &init_task)
ebec18a6
LP
628 break;
629 if (!reaper->signal->is_child_subreaper)
630 continue;
c9dc05bf
ON
631 thread = find_alive_thread(reaper);
632 if (thread)
633 return thread;
ebec18a6 634 }
1da177e4 635 }
762a24be 636
1109909c 637 return child_reaper;
950bbabb
ON
638}
639
5dfc80be
ON
640/*
641* Any that need to be release_task'd are put on the @dead list.
642 */
9cd80bbb 643static void reparent_leader(struct task_struct *father, struct task_struct *p,
5dfc80be
ON
644 struct list_head *dead)
645{
2831096e 646 if (unlikely(p->exit_state == EXIT_DEAD))
5dfc80be
ON
647 return;
648
abd50b39 649 /* We don't want people slaying init. */
5dfc80be
ON
650 p->exit_signal = SIGCHLD;
651
652 /* If it has exited notify the new parent about this child's death. */
d21142ec 653 if (!p->ptrace &&
5dfc80be 654 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
86773473 655 if (do_notify_parent(p, p->exit_signal)) {
5dfc80be 656 p->exit_state = EXIT_DEAD;
dc2fd4b0 657 list_add(&p->ptrace_entry, dead);
5dfc80be
ON
658 }
659 }
660
661 kill_orphaned_pgrp(p, father);
662}
663
482a3767
ON
664/*
665 * This does two things:
666 *
667 * A. Make init inherit all the child processes
668 * B. Check to see if any process groups have become orphaned
669 * as a result of our exiting, and if they have any stopped
670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
671 */
672static void forget_original_parent(struct task_struct *father,
673 struct list_head *dead)
1da177e4 674{
482a3767 675 struct task_struct *p, *t, *reaper;
762a24be 676
7c8bd232 677 if (unlikely(!list_empty(&father->ptraced)))
482a3767 678 exit_ptrace(father, dead);
f470021a 679
7c8bd232 680 /* Can drop and reacquire tasklist_lock */
3d98fc4d 681 reaper = find_child_reaper(father, dead);
ad9e206a 682 if (list_empty(&father->children))
482a3767 683 return;
1109909c
ON
684
685 reaper = find_new_reaper(father, reaper);
2831096e 686 list_for_each_entry(p, &father->children, sibling) {
57a05918 687 for_each_thread(p, t) {
9cd80bbb 688 t->real_parent = reaper;
57a05918
ON
689 BUG_ON((!t->ptrace) != (t->parent == father));
690 if (likely(!t->ptrace))
9cd80bbb 691 t->parent = t->real_parent;
9cd80bbb
ON
692 if (t->pdeath_signal)
693 group_send_sig_info(t->pdeath_signal,
694 SEND_SIG_NOINFO, t);
57a05918 695 }
2831096e
ON
696 /*
697 * If this is a threaded reparent there is no need to
698 * notify anyone anything has happened.
699 */
700 if (!same_thread_group(reaper, father))
482a3767 701 reparent_leader(father, p, dead);
1da177e4 702 }
2831096e 703 list_splice_tail_init(&father->children, &reaper->children);
1da177e4
LT
704}
705
706/*
707 * Send signals to all our closest relatives so that they know
708 * to properly mourn us..
709 */
821c7de7 710static void exit_notify(struct task_struct *tsk, int group_dead)
1da177e4 711{
53c8f9f1 712 bool autoreap;
482a3767
ON
713 struct task_struct *p, *n;
714 LIST_HEAD(dead);
1da177e4 715
762a24be 716 write_lock_irq(&tasklist_lock);
482a3767
ON
717 forget_original_parent(tsk, &dead);
718
821c7de7
ON
719 if (group_dead)
720 kill_orphaned_pgrp(tsk->group_leader, NULL);
1da177e4 721
45cdf5cc
ON
722 if (unlikely(tsk->ptrace)) {
723 int sig = thread_group_leader(tsk) &&
724 thread_group_empty(tsk) &&
725 !ptrace_reparented(tsk) ?
726 tsk->exit_signal : SIGCHLD;
727 autoreap = do_notify_parent(tsk, sig);
728 } else if (thread_group_leader(tsk)) {
729 autoreap = thread_group_empty(tsk) &&
730 do_notify_parent(tsk, tsk->exit_signal);
731 } else {
732 autoreap = true;
733 }
1da177e4 734
53c8f9f1 735 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
6c66e7db
ON
736 if (tsk->exit_state == EXIT_DEAD)
737 list_add(&tsk->ptrace_entry, &dead);
1da177e4 738
9c339168
ON
739 /* mt-exec, de_thread() is waiting for group leader */
740 if (unlikely(tsk->signal->notify_count < 0))
6db840fa 741 wake_up_process(tsk->signal->group_exit_task);
1da177e4
LT
742 write_unlock_irq(&tasklist_lock);
743
482a3767
ON
744 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
745 list_del_init(&p->ptrace_entry);
746 release_task(p);
747 }
1da177e4
LT
748}
749
e18eecb8
JD
750#ifdef CONFIG_DEBUG_STACK_USAGE
751static void check_stack_usage(void)
752{
753 static DEFINE_SPINLOCK(low_water_lock);
754 static int lowest_to_date = THREAD_SIZE;
e18eecb8
JD
755 unsigned long free;
756
7c9f8861 757 free = stack_not_used(current);
e18eecb8
JD
758
759 if (free >= lowest_to_date)
760 return;
761
762 spin_lock(&low_water_lock);
763 if (free < lowest_to_date) {
627393d4 764 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
a0be55de 765 current->comm, task_pid_nr(current), free);
e18eecb8
JD
766 lowest_to_date = free;
767 }
768 spin_unlock(&low_water_lock);
769}
770#else
771static inline void check_stack_usage(void) {}
772#endif
773
9af6528e 774void __noreturn do_exit(long code)
1da177e4
LT
775{
776 struct task_struct *tsk = current;
777 int group_dead;
778
779 profile_task_exit(tsk);
5c9a8750 780 kcov_task_exit(tsk);
1da177e4 781
73c10101 782 WARN_ON(blk_needs_flush_plug(tsk));
22e2c507 783
1da177e4
LT
784 if (unlikely(in_interrupt()))
785 panic("Aiee, killing interrupt handler!");
786 if (unlikely(!tsk->pid))
787 panic("Attempted to kill the idle task!");
1da177e4 788
33dd94ae
NE
789 /*
790 * If do_exit is called because this processes oopsed, it's possible
791 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
792 * continuing. Amongst other possible reasons, this is to prevent
793 * mm_release()->clear_child_tid() from writing to a user-controlled
794 * kernel address.
