shm: add memfd_create() syscall
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
39f0247d 48#include <linux/generic_acl.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
8a09920f 68#include <linux/syscalls.h>
92562927 69#include <linux/magic.h>
8a09920f 70#include <uapi/linux/memfd.h>
304dbdb7 71
1da177e4 72#include <asm/uaccess.h>
1da177e4
LT
73#include <asm/pgtable.h>
74
caefba17 75#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
76#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
77
1da177e4
LT
78/* Pretend that each entry is of this size in directory's i_size */
79#define BOGO_DIRENT_SIZE 20
80
69f07ec9
HD
81/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
82#define SHORT_SYMLINK_LEN 128
83
1aac1400 84/*
1ccc3ffa
HD
85 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
86 * inode->i_private (with i_mutex making sure that it has only one user at
87 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
88 */
89struct shmem_falloc {
887675c9 90 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
91 pgoff_t start; /* start of range currently being fallocated */
92 pgoff_t next; /* the next page offset to be fallocated */
93 pgoff_t nr_falloced; /* how many new pages have been fallocated */
94 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
95};
96
285b2c4f 97/* Flag allocation requirements to shmem_getpage */
1da177e4 98enum sgp_type {
1da177e4
LT
99 SGP_READ, /* don't exceed i_size, don't allocate page */
100 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 101 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
102 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
103 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
104};
105
b76db735 106#ifdef CONFIG_TMPFS
680d794b 107static unsigned long shmem_default_max_blocks(void)
108{
109 return totalram_pages / 2;
110}
111
112static unsigned long shmem_default_max_inodes(void)
113{
114 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
115}
b76db735 116#endif
680d794b 117
bde05d1c
HD
118static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
119static int shmem_replace_page(struct page **pagep, gfp_t gfp,
120 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
121static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
123
124static inline int shmem_getpage(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, int *fault_type)
126{
127 return shmem_getpage_gfp(inode, index, pagep, sgp,
128 mapping_gfp_mask(inode->i_mapping), fault_type);
129}
1da177e4 130
1da177e4
LT
131static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
132{
133 return sb->s_fs_info;
134}
135
136/*
137 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
138 * for shared memory and for shared anonymous (/dev/zero) mappings
139 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
140 * consistent with the pre-accounting of private mappings ...
141 */
142static inline int shmem_acct_size(unsigned long flags, loff_t size)
143{
0b0a0806 144 return (flags & VM_NORESERVE) ?
191c5424 145 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
146}
147
148static inline void shmem_unacct_size(unsigned long flags, loff_t size)
149{
0b0a0806 150 if (!(flags & VM_NORESERVE))
1da177e4
LT
151 vm_unacct_memory(VM_ACCT(size));
152}
153
154/*
155 * ... whereas tmpfs objects are accounted incrementally as
156 * pages are allocated, in order to allow huge sparse files.
157 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
158 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
159 */
160static inline int shmem_acct_block(unsigned long flags)
161{
0b0a0806 162 return (flags & VM_NORESERVE) ?
191c5424 163 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
164}
165
166static inline void shmem_unacct_blocks(unsigned long flags, long pages)
167{
0b0a0806 168 if (flags & VM_NORESERVE)
1da177e4
LT
169 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
170}
171
759b9775 172static const struct super_operations shmem_ops;
f5e54d6e 173static const struct address_space_operations shmem_aops;
15ad7cdc 174static const struct file_operations shmem_file_operations;
92e1d5be
AV
175static const struct inode_operations shmem_inode_operations;
176static const struct inode_operations shmem_dir_inode_operations;
177static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 178static const struct vm_operations_struct shmem_vm_ops;
1da177e4 179
6c231b7b 180static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 181 .ra_pages = 0, /* No readahead */
4f98a2fe 182 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
183};
184
185static LIST_HEAD(shmem_swaplist);
cb5f7b9a 186static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 187
5b04c689
PE
188static int shmem_reserve_inode(struct super_block *sb)
189{
190 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 if (sbinfo->max_inodes) {
192 spin_lock(&sbinfo->stat_lock);
193 if (!sbinfo->free_inodes) {
194 spin_unlock(&sbinfo->stat_lock);
195 return -ENOSPC;
196 }
197 sbinfo->free_inodes--;
198 spin_unlock(&sbinfo->stat_lock);
199 }
200 return 0;
201}
202
203static void shmem_free_inode(struct super_block *sb)
204{
205 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
206 if (sbinfo->max_inodes) {
207 spin_lock(&sbinfo->stat_lock);
208 sbinfo->free_inodes++;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211}
212
46711810 213/**
41ffe5d5 214 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
215 * @inode: inode to recalc
216 *
217 * We have to calculate the free blocks since the mm can drop
218 * undirtied hole pages behind our back.
