[RAMEN9610-21208]coredump: fix race condition between mmget_not_zero()/get_task_mm...
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3 16#include <linux/hashtable.h>
174cd4b1 17#include <linux/sched/signal.h>
6e84f315 18#include <linux/sched/mm.h>
86039bd3
AA
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
86039bd3 44struct userfaultfd_ctx {
15b726ef
AA
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
86039bd3
AA
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
9cd75c3c
PE
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
2c5b7e1b
AA
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
3004ec9c
AA
55 /* pseudo fd refcounting */
56 atomic_t refcount;
86039bd3
AA
57 /* userfaultfd syscall flags */
58 unsigned int flags;
9cd75c3c
PE
59 /* features requested from the userspace */
60 unsigned int features;
86039bd3
AA
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
893e26e6
PE
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
897ab3e0
MR
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
86039bd3 82struct userfaultfd_wait_queue {
a9b85f94 83 struct uffd_msg msg;
ac6424b9 84 wait_queue_entry_t wq;
86039bd3 85 struct userfaultfd_ctx *ctx;
15a77c6f 86 bool waken;
86039bd3
AA
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
ac6424b9 94static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
86039bd3
AA
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
a9b85f94
AA
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 109 goto out;
15a77c6f
AA
110 WRITE_ONCE(uwq->waken, true);
111 /*
a9668cd6
PZ
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
15a77c6f 114 */
86039bd3 115 ret = wake_up_state(wq->private, mode);
a9668cd6 116 if (ret) {
86039bd3
AA
117 /*
118 * Wake only once, autoremove behavior.
119 *
a9668cd6
PZ
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 127 */
2055da97 128 list_del_init(&wq->entry);
a9668cd6 129 }
86039bd3
AA
130out:
131 return ret;
132}
133
134/**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
138 */
139static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140{
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143}
144
145/**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154{
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 164 mmdrop(ctx->mm);
3004ec9c 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
166 }
167}
168
a9b85f94 169static inline void msg_init(struct uffd_msg *msg)
86039bd3 170{
a9b85f94
AA
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177}
178
179static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
9d4ac934
AP
181 unsigned long reason,
182 unsigned int features)
a9b85f94
AA
183{
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
86039bd3
AA
188 if (flags & FAULT_FLAG_WRITE)
189 /*
a4605a61 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
86039bd3 195 */
a9b85f94 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
197 if (reason & VM_UFFD_WP)
198 /*
a9b85f94
AA
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
86039bd3 204 */
a9b85f94 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 206 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 208 return msg;
86039bd3
AA
209}
210
369cd212
MK
211#ifdef CONFIG_HUGETLB_PAGE
212/*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 217 struct vm_area_struct *vma,
369cd212
MK
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221{
222 struct mm_struct *mm = ctx->mm;
6fe74fb8 223 pte_t *ptep, pte;
369cd212
MK
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
6fe74fb8
JF
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
369cd212
MK
231 goto out;
232
233 ret = false;
6fe74fb8 234 pte = huge_ptep_get(ptep);
369cd212
MK
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
6fe74fb8 240 if (huge_pte_none(pte))
369cd212 241 ret = true;
6fe74fb8 242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
243 ret = true;
244out:
245 return ret;
246}
247#else
248static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 249 struct vm_area_struct *vma,
369cd212
MK
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253{
254 return false; /* should never get here */
255}
256#endif /* CONFIG_HUGETLB_PAGE */
257
8d2afd96
AA
258/*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269{
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
c2febafc 272 p4d_t *p4d;
8d2afd96
AA
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
c2febafc
KS
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
8d2afd96
AA
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319out:
320 return ret;
321}
322
86039bd3
AA
323/*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
82b0f8c3 338int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 339{
82b0f8c3 340 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
ba85c702 343 int ret;
dfa37dc3 344 bool must_wait, return_to_userland;
15a77c6f 345 long blocking_state;
86039bd3 346
ba85c702 347 ret = VM_FAULT_SIGBUS;
64c2b203
AA
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
82b0f8c3 369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 370 if (!ctx)
ba85c702 371 goto out;
86039bd3
AA
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
2d6d6f5a
PS
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
86039bd3
AA
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
656710a6
AA
386 if (unlikely(ACCESS_ONCE(ctx->released))) {
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
ba85c702 404 goto out;
656710a6 405 }
86039bd3
AA
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
82b0f8c3 417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
82b0f8c3 423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
424#ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
82b0f8c3
JK
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
86039bd3
AA
429 dump_stack();
430 }
431#endif
ba85c702 432 goto out;
86039bd3
AA
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
ba85c702 439 ret = VM_FAULT_RETRY;
82b0f8c3 440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 441 goto out;
86039bd3
AA
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
86039bd3
AA
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
9d4ac934
AP
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
86039bd3 450 uwq.ctx = ctx;
15a77c6f 451 uwq.waken = false;
86039bd3 452
bae473a4 453 return_to_userland =
82b0f8c3 454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
dfa37dc3 458
15b726ef 459 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
15b726ef
AA
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
15a77c6f 470 set_current_state(blocking_state);
15b726ef 471 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 472
369cd212
MK
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
7868a208
PA
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
369cd212 479 vmf->flags, reason);
8d2afd96
AA
480 up_read(&mm->mmap_sem);
481
482 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
86039bd3
AA
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
ba85c702 487 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
ba85c702 511 }
86039bd3 512
ba85c702 513 __set_current_state(TASK_RUNNING);
15b726ef 514
dfa37dc3
AA
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
6bbc4a41 535 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
536 }
537 }
538
15b726ef
AA
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
2055da97 552 if (!list_empty_careful(&uwq.wq.entry)) {
15b726ef
AA
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
2055da97 558 list_del(&uwq.wq.entry);
15b726ef 559 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 560 }
86039bd3
AA
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
ba85c702
AA
568out:
569 return ret;
86039bd3
AA
570}
571
8c9e7bb7
AA
572static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
9cd75c3c 574{
319122a7
AA
575 struct userfaultfd_ctx *release_new_ctx;
576
9a69a829
AA
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
9cd75c3c
PE
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
319122a7 582 release_new_ctx = NULL;
9cd75c3c
PE
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
594 if (ACCESS_ONCE(ctx->released) ||
595 fatal_signal_pending(current)) {
384632e6
AA
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
9cd75c3c 602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
319122a7 609 release_new_ctx = new;
7eb76d45 610 }
9cd75c3c
PE
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
319122a7
AA
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
633ab816
AA
630 /* no task can run (and in turn coredump) yet */
631 VM_WARN_ON(!mmget_still_valid(mm));
319122a7 632 for (vma = mm->mmap; vma; vma = vma->vm_next)
0eba9f5d 633 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
319122a7 634 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
0eba9f5d
MR
635 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
636 }
319122a7
AA
637 up_write(&mm->mmap_sem);
638
639 userfaultfd_ctx_put(release_new_ctx);
640 }
641
9cd75c3c
PE
642 /*
643 * ctx may go away after this if the userfault pseudo fd is
644 * already released.