795 */
796 set_fs(USER_DS);
797
a288eecc 798 ptrace_event(PTRACE_EVENT_EXIT, code);
1da177e4 799
e0e81739
DH
800 validate_creds_for_do_exit(tsk);
801
df164db5
AN
802 /*
803 * We're taking recursive faults here in do_exit. Safest is to just
804 * leave this task alone and wait for reboot.
805 */
806 if (unlikely(tsk->flags & PF_EXITING)) {
a0be55de 807 pr_alert("Fixing recursive fault but reboot is needed!\n");
778e9a9c
AK
808 /*
809 * We can do this unlocked here. The futex code uses
810 * this flag just to verify whether the pi state
811 * cleanup has been done or not. In the worst case it
812 * loops once more. We pretend that the cleanup was
813 * done as there is no way to return. Either the
814 * OWNER_DIED bit is set by now or we push the blocked
815 * task into the wait for ever nirwana as well.
816 */
817 tsk->flags |= PF_EXITPIDONE;
df164db5
AN
818 set_current_state(TASK_UNINTERRUPTIBLE);
819 schedule();
820 }
821
d12619b5 822 exit_signals(tsk); /* sets PF_EXITING */
0a548a53
PB
823 sync_band(tsk, LEAVE_BAND);
824
778e9a9c 825 /*
be3e7844
PZ
826 * Ensure that all new tsk->pi_lock acquisitions must observe
827 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
778e9a9c 828 */
d2ee7198 829 smp_mb();
be3e7844
PZ
830 /*
831 * Ensure that we must observe the pi_state in exit_mm() ->
832 * mm_release() -> exit_pi_state_list().
833 */
8083f293
PM
834 raw_spin_lock_irq(&tsk->pi_lock);
835 raw_spin_unlock_irq(&tsk->pi_lock);
1da177e4 836
1dc0fffc 837 if (unlikely(in_atomic())) {
a0be55de
IA
838 pr_info("note: %s[%d] exited with preempt_count %d\n",
839 current->comm, task_pid_nr(current),
840 preempt_count());
1dc0fffc
PZ
841 preempt_count_set(PREEMPT_ENABLED);
842 }
1da177e4 843
48d212a2
LT
844 /* sync mm's RSS info before statistics gathering */
845 if (tsk->mm)
846 sync_mm_rss(tsk->mm);
51229b49 847 acct_update_integrals(tsk);
1da177e4 848 group_dead = atomic_dec_and_test(&tsk->signal->live);
c3068951 849 if (group_dead) {
baa73d9e 850#ifdef CONFIG_POSIX_TIMERS
778e9a9c 851 hrtimer_cancel(&tsk->signal->real_timer);
25f407f0 852 exit_itimers(tsk->signal);
baa73d9e 853#endif
1f10206c
JP
854 if (tsk->mm)
855 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
c3068951 856 }
f6ec29a4 857 acct_collect(code, group_dead);
522ed776
MT
858 if (group_dead)
859 tty_audit_exit();
a4ff8dba 860 audit_free(tsk);
115085ea 861
48d212a2 862 tsk->exit_code = code;
115085ea 863 taskstats_exit(tsk, group_dead);
c757249a 864
0039962a 865 exit_mm();
1da177e4 866
0e464814 867 if (group_dead)
f6ec29a4 868 acct_process();
0a16b607
MD
869 trace_sched_process_exit(tsk);
870
1da177e4 871 exit_sem(tsk);
b34a6b1d 872 exit_shm(tsk);
1ec7f1dd
AV
873 exit_files(tsk);
874 exit_fs(tsk);
c39df5fa
ON
875 if (group_dead)
876 disassociate_ctty(1);
8aac6270 877 exit_task_namespaces(tsk);
ed3e694d 878 exit_task_work(tsk);
e6464694 879 exit_thread(tsk);
0b3fcf17
SE
880
881 /*
882 * Flush inherited counters to the parent - before the parent
883 * gets woken up by child-exit notifications.