219 *
220 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
221 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
222 *
223 * It has to be called with the spinlock held.
224 */
225static void shmem_recalc_inode(struct inode *inode)
226{
227 struct shmem_inode_info *info = SHMEM_I(inode);
228 long freed;
229
230 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
231 if (freed > 0) {
54af6042
HD
232 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
233 if (sbinfo->max_blocks)
234 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 235 info->alloced -= freed;
54af6042 236 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 237 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
238 }
239}
240
7a5d0fbb
HD
241/*
242 * Replace item expected in radix tree by a new item, while holding tree lock.
243 */
244static int shmem_radix_tree_replace(struct address_space *mapping,
245 pgoff_t index, void *expected, void *replacement)
246{
247 void **pslot;
248 void *item = NULL;
249
250 VM_BUG_ON(!expected);
251 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
252 if (pslot)
253 item = radix_tree_deref_slot_protected(pslot,
254 &mapping->tree_lock);
255 if (item != expected)
256 return -ENOENT;
257 if (replacement)
258 radix_tree_replace_slot(pslot, replacement);
259 else
260 radix_tree_delete(&mapping->page_tree, index);
261 return 0;
262}
263
d1899228
HD
264/*
265 * Sometimes, before we decide whether to proceed or to fail, we must check
266 * that an entry was not already brought back from swap by a racing thread.
267 *
268 * Checking page is not enough: by the time a SwapCache page is locked, it
269 * might be reused, and again be SwapCache, using the same swap as before.
270 */
271static bool shmem_confirm_swap(struct address_space *mapping,
272 pgoff_t index, swp_entry_t swap)
273{
274 void *item;
275
276 rcu_read_lock();
277 item = radix_tree_lookup(&mapping->page_tree, index);
278 rcu_read_unlock();
279 return item == swp_to_radix_entry(swap);
280}
281
46f65ec1
HD
282/*
283 * Like add_to_page_cache_locked, but error if expected item has gone.
284 */
285static int shmem_add_to_page_cache(struct page *page,
286 struct address_space *mapping,
287 pgoff_t index, gfp_t gfp, void *expected)
288{
b065b432 289 int error;
46f65ec1
HD
290
291 VM_BUG_ON(!PageLocked(page));
292 VM_BUG_ON(!PageSwapBacked(page));
293
b065b432
HD
294 page_cache_get(page);
295 page->mapping = mapping;
296 page->index = index;
297
298 spin_lock_irq(&mapping->tree_lock);
46f65ec1 299 if (!expected)
b065b432
HD
300 error = radix_tree_insert(&mapping->page_tree, index, page);
301 else
302 error = shmem_radix_tree_replace(mapping, index, expected,
303 page);
46f65ec1 304 if (!error) {
b065b432
HD
305 mapping->nrpages++;
306 __inc_zone_page_state(page, NR_FILE_PAGES);
307 __inc_zone_page_state(page, NR_SHMEM);
308 spin_unlock_irq(&mapping->tree_lock);
309 } else {
310 page->mapping = NULL;
311 spin_unlock_irq(&mapping->tree_lock);
312 page_cache_release(page);
46f65ec1 313 }
46f65ec1
HD
314 return error;
315}
316
6922c0c7
HD
317/*
318 * Like delete_from_page_cache, but substitutes swap for page.
319 */
320static void shmem_delete_from_page_cache(struct page *page, void *radswap)
321{
322 struct address_space *mapping = page->mapping;
323 int error;
324
325 spin_lock_irq(&mapping->tree_lock);
326 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
327 page->mapping = NULL;
328 mapping->nrpages--;
329 __dec_zone_page_state(page, NR_FILE_PAGES);
330 __dec_zone_page_state(page, NR_SHMEM);
331 spin_unlock_irq(&mapping->tree_lock);
332 page_cache_release(page);
333 BUG_ON(error);
334}
335
7a5d0fbb
HD
336/*
337 * Like find_get_pages, but collecting swap entries as well as pages.