645 */
9a69a829 646out:
9cd75c3c 647 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
648}
649
650static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
651 struct userfaultfd_wait_queue *ewq)
652{
653 ewq->msg.event = 0;
654 wake_up_locked(&ctx->event_wqh);
655 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
656}
657
893e26e6
PE
658int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
659{
660 struct userfaultfd_ctx *ctx = NULL, *octx;
661 struct userfaultfd_fork_ctx *fctx;
662
663 octx = vma->vm_userfaultfd_ctx.ctx;
664 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
666 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
667 return 0;
668 }
669
670 list_for_each_entry(fctx, fcs, list)
671 if (fctx->orig == octx) {
672 ctx = fctx->new;
673 break;
674 }
675
676 if (!ctx) {
677 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678 if (!fctx)
679 return -ENOMEM;
680
681 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
682 if (!ctx) {
683 kfree(fctx);
684 return -ENOMEM;
685 }
686
687 atomic_set(&ctx->refcount, 1);
688 ctx->flags = octx->flags;
689 ctx->state = UFFD_STATE_RUNNING;
690 ctx->features = octx->features;
691 ctx->released = false;
692 ctx->mm = vma->vm_mm;
d3aadc8e 693 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
694
695 userfaultfd_ctx_get(octx);
696 fctx->orig = octx;
697 fctx->new = ctx;
698 list_add_tail(&fctx->list, fcs);
699 }
700
701 vma->vm_userfaultfd_ctx.ctx = ctx;
702 return 0;
703}
704
8c9e7bb7 705static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
706{
707 struct userfaultfd_ctx *ctx = fctx->orig;
708 struct userfaultfd_wait_queue ewq;
709
710 msg_init(&ewq.msg);
711
712 ewq.msg.event = UFFD_EVENT_FORK;
713 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
714
8c9e7bb7 715 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
716}
717
718void dup_userfaultfd_complete(struct list_head *fcs)
719{
893e26e6
PE
720 struct userfaultfd_fork_ctx *fctx, *n;
721
722 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 723 dup_fctx(fctx);
893e26e6
PE
724 list_del(&fctx->list);
725 kfree(fctx);
726 }
727}
728
72f87654
PE
729void mremap_userfaultfd_prep(struct vm_area_struct *vma,
730 struct vm_userfaultfd_ctx *vm_ctx)
731{
732 struct userfaultfd_ctx *ctx;
733
734 ctx = vma->vm_userfaultfd_ctx.ctx;
735 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
736 vm_ctx->ctx = ctx;
737 userfaultfd_ctx_get(ctx);
738 }
739}
740
90794bf1 741void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
742 unsigned long from, unsigned long to,
743 unsigned long len)
744{
90794bf1 745 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
746 struct userfaultfd_wait_queue ewq;
747
748 if (!ctx)
749 return;
750
751 if (to & ~PAGE_MASK) {
752 userfaultfd_ctx_put(ctx);
753 return;
754 }
755
756 msg_init(&ewq.msg);
757
758 ewq.msg.event = UFFD_EVENT_REMAP;
759 ewq.msg.arg.remap.from = from;
760 ewq.msg.arg.remap.to = to;
761 ewq.msg.arg.remap.len = len;
762
763 userfaultfd_event_wait_completion(ctx, &ewq);
764}
765
70ccb92f 766bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 767 unsigned long start, unsigned long end)
05ce7724
PE
768{
769 struct mm_struct *mm = vma->vm_mm;
770 struct userfaultfd_ctx *ctx;
771 struct userfaultfd_wait_queue ewq;
772
773 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 774 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 775 return true;
05ce7724
PE
776
777 userfaultfd_ctx_get(ctx);
778 up_read(&mm->mmap_sem);
779
05ce7724
PE
780 msg_init(&ewq.msg);
781
d811914d
MR
782 ewq.msg.event = UFFD_EVENT_REMOVE;
783 ewq.msg.arg.remove.start = start;
784 ewq.msg.arg.remove.end = end;
05ce7724
PE
785
786 userfaultfd_event_wait_completion(ctx, &ewq);
787
70ccb92f 788 return false;
05ce7724
PE
789}
790
897ab3e0
MR
791static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
792 unsigned long start, unsigned long end)
793{
794 struct userfaultfd_unmap_ctx *unmap_ctx;
795
796 list_for_each_entry(unmap_ctx, unmaps, list)
797 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
798 unmap_ctx->end == end)
799 return true;
800
801 return false;
802}
803
804int userfaultfd_unmap_prep(struct vm_area_struct *vma,
805 unsigned long start, unsigned long end,
806 struct list_head *unmaps)
807{
808 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
809 struct userfaultfd_unmap_ctx *unmap_ctx;
810 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
811
812 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
813 has_unmap_ctx(ctx, unmaps, start, end))
814 continue;
815
816 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
817 if (!unmap_ctx)
818 return -ENOMEM;
819
820 userfaultfd_ctx_get(ctx);
821 unmap_ctx->ctx = ctx;
822 unmap_ctx->start = start;
823 unmap_ctx->end = end;
824 list_add_tail(&unmap_ctx->list, unmaps);
825 }
826
827 return 0;
828}
829
830void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
831{
832 struct userfaultfd_unmap_ctx *ctx, *n;
833 struct userfaultfd_wait_queue ewq;
834
835 list_for_each_entry_safe(ctx, n, uf, list) {
836 msg_init(&ewq.msg);
837
838 ewq.msg.event = UFFD_EVENT_UNMAP;
839 ewq.msg.arg.remove.start = ctx->start;
840 ewq.msg.arg.remove.end = ctx->end;
841
842 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
843
844 list_del(&ctx->list);
845 kfree(ctx);
846 }
847}
848
86039bd3
AA
849static int userfaultfd_release(struct inode *inode, struct file *file)
850{
851 struct userfaultfd_ctx *ctx = file->private_data;
852 struct mm_struct *mm = ctx->mm;
853 struct vm_area_struct *vma, *prev;
854 /* len == 0 means wake all */
855 struct userfaultfd_wake_range range = { .len = 0, };
856 unsigned long new_flags;
857
858 ACCESS_ONCE(ctx->released) = true;
859
d2005e3f
ON
860 if (!mmget_not_zero(mm))
861 goto wakeup;
862
86039bd3
AA
863 /*
864 * Flush page faults out of all CPUs. NOTE: all page faults
865 * must be retried without returning VM_FAULT_SIGBUS if
866 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
867 * changes while handle_userfault released the mmap_sem. So
868 * it's critical that released is set to true (above), before
869 * taking the mmap_sem for writing.