884 *
885 * because of cgroup mode, must be called before cgroup_exit()
886 */
887 perf_event_exit_task(tsk);
888
8e5bfa8c 889 sched_autogroup_exit_task(tsk);
1ec41830 890 cgroup_exit(tsk);
1da177e4 891
24f1e32c
FW
892 /*
893 * FIXME: do that only when needed, using sched_exit tracepoint
894 */
7c8df286 895 flush_ptrace_hw_breakpoint(tsk);
33b2fb30 896
ccdd29ff 897 exit_tasks_rcu_start();
821c7de7 898 exit_notify(tsk, group_dead);
ef982393 899 proc_exit_connector(tsk);
c11600e4 900 mpol_put_task_policy(tsk);
42b2dd0a 901#ifdef CONFIG_FUTEX
c87e2837
IM
902 if (unlikely(current->pi_state_cache))
903 kfree(current->pi_state_cache);
42b2dd0a 904#endif
de5097c2 905 /*
9a11b49a 906 * Make sure we are holding no locks:
de5097c2 907 */
1b1d2fb4 908 debug_check_no_locks_held();
778e9a9c
AK
909 /*
910 * We can do this unlocked here. The futex code uses this flag
911 * just to verify whether the pi state cleanup has been done
912 * or not. In the worst case it loops once more.
913 */
914 tsk->flags |= PF_EXITPIDONE;
1da177e4 915
afc847b7 916 if (tsk->io_context)
b69f2292 917 exit_io_context(tsk);
afc847b7 918
b92ce558 919 if (tsk->splice_pipe)
4b8a8f1e 920 free_pipe_info(tsk->splice_pipe);
b92ce558 921
5640f768
ED
922 if (tsk->task_frag.page)
923 put_page(tsk->task_frag.page);
924
e0e81739
DH
925 validate_creds_for_do_exit(tsk);
926
4bcb8232 927 check_stack_usage();
7407251a 928 preempt_disable();
54848d73
WF
929 if (tsk->nr_dirtied)
930 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
f41d911f 931 exit_rcu();
ccdd29ff 932 exit_tasks_rcu_finish();
b5740f4b 933
b09be676 934 lockdep_free_task(tsk);
9af6528e 935 do_task_dead();
1da177e4 936}
012914da
RA
937EXPORT_SYMBOL_GPL(do_exit);
938
9402c95f 939void complete_and_exit(struct completion *comp, long code)
1da177e4
LT
940{
941 if (comp)
942 complete(comp);
55a101f8 943
1da177e4
LT
944 do_exit(code);
945}
1da177e4
LT
946EXPORT_SYMBOL(complete_and_exit);
947
754fe8d2 948SYSCALL_DEFINE1(exit, int, error_code)
1da177e4
LT
949{
950 do_exit((error_code&0xff)<<8);
951}
952
1da177e4
LT
953/*
954 * Take down every thread in the group. This is called by fatal signals
955 * as well as by sys_exit_group (below).
956 */
9402c95f 957void
1da177e4
LT
958do_group_exit(int exit_code)
959{
bfc4b089
ON
960 struct signal_struct *sig = current->signal;
961
1da177e4
LT
962 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
963
bfc4b089
ON
964 if (signal_group_exit(sig))
965 exit_code = sig->group_exit_code;
1da177e4 966 else if (!thread_group_empty(current)) {
1da177e4 967 struct sighand_struct *const sighand = current->sighand;
a0be55de 968
1da177e4 969 spin_lock_irq(&sighand->siglock);
ed5d2cac 970 if (signal_group_exit(sig))
1da177e4
LT
971 /* Another thread got here before we took the lock. */
972 exit_code = sig->group_exit_code;
973 else {
1da177e4 974 sig->group_exit_code = exit_code;
ed5d2cac 975 sig->flags = SIGNAL_GROUP_EXIT;
1da177e4
LT
976 zap_other_threads(current);
977 }
978 spin_unlock_irq(&sighand->siglock);
1da177e4
LT
979 }
980
981 do_exit(exit_code);
982 /* NOTREACHED */
983}
984
985/*
986 * this kills every thread in the thread group. Note that any externally
987 * wait4()-ing process will get the correct exit code - even if this
988 * thread is not the thread group leader.
989 */
754fe8d2 990SYSCALL_DEFINE1(exit_group, int, error_code)
1da177e4
LT
991{
992 do_group_exit((error_code & 0xff) << 8);
2ed7c03e
HC
993 /* NOTREACHED */
994 return 0;
1da177e4
LT
995}
996
67d7ddde
AV
997struct waitid_info {
998 pid_t pid;
999 uid_t uid;
1000 int status;
1001 int cause;
1002};
1003
9e8ae01d
ON
1004struct wait_opts {
1005 enum pid_type wo_type;
9e8ae01d 1006 int wo_flags;
e1eb1ebc 1007 struct pid *wo_pid;
9e8ae01d 1008
67d7ddde 1009 struct waitid_info *wo_info;
359566fa 1010 int wo_stat;
ce72a16f 1011 struct rusage *wo_rusage;
9e8ae01d 1012
ac6424b9 1013 wait_queue_entry_t child_wait;
9e8ae01d
ON
1014 int notask_error;
1015};
1016
989264f4
ON
1017static inline
1018struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
161550d7 1019{
989264f4
ON
1020 if (type != PIDTYPE_PID)
1021 task = task->group_leader;
1022 return task->pids[type].pid;
161550d7
EB
1023}
1024
989264f4 1025static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1da177e4 1026{
5c01ba49
ON
1027 return wo->wo_type == PIDTYPE_MAX ||
1028 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1029}
1da177e4 1030
bf959931
ON
1031static int
1032eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
5c01ba49
ON
1033{
1034 if (!eligible_pid(wo, p))
1035 return 0;
bf959931
ON
1036
1037 /*
1038 * Wait for all children (clone and not) if __WALL is set or
1039 * if it is traced by us.
1040 */
1041 if (ptrace || (wo->wo_flags & __WALL))
1042 return 1;
1043
1044 /*
1045 * Otherwise, wait for clone children *only* if __WCLONE is set;
1046 * otherwise, wait for non-clone children *only*.