338 */
339static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
340 pgoff_t start, unsigned int nr_pages,
341 struct page **pages, pgoff_t *indices)
342{
860f2759
JW
343 void **slot;
344 unsigned int ret = 0;
345 struct radix_tree_iter iter;
346
347 if (!nr_pages)
348 return 0;
7a5d0fbb
HD
349
350 rcu_read_lock();
351restart:
860f2759 352 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
7a5d0fbb
HD
353 struct page *page;
354repeat:
860f2759 355 page = radix_tree_deref_slot(slot);
7a5d0fbb
HD
356 if (unlikely(!page))
357 continue;
358 if (radix_tree_exception(page)) {
8079b1c8
HD
359 if (radix_tree_deref_retry(page))
360 goto restart;
361 /*
362 * Otherwise, we must be storing a swap entry
363 * here as an exceptional entry: so return it
364 * without attempting to raise page count.
365 */
366 goto export;
7a5d0fbb
HD
367 }
368 if (!page_cache_get_speculative(page))
369 goto repeat;
370
371 /* Has the page moved? */
860f2759 372 if (unlikely(page != *slot)) {
7a5d0fbb
HD
373 page_cache_release(page);
374 goto repeat;
375 }
376export:
860f2759 377 indices[ret] = iter.index;
7a5d0fbb 378 pages[ret] = page;
860f2759
JW
379 if (++ret == nr_pages)
380 break;
7a5d0fbb 381 }
7a5d0fbb
HD
382 rcu_read_unlock();
383 return ret;
384}
385
386/*
387 * Remove swap entry from radix tree, free the swap and its page cache.
388 */
389static int shmem_free_swap(struct address_space *mapping,
390 pgoff_t index, void *radswap)
391{
392 int error;
393
394 spin_lock_irq(&mapping->tree_lock);
395 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
396 spin_unlock_irq(&mapping->tree_lock);
397 if (!error)
398 free_swap_and_cache(radix_to_swp_entry(radswap));
399 return error;
400}
401
402/*
403 * Pagevec may contain swap entries, so shuffle up pages before releasing.
404 */
24513264 405static void shmem_deswap_pagevec(struct pagevec *pvec)
7a5d0fbb
HD
406{
407 int i, j;
408
409 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
410 struct page *page = pvec->pages[i];
411 if (!radix_tree_exceptional_entry(page))
412 pvec->pages[j++] = page;
413 }
414 pvec->nr = j;
24513264
HD
415}
416
417/*
418 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
419 */
420void shmem_unlock_mapping(struct address_space *mapping)
421{
422 struct pagevec pvec;
423 pgoff_t indices[PAGEVEC_SIZE];
424 pgoff_t index = 0;
425
426 pagevec_init(&pvec, 0);
427 /*
428 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
429 */
430 while (!mapping_unevictable(mapping)) {
431 /*
432 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
433 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
434 */
435 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
436 PAGEVEC_SIZE, pvec.pages, indices);
437 if (!pvec.nr)
438 break;
439 index = indices[pvec.nr - 1] + 1;
440 shmem_deswap_pagevec(&pvec);
441 check_move_unevictable_pages(pvec.pages, pvec.nr);
442 pagevec_release(&pvec);
443 cond_resched();
444 }
7a5d0fbb
HD
445}
446
447/*
448 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 449 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 450 */
1635f6a7
HD
451static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
452 bool unfalloc)
1da177e4 453{
285b2c4f 454 struct address_space *mapping = inode->i_mapping;
1da177e4 455 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 456 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
457 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
458 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
459 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 460 struct pagevec pvec;
7a5d0fbb
HD
461 pgoff_t indices[PAGEVEC_SIZE];
462 long nr_swaps_freed = 0;
285b2c4f 463 pgoff_t index;
bda97eab
HD
464 int i;
465
83e4fa9c
HD
466 if (lend == -1)
467 end = -1; /* unsigned, so actually very big */
bda97eab
HD
468
469 pagevec_init(&pvec, 0);
470 index = start;
83e4fa9c 471 while (index < end) {
7a5d0fbb 472 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 473 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
474 pvec.pages, indices);
475 if (!pvec.nr)
476 break;
bda97eab
HD
477 mem_cgroup_uncharge_start();
478 for (i = 0; i < pagevec_count(&pvec); i++) {
479 struct page *page = pvec.pages[i];