870 */
871 down_write(&mm->mmap_sem);
633ab816
AA
872 if (!mmget_still_valid(mm))
873 goto skip_mm;
86039bd3
AA
874 prev = NULL;
875 for (vma = mm->mmap; vma; vma = vma->vm_next) {
876 cond_resched();
877 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
878 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
879 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
880 prev = vma;
881 continue;
882 }
883 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
884 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
885 new_flags, vma->anon_vma,
886 vma->vm_file, vma->vm_pgoff,
887 vma_policy(vma),
8392add7
CC
888 NULL_VM_UFFD_CTX,
889 vma_get_anon_name(vma));
86039bd3
AA
890 if (prev)
891 vma = prev;
892 else
893 prev = vma;
894 vma->vm_flags = new_flags;
895 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
896 }
633ab816 897skip_mm:
86039bd3 898 up_write(&mm->mmap_sem);
d2005e3f
ON
899 mmput(mm);
900wakeup:
86039bd3 901 /*
15b726ef 902 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 903 * the last page faults that may have been already waiting on
15b726ef 904 * the fault_*wqh.
86039bd3 905 */
15b726ef 906 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
907 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
908 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 909 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 910
5a18b64e
MR
911 /* Flush pending events that may still wait on event_wqh */
912 wake_up_all(&ctx->event_wqh);
913
86039bd3
AA
914 wake_up_poll(&ctx->fd_wqh, POLLHUP);
915 userfaultfd_ctx_put(ctx);
916 return 0;
917}
918
15b726ef 919/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
920static inline struct userfaultfd_wait_queue *find_userfault_in(
921 wait_queue_head_t *wqh)
86039bd3 922{
ac6424b9 923 wait_queue_entry_t *wq;
15b726ef 924 struct userfaultfd_wait_queue *uwq;
86039bd3 925
6dcc27fd 926 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 927
15b726ef 928 uwq = NULL;
6dcc27fd 929 if (!waitqueue_active(wqh))
15b726ef
AA
930 goto out;
931 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 932 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
933 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
934out:
935 return uwq;
86039bd3 936}
6dcc27fd
PE
937
938static inline struct userfaultfd_wait_queue *find_userfault(
939 struct userfaultfd_ctx *ctx)
940{
941 return find_userfault_in(&ctx->fault_pending_wqh);
942}
86039bd3 943
9cd75c3c
PE
944static inline struct userfaultfd_wait_queue *find_userfault_evt(
945 struct userfaultfd_ctx *ctx)
946{
947 return find_userfault_in(&ctx->event_wqh);
948}
949
86039bd3
AA
950static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
951{
952 struct userfaultfd_ctx *ctx = file->private_data;
953 unsigned int ret;
954
955 poll_wait(file, &ctx->fd_wqh, wait);
956
957 switch (ctx->state) {
958 case UFFD_STATE_WAIT_API:
959 return POLLERR;
960 case UFFD_STATE_RUNNING:
ba85c702
AA
961 /*
962 * poll() never guarantees that read won't block.
963 * userfaults can be waken before they're read().
964 */
965 if (unlikely(!(file->f_flags & O_NONBLOCK)))
966 return POLLERR;
15b726ef
AA
967 /*
968 * lockless access to see if there are pending faults
969 * __pollwait last action is the add_wait_queue but
970 * the spin_unlock would allow the waitqueue_active to
971 * pass above the actual list_add inside
972 * add_wait_queue critical section. So use a full
973 * memory barrier to serialize the list_add write of
974 * add_wait_queue() with the waitqueue_active read
975 * below.
976 */
977 ret = 0;
978 smp_mb();
979 if (waitqueue_active(&ctx->fault_pending_wqh))
980 ret = POLLIN;
9cd75c3c
PE
981 else if (waitqueue_active(&ctx->event_wqh))
982 ret = POLLIN;
983
86039bd3
AA
984 return ret;
985 default:
8474901a
AA
986 WARN_ON_ONCE(1);
987 return POLLERR;
86039bd3
AA
988 }
989}
990
893e26e6
PE
991static const struct file_operations userfaultfd_fops;
992
993static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
994 struct userfaultfd_ctx *new,
995 struct uffd_msg *msg)
996{
997 int fd;
998 struct file *file;
999 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
1000
1001 fd = get_unused_fd_flags(flags);
1002 if (fd < 0)
1003 return fd;
1004
1005 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
1006 O_RDWR | flags);
1007 if (IS_ERR(file)) {
1008 put_unused_fd(fd);
1009 return PTR_ERR(file);
1010 }
1011
1012 fd_install(fd, file);
1013 msg->arg.reserved.reserved1 = 0;
1014 msg->arg.fork.ufd = fd;
1015
1016 return 0;
1017}
1018
86039bd3 1019static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 1020 struct uffd_msg *msg)
86039bd3
AA
1021{
1022 ssize_t ret;
1023 DECLARE_WAITQUEUE(wait, current);
15b726ef 1024 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1025 /*
1026 * Handling fork event requires sleeping operations, so
1027 * we drop the event_wqh lock, then do these ops, then
1028 * lock it back and wake up the waiter. While the lock is
1029 * dropped the ewq may go away so we keep track of it
1030 * carefully.