1047 *
1048 * Note: a "clone" child here is one that reports to its parent
1049 * using a signal other than SIGCHLD, or a non-leader thread which
1050 * we can only see if it is traced by us.
1051 */
1052 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1da177e4 1053 return 0;
1da177e4 1054
14dd0b81 1055 return 1;
1da177e4
LT
1056}
1057
1da177e4
LT
1058/*
1059 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1060 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1061 * the lock and this task is uninteresting. If we return nonzero, we have
1062 * released the lock and the system call should return.
1063 */
9e8ae01d 1064static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1da177e4 1065{
67d7ddde 1066 int state, status;
6c5f3e7b 1067 pid_t pid = task_pid_vnr(p);
43e13cc1 1068 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
67d7ddde 1069 struct waitid_info *infop;
1da177e4 1070
9e8ae01d 1071 if (!likely(wo->wo_flags & WEXITED))
98abed02
RM
1072 return 0;
1073
9e8ae01d 1074 if (unlikely(wo->wo_flags & WNOWAIT)) {
76d9871e 1075 status = p->exit_code;
1da177e4
LT
1076 get_task_struct(p);
1077 read_unlock(&tasklist_lock);
1029a2b5 1078 sched_annotate_sleep();
e61a2502
AV
1079 if (wo->wo_rusage)
1080 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1081 put_task_struct(p);
76d9871e 1082 goto out_info;
1da177e4 1083 }
1da177e4 1084 /*
abd50b39 1085 * Move the task's state to DEAD/TRACE, only one thread can do this.
1da177e4 1086 */
f6507f83
ON
1087 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1088 EXIT_TRACE : EXIT_DEAD;
abd50b39 1089 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1da177e4 1090 return 0;
986094df
ON
1091 /*
1092 * We own this thread, nobody else can reap it.
1093 */
1094 read_unlock(&tasklist_lock);
1095 sched_annotate_sleep();
f6507f83 1096
befca967 1097 /*
f6507f83 1098 * Check thread_group_leader() to exclude the traced sub-threads.
befca967 1099 */
f6507f83 1100 if (state == EXIT_DEAD && thread_group_leader(p)) {
f953ccd0
ON
1101 struct signal_struct *sig = p->signal;
1102 struct signal_struct *psig = current->signal;
1f10206c 1103 unsigned long maxrss;
5613fda9 1104 u64 tgutime, tgstime;
3795e161 1105
1da177e4
LT
1106 /*
1107 * The resource counters for the group leader are in its
1108 * own task_struct. Those for dead threads in the group
1109 * are in its signal_struct, as are those for the child
1110 * processes it has previously reaped. All these
1111 * accumulate in the parent's signal_struct c* fields.
1112 *
1113 * We don't bother to take a lock here to protect these
f953ccd0
ON
1114 * p->signal fields because the whole thread group is dead
1115 * and nobody can change them.
1116 *
1117 * psig->stats_lock also protects us from our sub-theads
1118 * which can reap other children at the same time. Until
1119 * we change k_getrusage()-like users to rely on this lock
1120 * we have to take ->siglock as well.
0cf55e1e 1121 *
a0be55de
IA
1122 * We use thread_group_cputime_adjusted() to get times for
1123 * the thread group, which consolidates times for all threads
1124 * in the group including the group leader.
1da177e4 1125 */
e80d0a1a 1126 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
f953ccd0 1127 spin_lock_irq(&current->sighand->siglock);
e78c3496 1128 write_seqlock(&psig->stats_lock);
64861634
MS
1129 psig->cutime += tgutime + sig->cutime;
1130 psig->cstime += tgstime + sig->cstime;
6fac4829 1131 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
3795e161
JJ
1132 psig->cmin_flt +=
1133 p->min_flt + sig->min_flt + sig->cmin_flt;
1134 psig->cmaj_flt +=
1135 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1136 psig->cnvcsw +=
1137 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1138 psig->cnivcsw +=
1139 p->nivcsw + sig->nivcsw + sig->cnivcsw;
6eaeeaba
ED
1140 psig->cinblock +=
1141 task_io_get_inblock(p) +
1142 sig->inblock + sig->cinblock;
1143 psig->coublock +=
1144 task_io_get_oublock(p) +
1145 sig->oublock + sig->coublock;
1f10206c
JP
1146 maxrss = max(sig->maxrss, sig->cmaxrss);
1147 if (psig->cmaxrss < maxrss)
1148 psig->cmaxrss = maxrss;
5995477a
AR
1149 task_io_accounting_add(&psig->ioac, &p->ioac);
1150 task_io_accounting_add(&psig->ioac, &sig->ioac);
e78c3496 1151 write_sequnlock(&psig->stats_lock);
f953ccd0 1152 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1153 }
1154
ce72a16f
AV
1155 if (wo->wo_rusage)
1156 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1da177e4
LT
1157 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1158 ? p->signal->group_exit_code : p->exit_code;
359566fa 1159 wo->wo_stat = status;
2f4e6e2a 1160
b4360690 1161 if (state == EXIT_TRACE) {
1da177e4 1162 write_lock_irq(&tasklist_lock);
2f4e6e2a
ON
1163 /* We dropped tasklist, ptracer could die and untrace */
1164 ptrace_unlink(p);
b4360690
ON
1165
1166 /* If parent wants a zombie, don't release it now */
1167 state = EXIT_ZOMBIE;
1168 if (do_notify_parent(p, p->exit_signal))
1169 state = EXIT_DEAD;
abd50b39 1170 p->exit_state = state;
1da177e4
LT
1171 write_unlock_irq(&tasklist_lock);
1172 }
abd50b39 1173 if (state == EXIT_DEAD)
1da177e4 1174 release_task(p);
2f4e6e2a 1175
76d9871e
AV
1176out_info:
1177 infop = wo->wo_info;
1178 if (infop) {
1179 if ((status & 0x7f) == 0) {
1180 infop->cause = CLD_EXITED;
1181 infop->status = status >> 8;
1182 } else {
1183 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1184 infop->status = status & 0x7f;
1185 }
1186 infop->pid = pid;
1187 infop->uid = uid;
1188 }
1189
67d7ddde 1190 return pid;
1da177e4
LT
1191}
1192
90bc8d8b
ON
1193static int *task_stopped_code(struct task_struct *p, bool ptrace)
1194{
1195 if (ptrace) {
570ac933 1196 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
90bc8d8b
ON
1197 return &p->exit_code;
1198 } else {
1199 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1200 return &p->signal->group_exit_code;
1201 }
1202 return NULL;
1203}
1204
19e27463
TH
1205/**
1206 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1207 * @wo: wait options
1208 * @ptrace: is the wait for ptrace
1209 * @p: task to wait for
1210 *
1211 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1212 *
1213 * CONTEXT:
1214 * read_lock(&tasklist_lock), which is released if return value is
1215 * non-zero. Also, grabs and releases @p->sighand->siglock.