1031 */
1032 LIST_HEAD(fork_event);
1033 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1034
15b726ef 1035 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
1036 spin_lock(&ctx->fd_wqh.lock);
1037 __add_wait_queue(&ctx->fd_wqh, &wait);
1038 for (;;) {
1039 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1040 spin_lock(&ctx->fault_pending_wqh.lock);
1041 uwq = find_userfault(ctx);
1042 if (uwq) {
2c5b7e1b
AA
1043 /*
1044 * Use a seqcount to repeat the lockless check
1045 * in wake_userfault() to avoid missing
1046 * wakeups because during the refile both
1047 * waitqueue could become empty if this is the
1048 * only userfault.
1049 */
1050 write_seqcount_begin(&ctx->refile_seq);
1051
86039bd3 1052 /*
15b726ef
AA
1053 * The fault_pending_wqh.lock prevents the uwq
1054 * to disappear from under us.
1055 *
1056 * Refile this userfault from
1057 * fault_pending_wqh to fault_wqh, it's not
1058 * pending anymore after we read it.
1059 *
1060 * Use list_del() by hand (as
1061 * userfaultfd_wake_function also uses
1062 * list_del_init() by hand) to be sure nobody
1063 * changes __remove_wait_queue() to use
1064 * list_del_init() in turn breaking the
1065 * !list_empty_careful() check in
2055da97 1066 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1067 * must never be empty at any time during the
1068 * refile, or the waitqueue could disappear
1069 * from under us. The "wait_queue_head_t"
1070 * parameter of __remove_wait_queue() is unused
1071 * anyway.
86039bd3 1072 */
2055da97 1073 list_del(&uwq->wq.entry);
15b726ef
AA
1074 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075
2c5b7e1b
AA
1076 write_seqcount_end(&ctx->refile_seq);
1077
a9b85f94
AA
1078 /* careful to always initialize msg if ret == 0 */
1079 *msg = uwq->msg;
15b726ef 1080 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1081 ret = 0;
1082 break;
1083 }
15b726ef 1084 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1085
1086 spin_lock(&ctx->event_wqh.lock);
1087 uwq = find_userfault_evt(ctx);
1088 if (uwq) {
1089 *msg = uwq->msg;
1090
893e26e6
PE
1091 if (uwq->msg.event == UFFD_EVENT_FORK) {
1092 fork_nctx = (struct userfaultfd_ctx *)
1093 (unsigned long)
1094 uwq->msg.arg.reserved.reserved1;
2055da97 1095 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1096 /*
1097 * fork_nctx can be freed as soon as
1098 * we drop the lock, unless we take a
1099 * reference on it.
1100 */
1101 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1102 spin_unlock(&ctx->event_wqh.lock);
1103 ret = 0;
1104 break;
1105 }
1106
9cd75c3c
PE
1107 userfaultfd_event_complete(ctx, uwq);
1108 spin_unlock(&ctx->event_wqh.lock);
1109 ret = 0;
1110 break;
1111 }
1112 spin_unlock(&ctx->event_wqh.lock);
1113
86039bd3
AA
1114 if (signal_pending(current)) {
1115 ret = -ERESTARTSYS;
1116 break;
1117 }
1118 if (no_wait) {
1119 ret = -EAGAIN;
1120 break;
1121 }
1122 spin_unlock(&ctx->fd_wqh.lock);
1123 schedule();
1124 spin_lock(&ctx->fd_wqh.lock);
1125 }
1126 __remove_wait_queue(&ctx->fd_wqh, &wait);
1127 __set_current_state(TASK_RUNNING);
1128 spin_unlock(&ctx->fd_wqh.lock);
1129
893e26e6
PE
1130 if (!ret && msg->event == UFFD_EVENT_FORK) {
1131 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
384632e6
AA
1132 spin_lock(&ctx->event_wqh.lock);
1133 if (!list_empty(&fork_event)) {
1134 /*
1135 * The fork thread didn't abort, so we can
1136 * drop the temporary refcount.
1137 */
1138 userfaultfd_ctx_put(fork_nctx);
1139
1140 uwq = list_first_entry(&fork_event,
1141 typeof(*uwq),
1142 wq.entry);
1143 /*
1144 * If fork_event list wasn't empty and in turn
1145 * the event wasn't already released by fork
1146 * (the event is allocated on fork kernel
1147 * stack), put the event back to its place in
1148 * the event_wq. fork_event head will be freed
1149 * as soon as we return so the event cannot
1150 * stay queued there no matter the current
1151 * "ret" value.
1152 */
1153 list_del(&uwq->wq.entry);
1154 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1155
384632e6
AA
1156 /*
1157 * Leave the event in the waitqueue and report
1158 * error to userland if we failed to resolve
1159 * the userfault fork.
1160 */
1161 if (likely(!ret))
893e26e6 1162 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1163 } else {
1164 /*
1165 * Here the fork thread aborted and the
1166 * refcount from the fork thread on fork_nctx
1167 * has already been released. We still hold
1168 * the reference we took before releasing the
1169 * lock above. If resolve_userfault_fork
1170 * failed we've to drop it because the
1171 * fork_nctx has to be freed in such case. If
1172 * it succeeded we'll hold it because the new
1173 * uffd references it.