1216 *
1217 * RETURNS:
1218 * 0 if wait condition didn't exist and search for other wait conditions
1219 * should continue. Non-zero return, -errno on failure and @p's pid on
1220 * success, implies that tasklist_lock is released and wait condition
1221 * search should terminate.
1da177e4 1222 */
9e8ae01d
ON
1223static int wait_task_stopped(struct wait_opts *wo,
1224 int ptrace, struct task_struct *p)
1da177e4 1225{
67d7ddde
AV
1226 struct waitid_info *infop;
1227 int exit_code, *p_code, why;
ee7c82da 1228 uid_t uid = 0; /* unneeded, required by compiler */
c8950783 1229 pid_t pid;
1da177e4 1230
47918025
ON
1231 /*
1232 * Traditionally we see ptrace'd stopped tasks regardless of options.
1233 */
9e8ae01d 1234 if (!ptrace && !(wo->wo_flags & WUNTRACED))
98abed02
RM
1235 return 0;
1236
19e27463
TH
1237 if (!task_stopped_code(p, ptrace))
1238 return 0;
1239
ee7c82da
ON
1240 exit_code = 0;
1241 spin_lock_irq(&p->sighand->siglock);
1242
90bc8d8b
ON
1243 p_code = task_stopped_code(p, ptrace);
1244 if (unlikely(!p_code))
ee7c82da
ON
1245 goto unlock_sig;
1246
90bc8d8b 1247 exit_code = *p_code;
ee7c82da
ON
1248 if (!exit_code)
1249 goto unlock_sig;
1250
9e8ae01d 1251 if (!unlikely(wo->wo_flags & WNOWAIT))
90bc8d8b 1252 *p_code = 0;
ee7c82da 1253
8ca937a6 1254 uid = from_kuid_munged(current_user_ns(), task_uid(p));
ee7c82da
ON
1255unlock_sig:
1256 spin_unlock_irq(&p->sighand->siglock);
1257 if (!exit_code)
1da177e4
LT
1258 return 0;
1259
1260 /*
1261 * Now we are pretty sure this task is interesting.
1262 * Make sure it doesn't get reaped out from under us while we
1263 * give up the lock and then examine it below. We don't want to
1264 * keep holding onto the tasklist_lock while we call getrusage and
1265 * possibly take page faults for user memory.
1266 */
1267 get_task_struct(p);
6c5f3e7b 1268 pid = task_pid_vnr(p);
f470021a 1269 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1da177e4 1270 read_unlock(&tasklist_lock);
1029a2b5 1271 sched_annotate_sleep();
e61a2502
AV
1272 if (wo->wo_rusage)
1273 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1274 put_task_struct(p);
1da177e4 1275
bb380ec3
AV
1276 if (likely(!(wo->wo_flags & WNOWAIT)))
1277 wo->wo_stat = (exit_code << 8) | 0x7f;
1da177e4 1278
9e8ae01d 1279 infop = wo->wo_info;
67d7ddde
AV
1280 if (infop) {
1281 infop->cause = why;
1282 infop->status = exit_code;
1283 infop->pid = pid;
1284 infop->uid = uid;
1285 }
67d7ddde 1286 return pid;
1da177e4
LT
1287}
1288
1289/*
1290 * Handle do_wait work for one task in a live, non-stopped state.
1291 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1292 * the lock and this task is uninteresting. If we return nonzero, we have
1293 * released the lock and the system call should return.
1294 */
9e8ae01d 1295static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1da177e4 1296{
bb380ec3 1297 struct waitid_info *infop;
1da177e4
LT
1298 pid_t pid;
1299 uid_t uid;
1300
9e8ae01d 1301 if (!unlikely(wo->wo_flags & WCONTINUED))
98abed02
RM
1302 return 0;
1303
1da177e4
LT
1304 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1305 return 0;
1306
1307 spin_lock_irq(&p->sighand->siglock);
1308 /* Re-check with the lock held. */
1309 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1310 spin_unlock_irq(&p->sighand->siglock);
1311 return 0;
1312 }
9e8ae01d 1313 if (!unlikely(wo->wo_flags & WNOWAIT))
1da177e4 1314 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
8ca937a6 1315 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1da177e4
LT
1316 spin_unlock_irq(&p->sighand->siglock);
1317
6c5f3e7b 1318 pid = task_pid_vnr(p);
1da177e4
LT
1319 get_task_struct(p);
1320 read_unlock(&tasklist_lock);
1029a2b5 1321 sched_annotate_sleep();
e61a2502
AV
1322 if (wo->wo_rusage)
1323 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1324 put_task_struct(p);
1da177e4 1325
bb380ec3
AV
1326 infop = wo->wo_info;
1327 if (!infop) {
359566fa 1328 wo->wo_stat = 0xffff;
1da177e4 1329 } else {
bb380ec3
AV
1330 infop->cause = CLD_CONTINUED;
1331 infop->pid = pid;
1332 infop->uid = uid;
1333 infop->status = SIGCONT;
1da177e4 1334 }
bb380ec3 1335 return pid;
1da177e4
LT
1336}
1337
98abed02
RM
1338/*
1339 * Consider @p for a wait by @parent.