1174 */
1175 if (ret)
1176 userfaultfd_ctx_put(fork_nctx);
893e26e6 1177 }
384632e6 1178 spin_unlock(&ctx->event_wqh.lock);
893e26e6
PE
1179 }
1180
86039bd3
AA
1181 return ret;
1182}
1183
1184static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185 size_t count, loff_t *ppos)
1186{
1187 struct userfaultfd_ctx *ctx = file->private_data;
1188 ssize_t _ret, ret = 0;
a9b85f94 1189 struct uffd_msg msg;
86039bd3
AA
1190 int no_wait = file->f_flags & O_NONBLOCK;
1191
1192 if (ctx->state == UFFD_STATE_WAIT_API)
1193 return -EINVAL;
86039bd3
AA
1194
1195 for (;;) {
a9b85f94 1196 if (count < sizeof(msg))
86039bd3 1197 return ret ? ret : -EINVAL;
a9b85f94 1198 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1199 if (_ret < 0)
1200 return ret ? ret : _ret;
a9b85f94 1201 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1202 return ret ? ret : -EFAULT;
a9b85f94
AA
1203 ret += sizeof(msg);
1204 buf += sizeof(msg);
1205 count -= sizeof(msg);
86039bd3
AA
1206 /*
1207 * Allow to read more than one fault at time but only
1208 * block if waiting for the very first one.
1209 */
1210 no_wait = O_NONBLOCK;
1211 }
1212}
1213
1214static void __wake_userfault(struct userfaultfd_ctx *ctx,
1215 struct userfaultfd_wake_range *range)
1216{
15b726ef 1217 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1218 /* wake all in the range and autoremove */
15b726ef 1219 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1220 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1221 range);
1222 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1223 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1224 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1225}
1226
1227static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1228 struct userfaultfd_wake_range *range)
1229{
2c5b7e1b
AA
1230 unsigned seq;
1231 bool need_wakeup;
1232
86039bd3
AA
1233 /*
1234 * To be sure waitqueue_active() is not reordered by the CPU
1235 * before the pagetable update, use an explicit SMP memory
1236 * barrier here. PT lock release or up_read(mmap_sem) still
1237 * have release semantics that can allow the
1238 * waitqueue_active() to be reordered before the pte update.
1239 */
1240 smp_mb();
1241
1242 /*
1243 * Use waitqueue_active because it's very frequent to
1244 * change the address space atomically even if there are no
1245 * userfaults yet. So we take the spinlock only when we're
1246 * sure we've userfaults to wake.
1247 */
2c5b7e1b
AA
1248 do {
1249 seq = read_seqcount_begin(&ctx->refile_seq);
1250 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1251 waitqueue_active(&ctx->fault_wqh);
1252 cond_resched();
1253 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1254 if (need_wakeup)
86039bd3
AA
1255 __wake_userfault(ctx, range);
1256}
1257
1258static __always_inline int validate_range(struct mm_struct *mm,
1259 __u64 start, __u64 len)
1260{
1261 __u64 task_size = mm->task_size;
1262
1263 if (start & ~PAGE_MASK)
1264 return -EINVAL;
1265 if (len & ~PAGE_MASK)
1266 return -EINVAL;
1267 if (!len)
1268 return -EINVAL;
1269 if (start < mmap_min_addr)
1270 return -EINVAL;
1271 if (start >= task_size)
1272 return -EINVAL;
1273 if (len > task_size - start)
1274 return -EINVAL;
1275 return 0;
1276}
1277
ba6907db
MR
1278static inline bool vma_can_userfault(struct vm_area_struct *vma)
1279{
cac67329
MR
1280 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1281 vma_is_shmem(vma);
ba6907db
MR
1282}
1283
86039bd3
AA
1284static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1285 unsigned long arg)
1286{
1287 struct mm_struct *mm = ctx->mm;
1288 struct vm_area_struct *vma, *prev, *cur;
1289 int ret;
1290 struct uffdio_register uffdio_register;
1291 struct uffdio_register __user *user_uffdio_register;
1292 unsigned long vm_flags, new_flags;
1293 bool found;
ce53e8e6 1294 bool basic_ioctls;
86039bd3
AA
1295 unsigned long start, end, vma_end;
1296
1297 user_uffdio_register = (struct uffdio_register __user *) arg;
1298
1299 ret = -EFAULT;
1300 if (copy_from_user(&uffdio_register, user_uffdio_register,
1301 sizeof(uffdio_register)-sizeof(__u64)))
1302 goto out;
1303
1304 ret = -EINVAL;
1305 if (!uffdio_register.mode)
1306 goto out;
1307 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1308 UFFDIO_REGISTER_MODE_WP))
1309 goto out;
1310 vm_flags = 0;
1311 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1312 vm_flags |= VM_UFFD_MISSING;
1313 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1314 vm_flags |= VM_UFFD_WP;
1315 /*
1316 * FIXME: remove the below error constraint by
1317 * implementing the wprotect tracking mode.
1318 */
1319 ret = -EINVAL;
1320 goto out;
1321 }
1322
1323 ret = validate_range(mm, uffdio_register.range.start,
1324 uffdio_register.range.len);
1325 if (ret)
1326 goto out;
1327
1328 start = uffdio_register.range.start;
1329 end = start + uffdio_register.range.len;
1330
d2005e3f
ON
1331 ret = -ENOMEM;
1332 if (!mmget_not_zero(mm))
1333 goto out;
1334
86039bd3 1335 down_write(&mm->mmap_sem);
633ab816
AA
1336 if (!mmget_still_valid(mm))
1337 goto out_unlock;
86039bd3 1338 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1339 if (!vma)
1340 goto out_unlock;
1341
1342 /* check that there's at least one vma in the range */
1343 ret = -EINVAL;
1344 if (vma->vm_start >= end)
1345 goto out_unlock;
1346
cab350af
MK
1347 /*
1348 * If the first vma contains huge pages, make sure start address
1349 * is aligned to huge page size.
1350 */
1351 if (is_vm_hugetlb_page(vma)) {
1352 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1353
1354 if (start & (vma_hpagesize - 1))
1355 goto out_unlock;
1356 }
1357
86039bd3
AA
1358 /*
1359 * Search for not compatible vmas.
86039bd3
AA
1360 */
1361 found = false;
ce53e8e6 1362 basic_ioctls = false;
86039bd3
AA
1363 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1364 cond_resched();
1365
1366 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1367 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1368
1369 /* check not compatible vmas */
1370 ret = -EINVAL;
ba6907db 1371 if (!vma_can_userfault(cur))
86039bd3 1372 goto out_unlock;
705a2810
AA
1373
1374 /*
1375 * UFFDIO_COPY will fill file holes even without
1376 * PROT_WRITE. This check enforces that if this is a
1377 * MAP_SHARED, the process has write permission to the backing
1378 * file. If VM_MAYWRITE is set it also enforces that on a
1379 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1380 * F_WRITE_SEAL can be taken until the vma is destroyed.