1340 *
9e8ae01d 1341 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1342 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1343 * Returns zero if the search for a child should continue;
9e8ae01d 1344 * then ->notask_error is 0 if @p is an eligible child,
3a2f5a59 1345 * or still -ECHILD.
98abed02 1346 */
b6e763f0
ON
1347static int wait_consider_task(struct wait_opts *wo, int ptrace,
1348 struct task_struct *p)
98abed02 1349{
3245d6ac
ON
1350 /*
1351 * We can race with wait_task_zombie() from another thread.
1352 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1353 * can't confuse the checks below.
1354 */
1355 int exit_state = ACCESS_ONCE(p->exit_state);
b3ab0316
ON
1356 int ret;
1357
3245d6ac 1358 if (unlikely(exit_state == EXIT_DEAD))
b3ab0316
ON
1359 return 0;
1360
bf959931 1361 ret = eligible_child(wo, ptrace, p);
14dd0b81 1362 if (!ret)
98abed02
RM
1363 return ret;
1364
3245d6ac 1365 if (unlikely(exit_state == EXIT_TRACE)) {
50b8d257 1366 /*
abd50b39
ON
1367 * ptrace == 0 means we are the natural parent. In this case
1368 * we should clear notask_error, debugger will notify us.
50b8d257 1369 */
abd50b39 1370 if (likely(!ptrace))
50b8d257 1371 wo->notask_error = 0;
823b018e 1372 return 0;
50b8d257 1373 }
823b018e 1374
377d75da
ON
1375 if (likely(!ptrace) && unlikely(p->ptrace)) {
1376 /*
1377 * If it is traced by its real parent's group, just pretend
1378 * the caller is ptrace_do_wait() and reap this child if it
1379 * is zombie.
1380 *
1381 * This also hides group stop state from real parent; otherwise
1382 * a single stop can be reported twice as group and ptrace stop.
1383 * If a ptracer wants to distinguish these two events for its
1384 * own children it should create a separate process which takes
1385 * the role of real parent.
1386 */
1387 if (!ptrace_reparented(p))
1388 ptrace = 1;
1389 }
1390
45cb24a1 1391 /* slay zombie? */
3245d6ac 1392 if (exit_state == EXIT_ZOMBIE) {
9b84cca2 1393 /* we don't reap group leaders with subthreads */
7c733eb3
ON
1394 if (!delay_group_leader(p)) {
1395 /*
1396 * A zombie ptracee is only visible to its ptracer.
1397 * Notification and reaping will be cascaded to the
1398 * real parent when the ptracer detaches.
1399 */
1400 if (unlikely(ptrace) || likely(!p->ptrace))
1401 return wait_task_zombie(wo, p);
1402 }
98abed02 1403
f470021a 1404 /*
9b84cca2
TH
1405 * Allow access to stopped/continued state via zombie by
1406 * falling through. Clearing of notask_error is complex.
1407 *
1408 * When !@ptrace:
1409 *
1410 * If WEXITED is set, notask_error should naturally be
1411 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1412 * so, if there are live subthreads, there are events to
1413 * wait for. If all subthreads are dead, it's still safe
1414 * to clear - this function will be called again in finite
1415 * amount time once all the subthreads are released and
1416 * will then return without clearing.
1417 *
1418 * When @ptrace:
1419 *
1420 * Stopped state is per-task and thus can't change once the
1421 * target task dies. Only continued and exited can happen.
1422 * Clear notask_error if WCONTINUED | WEXITED.
1423 */
1424 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1425 wo->notask_error = 0;
1426 } else {
1427 /*
1428 * @p is alive and it's gonna stop, continue or exit, so
1429 * there always is something to wait for.
f470021a 1430 */
9e8ae01d 1431 wo->notask_error = 0;
f470021a
RM
1432 }
1433
98abed02 1434 /*
45cb24a1
TH
1435 * Wait for stopped. Depending on @ptrace, different stopped state
1436 * is used and the two don't interact with each other.
98abed02 1437 */
19e27463
TH
1438 ret = wait_task_stopped(wo, ptrace, p);
1439 if (ret)
1440 return ret;
98abed02
RM
1441
1442 /*
45cb24a1
TH
1443 * Wait for continued. There's only one continued state and the
1444 * ptracer can consume it which can confuse the real parent. Don't
1445 * use WCONTINUED from ptracer. You don't need or want it.
98abed02 1446 */
9e8ae01d 1447 return wait_task_continued(wo, p);
98abed02
RM
1448}
1449
1450/*
1451 * Do the work of do_wait() for one thread in the group, @tsk.
1452 *
9e8ae01d 1453 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1454 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1455 * Returns zero if the search for a child should continue; then
9e8ae01d 1456 * ->notask_error is 0 if there were any eligible children,
3a2f5a59 1457 * or still -ECHILD.