1381 */
1382 ret = -EPERM;
1383 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1384 goto out_unlock;
1385
cab350af
MK
1386 /*
1387 * If this vma contains ending address, and huge pages
1388 * check alignment.
1389 */
1390 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1391 end > cur->vm_start) {
1392 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1393
1394 ret = -EINVAL;
1395
1396 if (end & (vma_hpagesize - 1))
1397 goto out_unlock;
1398 }
86039bd3
AA
1399
1400 /*
1401 * Check that this vma isn't already owned by a
1402 * different userfaultfd. We can't allow more than one
1403 * userfaultfd to own a single vma simultaneously or we
1404 * wouldn't know which one to deliver the userfaults to.
1405 */
1406 ret = -EBUSY;
1407 if (cur->vm_userfaultfd_ctx.ctx &&
1408 cur->vm_userfaultfd_ctx.ctx != ctx)
1409 goto out_unlock;
1410
cab350af
MK
1411 /*
1412 * Note vmas containing huge pages
1413 */
ce53e8e6
MR
1414 if (is_vm_hugetlb_page(cur))
1415 basic_ioctls = true;
cab350af 1416
86039bd3
AA
1417 found = true;
1418 }
1419 BUG_ON(!found);
1420
1421 if (vma->vm_start < start)
1422 prev = vma;
1423
1424 ret = 0;
1425 do {
1426 cond_resched();
1427
ba6907db 1428 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1429 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1430 vma->vm_userfaultfd_ctx.ctx != ctx);
705a2810 1431 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1432
1433 /*
1434 * Nothing to do: this vma is already registered into this
1435 * userfaultfd and with the right tracking mode too.
1436 */
1437 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1438 (vma->vm_flags & vm_flags) == vm_flags)
1439 goto skip;
1440
1441 if (vma->vm_start > start)
1442 start = vma->vm_start;
1443 vma_end = min(end, vma->vm_end);
1444
1445 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1446 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1447 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1448 vma_policy(vma),
8392add7
CC
1449 ((struct vm_userfaultfd_ctx){ ctx }),
1450 vma_get_anon_name(vma));
86039bd3
AA
1451 if (prev) {
1452 vma = prev;
1453 goto next;
1454 }
1455 if (vma->vm_start < start) {
1456 ret = split_vma(mm, vma, start, 1);
1457 if (ret)
1458 break;
1459 }
1460 if (vma->vm_end > end) {
1461 ret = split_vma(mm, vma, end, 0);
1462 if (ret)
1463 break;
1464 }
1465 next:
1466 /*
1467 * In the vma_merge() successful mprotect-like case 8:
1468 * the next vma was merged into the current one and
1469 * the current one has not been updated yet.
1470 */
1471 vma->vm_flags = new_flags;
1472 vma->vm_userfaultfd_ctx.ctx = ctx;
1473
1474 skip:
1475 prev = vma;
1476 start = vma->vm_end;
1477 vma = vma->vm_next;
1478 } while (vma && vma->vm_start < end);
1479out_unlock:
1480 up_write(&mm->mmap_sem);
d2005e3f 1481 mmput(mm);
86039bd3
AA
1482 if (!ret) {
1483 /*
1484 * Now that we scanned all vmas we can already tell
1485 * userland which ioctls methods are guaranteed to
1486 * succeed on this range.
1487 */
ce53e8e6 1488 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1489 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1490 &user_uffdio_register->ioctls))
1491 ret = -EFAULT;
1492 }
1493out:
1494 return ret;
1495}
1496
1497static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1498 unsigned long arg)
1499{
1500 struct mm_struct *mm = ctx->mm;
1501 struct vm_area_struct *vma, *prev, *cur;
1502 int ret;
1503 struct uffdio_range uffdio_unregister;
1504 unsigned long new_flags;
1505 bool found;
1506 unsigned long start, end, vma_end;
1507 const void __user *buf = (void __user *)arg;
1508
1509 ret = -EFAULT;
1510 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1511 goto out;
1512
1513 ret = validate_range(mm, uffdio_unregister.start,
1514 uffdio_unregister.len);
1515 if (ret)
1516 goto out;
1517
1518 start = uffdio_unregister.start;
1519 end = start + uffdio_unregister.len;
1520
d2005e3f
ON
1521 ret = -ENOMEM;
1522 if (!mmget_not_zero(mm))
1523 goto out;
1524
86039bd3 1525 down_write(&mm->mmap_sem);
633ab816
AA
1526 if (!mmget_still_valid(mm))
1527 goto out_unlock;
86039bd3 1528 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1529 if (!vma)
1530 goto out_unlock;
1531
1532 /* check that there's at least one vma in the range */
1533 ret = -EINVAL;
1534 if (vma->vm_start >= end)
1535 goto out_unlock;
1536
cab350af
MK
1537 /*
1538 * If the first vma contains huge pages, make sure start address
1539 * is aligned to huge page size.
1540 */
1541 if (is_vm_hugetlb_page(vma)) {
1542 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1543
1544 if (start & (vma_hpagesize - 1))
1545 goto out_unlock;
1546 }
1547
86039bd3
AA
1548 /*
1549 * Search for not compatible vmas.
86039bd3
AA
1550 */
1551 found = false;
1552 ret = -EINVAL;
1553 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1554 cond_resched();
1555
1556 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1557 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1558
1559 /*
1560 * Check not compatible vmas, not strictly required
1561 * here as not compatible vmas cannot have an
1562 * userfaultfd_ctx registered on them, but this
1563 * provides for more strict behavior to notice
1564 * unregistration errors.
1565 */
ba6907db 1566 if (!vma_can_userfault(cur))
86039bd3
AA
1567 goto out_unlock;
1568
1569 found = true;
1570 }
1571 BUG_ON(!found);
1572
1573 if (vma->vm_start < start)
1574 prev = vma;
1575
1576 ret = 0;
1577 do {
1578 cond_resched();
1579
ba6907db 1580 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1581
1582 /*
1583 * Nothing to do: this vma is already registered into this
1584 * userfaultfd and with the right tracking mode too.
1585 */
1586 if (!vma->vm_userfaultfd_ctx.ctx)
1587 goto skip;
1588
b99eaefb
AA
1589 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1590
86039bd3
AA
1591 if (vma->vm_start > start)
1592 start = vma->vm_start;
1593 vma_end = min(end, vma->vm_end);
1594
09fa5296
AA
1595 if (userfaultfd_missing(vma)) {
1596 /*
1597 * Wake any concurrent pending userfault while
1598 * we unregister, so they will not hang
1599 * permanently and it avoids userland to call
1600 * UFFDIO_WAKE explicitly.
1601 */
1602 struct userfaultfd_wake_range range;
1603 range.start = start;
1604 range.len = vma_end - start;
1605 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1606 }
1607
86039bd3
AA
1608 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1609 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1610 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1611 vma_policy(vma),
8392add7
CC
1612 NULL_VM_UFFD_CTX,
1613 vma_get_anon_name(vma));
86039bd3
AA
1614 if (prev) {
1615 vma = prev;
1616 goto next;
1617 }
1618 if (vma->vm_start < start) {
1619 ret = split_vma(mm, vma, start, 1);
1620 if (ret)
1621 break;
1622 }
1623 if (vma->vm_end > end) {
1624 ret = split_vma(mm, vma, end, 0);
1625 if (ret)
1626 break;
1627 }
1628 next:
1629 /*
1630 * In the vma_merge() successful mprotect-like case 8:
1631 * the next vma was merged into the current one and
1632 * the current one has not been updated yet.
1633 */
1634 vma->vm_flags = new_flags;
1635 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1636
1637 skip:
1638 prev = vma;
1639 start = vma->vm_end;
1640 vma = vma->vm_next;
1641 } while (vma && vma->vm_start < end);
1642out_unlock:
1643 up_write(&mm->mmap_sem);
d2005e3f 1644 mmput(mm);
86039bd3
AA
1645out:
1646 return ret;
1647}
1648
1649/*
ba85c702
AA
1650 * userfaultfd_wake may be used in combination with the
1651 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1652 */
1653static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1654 unsigned long arg)
1655{
1656 int ret;
1657 struct uffdio_range uffdio_wake;
1658 struct userfaultfd_wake_range range;
1659 const void __user *buf = (void __user *)arg;
1660
1661 ret = -EFAULT;
1662 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1663 goto out;
1664
1665 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1666 if (ret)
1667 goto out;
1668
1669 range.start = uffdio_wake.start;
1670 range.len = uffdio_wake.len;
1671
1672 /*
1673 * len == 0 means wake all and we don't want to wake all here,
1674 * so check it again to be sure.
1675 */
1676 VM_BUG_ON(!range.len);
1677
1678 wake_userfault(ctx, &range);
1679 ret = 0;
1680
1681out:
1682 return ret;
1683}
1684
ad465cae
AA
1685static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1686 unsigned long arg)
1687{
1688 __s64 ret;
1689 struct uffdio_copy uffdio_copy;
1690 struct uffdio_copy __user *user_uffdio_copy;
1691 struct userfaultfd_wake_range range;
1692
1693 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1694
1695 ret = -EFAULT;
1696 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1697 /* don't copy "copy" last field */
1698 sizeof(uffdio_copy)-sizeof(__s64)))
1699 goto out;
1700
1701 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1702 if (ret)
1703 goto out;
1704 /*
1705 * double check for wraparound just in case. copy_from_user()
1706 * will later check uffdio_copy.src + uffdio_copy.len to fit
1707 * in the userland range.
1708 */
1709 ret = -EINVAL;
1710 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1711 goto out;
1712 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1713 goto out;
d2005e3f
ON
1714 if (mmget_not_zero(ctx->mm)) {
1715 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1716 uffdio_copy.len);
1717 mmput(ctx->mm);
96333187 1718 } else {
e86b298b 1719 return -ESRCH;
d2005e3f 1720 }
ad465cae
AA
1721 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1722 return -EFAULT;
1723 if (ret < 0)
1724 goto out;
1725 BUG_ON(!ret);
1726 /* len == 0 would wake all */
1727 range.len = ret;
1728 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1729 range.start = uffdio_copy.dst;
1730 wake_userfault(ctx, &range);
1731 }
1732 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1733out:
1734 return ret;
1735}
1736
1737static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1738 unsigned long arg)
1739{
1740 __s64 ret;
1741 struct uffdio_zeropage uffdio_zeropage;
1742 struct uffdio_zeropage __user *user_uffdio_zeropage;
1743 struct userfaultfd_wake_range range;
1744
1745 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1746
1747 ret = -EFAULT;
1748 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1749 /* don't copy "zeropage" last field */
1750 sizeof(uffdio_zeropage)-sizeof(__s64)))
1751 goto out;
1752
1753 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1754 uffdio_zeropage.range.len);
1755 if (ret)
1756 goto out;
1757 ret = -EINVAL;
1758 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1759 goto out;
1760
d2005e3f
ON
1761 if (mmget_not_zero(ctx->mm)) {
1762 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1763 uffdio_zeropage.range.len);
1764 mmput(ctx->mm);
9d95aa4b 1765 } else {
e86b298b 1766 return -ESRCH;
d2005e3f 1767 }
ad465cae
AA
1768 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1769 return -EFAULT;
1770 if (ret < 0)
1771 goto out;
1772 /* len == 0 would wake all */
1773 BUG_ON(!ret);
1774 range.len = ret;
1775 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1776 range.start = uffdio_zeropage.range.start;
1777 wake_userfault(ctx, &range);
1778 }
1779 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1780out:
1781 return ret;
1782}
1783
9cd75c3c
PE
1784static inline unsigned int uffd_ctx_features(__u64 user_features)
1785{
1786 /*
1787 * For the current set of features the bits just coincide
1788 */
1789 return (unsigned int)user_features;
1790}
1791
86039bd3
AA
1792/*
1793 * userland asks for a certain API version and we return which bits
1794 * and ioctl commands are implemented in this kernel for such API
1795 * version or -EINVAL if unknown.