98abed02 1458 */
9e8ae01d 1459static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1460{
1461 struct task_struct *p;
1462
1463 list_for_each_entry(p, &tsk->children, sibling) {
9cd80bbb 1464 int ret = wait_consider_task(wo, 0, p);
a0be55de 1465
9cd80bbb
ON
1466 if (ret)
1467 return ret;
98abed02
RM
1468 }
1469
1470 return 0;
1471}
1472
9e8ae01d 1473static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1474{
1475 struct task_struct *p;
1476
f470021a 1477 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
b6e763f0 1478 int ret = wait_consider_task(wo, 1, p);
a0be55de 1479
f470021a 1480 if (ret)
98abed02 1481 return ret;
98abed02
RM
1482 }
1483
1484 return 0;
1485}
1486
ac6424b9 1487static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
0b7570e7
ON
1488 int sync, void *key)
1489{
1490 struct wait_opts *wo = container_of(wait, struct wait_opts,
1491 child_wait);
1492 struct task_struct *p = key;
1493
5c01ba49 1494 if (!eligible_pid(wo, p))
0b7570e7
ON
1495 return 0;
1496
b4fe5182
ON
1497 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1498 return 0;
1499
0b7570e7
ON
1500 return default_wake_function(wait, mode, sync, key);
1501}
1502
a7f0765e
ON
1503void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1504{
0b7570e7
ON
1505 __wake_up_sync_key(&parent->signal->wait_chldexit,
1506 TASK_INTERRUPTIBLE, 1, p);
a7f0765e
ON
1507}
1508
9e8ae01d 1509static long do_wait(struct wait_opts *wo)
1da177e4 1510{
1da177e4 1511 struct task_struct *tsk;
98abed02 1512 int retval;
1da177e4 1513
9e8ae01d 1514 trace_sched_process_wait(wo->wo_pid);
0a16b607 1515
0b7570e7
ON
1516 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1517 wo->child_wait.private = current;
1518 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4 1519repeat:
98abed02 1520 /*
3da56d16 1521 * If there is nothing that can match our criteria, just get out.
9e8ae01d
ON
1522 * We will clear ->notask_error to zero if we see any child that
1523 * might later match our criteria, even if we are not able to reap
1524 * it yet.
98abed02 1525 */
64a16caf 1526 wo->notask_error = -ECHILD;
9e8ae01d
ON
1527 if ((wo->wo_type < PIDTYPE_MAX) &&
1528 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
64a16caf 1529 goto notask;
161550d7 1530
f95d39d1 1531 set_current_state(TASK_INTERRUPTIBLE);
1da177e4
LT
1532 read_lock(&tasklist_lock);
1533 tsk = current;
1534 do {
64a16caf
ON
1535 retval = do_wait_thread(wo, tsk);
1536 if (retval)
1537 goto end;
9e8ae01d 1538
64a16caf
ON
1539 retval = ptrace_do_wait(wo, tsk);
1540 if (retval)
98abed02 1541 goto end;
98abed02 1542
9e8ae01d 1543 if (wo->wo_flags & __WNOTHREAD)
1da177e4 1544 break;
a3f6dfb7 1545 } while_each_thread(current, tsk);
1da177e4 1546 read_unlock(&tasklist_lock);
f2cc3eb1 1547
64a16caf 1548notask:
9e8ae01d
ON
1549 retval = wo->notask_error;
1550 if (!retval && !(wo->wo_flags & WNOHANG)) {
1da177e4 1551 retval = -ERESTARTSYS;
98abed02
RM
1552 if (!signal_pending(current)) {
1553 schedule();
1554 goto repeat;
1555 }
1da177e4 1556 }
1da177e4 1557end:
f95d39d1 1558 __set_current_state(TASK_RUNNING);
0b7570e7 1559 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4
LT
1560 return retval;
1561}
1562
67d7ddde 1563static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
ce72a16f 1564 int options, struct rusage *ru)
1da177e4 1565{
9e8ae01d 1566 struct wait_opts wo;
161550d7
EB
1567 struct pid *pid = NULL;
1568 enum pid_type type;
1da177e4
LT
1569 long ret;
1570
91c4e8ea
ON
1571 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1572 __WNOTHREAD|__WCLONE|__WALL))
1da177e4
LT
1573 return -EINVAL;
1574 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1575 return -EINVAL;
1576
1577 switch (which) {
1578 case P_ALL:
161550d7 1579 type = PIDTYPE_MAX;
1da177e4
LT
1580 break;
1581 case P_PID:
161550d7
EB
1582 type = PIDTYPE_PID;
1583 if (upid <= 0)
1da177e4
LT
1584 return -EINVAL;
1585 break;
1586 case P_PGID:
161550d7
EB
1587 type = PIDTYPE_PGID;
1588 if (upid <= 0)
1da177e4 1589 return -EINVAL;
1da177e4
LT
1590 break;
1591 default:
1592 return -EINVAL;
1593 }
1594
161550d7
EB
1595 if (type < PIDTYPE_MAX)
1596 pid = find_get_pid(upid);
9e8ae01d
ON
1597
1598 wo.wo_type = type;
1599 wo.wo_pid = pid;
1600 wo.wo_flags = options;
1601 wo.wo_info = infop;
9e8ae01d
ON
1602 wo.wo_rusage = ru;
1603 ret = do_wait(&wo);
dfe16dfa 1604
161550d7 1605 put_pid(pid);
1da177e4
LT
1606 return ret;
1607}
1608
ce72a16f
AV
1609SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1610 infop, int, options, struct rusage __user *, ru)
1611{
1612 struct rusage r;
67d7ddde
AV
1613 struct waitid_info info = {.status = 0};
1614 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
634a8160 1615 int signo = 0;
6c85501f 1616
634a8160
AV
1617 if (err > 0) {
1618 signo = SIGCHLD;