1796 */
1797static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1798 unsigned long arg)
1799{
1800 struct uffdio_api uffdio_api;
1801 void __user *buf = (void __user *)arg;
1802 int ret;
65603144 1803 __u64 features;
86039bd3
AA
1804
1805 ret = -EINVAL;
1806 if (ctx->state != UFFD_STATE_WAIT_API)
1807 goto out;
1808 ret = -EFAULT;
a9b85f94 1809 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1810 goto out;
65603144
AA
1811 features = uffdio_api.features;
1812 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1813 memset(&uffdio_api, 0, sizeof(uffdio_api));
1814 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1815 goto out;
1816 ret = -EINVAL;
1817 goto out;
1818 }
65603144
AA
1819 /* report all available features and ioctls to userland */
1820 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1821 uffdio_api.ioctls = UFFD_API_IOCTLS;
1822 ret = -EFAULT;
1823 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1824 goto out;
1825 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1826 /* only enable the requested features for this uffd context */
1827 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1828 ret = 0;
1829out:
1830 return ret;
1831}
1832
1833static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1834 unsigned long arg)
1835{
1836 int ret = -EINVAL;
1837 struct userfaultfd_ctx *ctx = file->private_data;
1838
e6485a47
AA
1839 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1840 return -EINVAL;
1841
86039bd3
AA
1842 switch(cmd) {
1843 case UFFDIO_API:
1844 ret = userfaultfd_api(ctx, arg);
1845 break;
1846 case UFFDIO_REGISTER:
1847 ret = userfaultfd_register(ctx, arg);
1848 break;
1849 case UFFDIO_UNREGISTER:
1850 ret = userfaultfd_unregister(ctx, arg);
1851 break;
1852 case UFFDIO_WAKE:
1853 ret = userfaultfd_wake(ctx, arg);
1854 break;
ad465cae
AA
1855 case UFFDIO_COPY:
1856 ret = userfaultfd_copy(ctx, arg);
1857 break;
1858 case UFFDIO_ZEROPAGE:
1859 ret = userfaultfd_zeropage(ctx, arg);
1860 break;
86039bd3
AA
1861 }
1862 return ret;
1863}
1864
1865#ifdef CONFIG_PROC_FS
1866static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1867{
1868 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1869 wait_queue_entry_t *wq;
86039bd3
AA
1870 struct userfaultfd_wait_queue *uwq;
1871 unsigned long pending = 0, total = 0;
1872
15b726ef 1873 spin_lock(&ctx->fault_pending_wqh.lock);
2055da97 1874 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1875 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1876 pending++;
1877 total++;
1878 }
2055da97 1879 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3 1880 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1881 total++;
1882 }
15b726ef 1883 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1884
1885 /*
1886 * If more protocols will be added, there will be all shown
1887 * separated by a space. Like this:
1888 * protocols: aa:... bb:...
1889 */
1890 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1891 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1892 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1893}
1894#endif
1895
1896static const struct file_operations userfaultfd_fops = {
1897#ifdef CONFIG_PROC_FS
1898 .show_fdinfo = userfaultfd_show_fdinfo,
1899#endif
1900 .release = userfaultfd_release,
1901 .poll = userfaultfd_poll,
1902 .read = userfaultfd_read,
1903 .unlocked_ioctl = userfaultfd_ioctl,
1904 .compat_ioctl = userfaultfd_ioctl,
1905 .llseek = noop_llseek,
1906};
1907
3004ec9c
AA
1908static void init_once_userfaultfd_ctx(void *mem)
1909{
1910 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1911
1912 init_waitqueue_head(&ctx->fault_pending_wqh);
1913 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1914 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1915 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1916 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1917}
1918
86039bd3 1919/**
9332ef9d 1920 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1921 * @flags: Flags for the userfaultfd file.
1922 *
9332ef9d 1923 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1924 * it into the fd table. This is useful when the userfaultfd file is
1925 * used during the initialization of data structures that require
1926 * extra setup after the userfaultfd creation. So the userfaultfd
1927 * creation is split into the file pointer creation phase, and the
1928 * file descriptor installation phase. In this way races with
1929 * userspace closing the newly installed file descriptor can be
9332ef9d 1930 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1931 * pointer.
1932 */
1933static struct file *userfaultfd_file_create(int flags)
1934{
1935 struct file *file;
1936 struct userfaultfd_ctx *ctx;
1937
1938 BUG_ON(!current->mm);
1939
1940 /* Check the UFFD_* constants for consistency. */
1941 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1942 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1943
1944 file = ERR_PTR(-EINVAL);
1945 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1946 goto out;
1947
1948 file = ERR_PTR(-ENOMEM);
3004ec9c 1949 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1950 if (!ctx)
1951 goto out;
1952
1953 atomic_set(&ctx->refcount, 1);
86039bd3 1954 ctx->flags = flags;
9cd75c3c 1955 ctx->features = 0;
86039bd3
AA
1956 ctx->state = UFFD_STATE_WAIT_API;
1957 ctx->released = false;
1958 ctx->mm = current->mm;
1959 /* prevent the mm struct to be freed */
f1f10076 1960 mmgrab(ctx->mm);
86039bd3
AA
1961
1962 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1963 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1964 if (IS_ERR(file)) {
d2005e3f 1965 mmdrop(ctx->mm);
3004ec9c 1966 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1967 }
86039bd3
AA
1968out:
1969 return file;
1970}
1971
1972SYSCALL_DEFINE1(userfaultfd, int, flags)
1973{
1974 int fd, error;
1975 struct file *file;
1976
1977 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1978 if (error < 0)
1979 return error;
1980 fd = error;
1981
1982 file = userfaultfd_file_create(flags);
1983 if (IS_ERR(file)) {
1984 error = PTR_ERR(file);
1985 goto err_put_unused_fd;
1986 }
1987 fd_install(fd, file);
1988
1989 return fd;
1990
1991err_put_unused_fd:
1992 put_unused_fd(fd);
1993
1994 return error;
1995}
3004ec9c
AA
1996
1997static int __init userfaultfd_init(void)
1998{
1999 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2000 sizeof(struct userfaultfd_ctx),
2001 0,
2002 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2003 init_once_userfaultfd_ctx);
2004 return 0;
2005}
2006__initcall(userfaultfd_init);