1619 err = 0;
ce72a16f
AV
1620 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1621 return -EFAULT;
1622 }
67d7ddde
AV
1623 if (!infop)
1624 return err;
1625
96ca579a 1626 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1c9fec47 1627 return -EFAULT;
96ca579a 1628
4c48abe9 1629 user_access_begin();
634a8160 1630 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1631 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1632 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1633 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1634 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1635 unsafe_put_user(info.status, &infop->si_status, Efault);
1636 user_access_end();
ce72a16f 1637 return err;
4c48abe9
AV
1638Efault:
1639 user_access_end();
1640 return -EFAULT;
ce72a16f
AV
1641}
1642
92ebce5a
AV
1643long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1644 struct rusage *ru)
1da177e4 1645{
9e8ae01d 1646 struct wait_opts wo;
161550d7
EB
1647 struct pid *pid = NULL;
1648 enum pid_type type;
1da177e4
LT
1649 long ret;
1650
1651 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1652 __WNOTHREAD|__WCLONE|__WALL))
1653 return -EINVAL;
161550d7 1654
dd83c161 1655 /* -INT_MIN is not defined */
1656 if (upid == INT_MIN)
1657 return -ESRCH;
1658
161550d7
EB
1659 if (upid == -1)
1660 type = PIDTYPE_MAX;
1661 else if (upid < 0) {
1662 type = PIDTYPE_PGID;
1663 pid = find_get_pid(-upid);
1664 } else if (upid == 0) {
1665 type = PIDTYPE_PGID;
2ae448ef 1666 pid = get_task_pid(current, PIDTYPE_PGID);
161550d7
EB
1667 } else /* upid > 0 */ {
1668 type = PIDTYPE_PID;
1669 pid = find_get_pid(upid);
1670 }
1671
9e8ae01d
ON
1672 wo.wo_type = type;
1673 wo.wo_pid = pid;
1674 wo.wo_flags = options | WEXITED;
1675 wo.wo_info = NULL;
359566fa 1676 wo.wo_stat = 0;
9e8ae01d
ON
1677 wo.wo_rusage = ru;
1678 ret = do_wait(&wo);
161550d7 1679 put_pid(pid);
359566fa
AV
1680 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1681 ret = -EFAULT;
1da177e4 1682
1da177e4
LT
1683 return ret;
1684}
1685
ce72a16f
AV
1686SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1687 int, options, struct rusage __user *, ru)
1688{
1689 struct rusage r;
1690 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1691
1692 if (err > 0) {
1693 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1694 return -EFAULT;
1695 }
1696 return err;
1697}
1698
1da177e4
LT
1699#ifdef __ARCH_WANT_SYS_WAITPID
1700
1701/*
1702 * sys_waitpid() remains for compatibility. waitpid() should be
1703 * implemented by calling sys_wait4() from libc.a.
1704 */
17da2bd9 1705SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1da177e4
LT
1706{
1707 return sys_wait4(pid, stat_addr, options, NULL);
1708}
1709
1710#endif
7e95a225
AV
1711
1712#ifdef CONFIG_COMPAT
1713COMPAT_SYSCALL_DEFINE4(wait4,
1714 compat_pid_t, pid,
1715 compat_uint_t __user *, stat_addr,
1716 int, options,
1717 struct compat_rusage __user *, ru)
1718{
ce72a16f
AV
1719 struct rusage r;
1720 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1721 if (err > 0) {
1722 if (ru && put_compat_rusage(&r, ru))
1723 return -EFAULT;
7e95a225 1724 }
ce72a16f 1725 return err;
7e95a225
AV
1726}
1727
1728COMPAT_SYSCALL_DEFINE5(waitid,
1729 int, which, compat_pid_t, pid,
1730 struct compat_siginfo __user *, infop, int, options,
1731 struct compat_rusage __user *, uru)
1732{
7e95a225 1733 struct rusage ru;
67d7ddde
AV
1734 struct waitid_info info = {.status = 0};
1735 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
634a8160
AV
1736 int signo = 0;
1737 if (err > 0) {
1738 signo = SIGCHLD;
1739 err = 0;
6c85501f
AV
1740 if (uru) {
1741 /* kernel_waitid() overwrites everything in ru */
1742 if (COMPAT_USE_64BIT_TIME)
1743 err = copy_to_user(uru, &ru, sizeof(ru));
1744 else
1745 err = put_compat_rusage(&ru, uru);
1746 if (err)
1747 return -EFAULT;
1748 }
7e95a225
AV
1749 }
1750
4c48abe9
AV
1751 if (!infop)
1752 return err;
1753
96ca579a 1754 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1c9fec47 1755 return -EFAULT;
96ca579a 1756
4c48abe9 1757 user_access_begin();
634a8160 1758 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1759 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1760 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1761 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1762 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1763 unsafe_put_user(info.status, &infop->si_status, Efault);
1764 user_access_end();
67d7ddde 1765 return err;
4c48abe9
AV
1766Efault:
1767 user_access_end();
1768 return -EFAULT;
7e95a225
AV
1769}
1770#endif
c5c91d83
SM
1771
1772__weak void abort(void)
1773{
1774 BUG();
1775
1776 /* if that doesn't kill us, halt */
1777 panic("Oops failed to kill thread");
1778}
f18046f7 1779EXPORT_SYMBOL(abort);