480
7a5d0fbb 481 index = indices[i];
83e4fa9c 482 if (index >= end)
bda97eab
HD
483 break;
484
7a5d0fbb 485 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
486 if (unfalloc)
487 continue;
3c2a0909
S
488 if (shmem_free_swap(mapping, index, page)) {
489 /* Swap was replaced by page: retry */
490 index--;
491 break;
492 }
493 nr_swaps_freed++;
bda97eab 494 continue;
7a5d0fbb
HD
495 }
496
497 if (!trylock_page(page))
bda97eab 498 continue;
1635f6a7
HD
499 if (!unfalloc || !PageUptodate(page)) {
500 if (page->mapping == mapping) {
501 VM_BUG_ON(PageWriteback(page));
502 truncate_inode_page(mapping, page);
3c2a0909
S
503 } else {
504 /* Page was replaced by swap: retry */
505 unlock_page(page);
506 index--;
507 break;
1635f6a7 508 }
bda97eab 509 }
bda97eab
HD
510 unlock_page(page);
511 }
24513264
HD
512 shmem_deswap_pagevec(&pvec);
513 pagevec_release(&pvec);
bda97eab
HD
514 mem_cgroup_uncharge_end();
515 cond_resched();
516 index++;
517 }
1da177e4 518
83e4fa9c 519 if (partial_start) {
bda97eab
HD
520 struct page *page = NULL;
521 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
522 if (page) {
83e4fa9c
HD
523 unsigned int top = PAGE_CACHE_SIZE;
524 if (start > end) {
525 top = partial_end;
526 partial_end = 0;
527 }
528 zero_user_segment(page, partial_start, top);
529 set_page_dirty(page);
530 unlock_page(page);
531 page_cache_release(page);
532 }
533 }
534 if (partial_end) {
535 struct page *page = NULL;
536 shmem_getpage(inode, end, &page, SGP_READ, NULL);
537 if (page) {
538 zero_user_segment(page, 0, partial_end);
bda97eab
HD
539 set_page_dirty(page);
540 unlock_page(page);
541 page_cache_release(page);
542 }
543 }
83e4fa9c
HD
544 if (start >= end)
545 return;
bda97eab
HD
546
547 index = start;
7dc7fb43 548 while (index < end) {
bda97eab 549 cond_resched();
7a5d0fbb 550 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 551 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
552 pvec.pages, indices);
553 if (!pvec.nr) {
7dc7fb43
HD
554 /* If all gone or hole-punch or unfalloc, we're done */
555 if (index == start || end != -1)
bda97eab 556 break;
7dc7fb43 557 /* But if truncating, restart to make sure all gone */
bda97eab
HD
558 index = start;
559 continue;
560 }
bda97eab
HD
561 mem_cgroup_uncharge_start();
562 for (i = 0; i < pagevec_count(&pvec); i++) {
563 struct page *page = pvec.pages[i];
564
7a5d0fbb 565 index = indices[i];
83e4fa9c 566 if (index >= end)
bda97eab
HD
567 break;
568
7a5d0fbb 569 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
570 if (unfalloc)
571 continue;
7dc7fb43
HD
572 if (shmem_free_swap(mapping, index, page)) {
573 /* Swap was replaced by page: retry */
574 index--;
575 break;
576 }
577 nr_swaps_freed++;
7a5d0fbb
HD
578 continue;
579 }
580
bda97eab 581 lock_page(page);
1635f6a7
HD
582 if (!unfalloc || !PageUptodate(page)) {
583 if (page->mapping == mapping) {
584 VM_BUG_ON(PageWriteback(page));
585 truncate_inode_page(mapping, page);
7dc7fb43
HD
586 } else {
587 /* Page was replaced by swap: retry */
588 unlock_page(page);
589 index--;
590 break;
1635f6a7 591 }
7a5d0fbb 592 }
bda97eab
HD
593 unlock_page(page);
594 }
24513264
HD
595 shmem_deswap_pagevec(&pvec);
596 pagevec_release(&pvec);
bda97eab
HD
597 mem_cgroup_uncharge_end();
598 index++;
599 }
94c1e62d 600
1da177e4 601 spin_lock(&info->lock);
7a5d0fbb 602 info->swapped -= nr_swaps_freed;
1da177e4
LT
603 shmem_recalc_inode(inode);
604 spin_unlock(&info->lock);
1635f6a7 605}
1da177e4 606
1635f6a7
HD
607void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
608{
609 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 610 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 611}
94c1e62d 612EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 613
94c1e62d 614static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
615{
616 struct inode *inode = dentry->d_inode;
1da177e4
LT
617 int error;
618
db78b877
CH
619 error = inode_change_ok(inode, attr);
620 if (error)
621 return error;
622
94c1e62d
HD
623 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
624 loff_t oldsize = inode->i_size;
625 loff_t newsize = attr->ia_size;
3889e6e7 626
94c1e62d
HD
627 if (newsize != oldsize) {
628 i_size_write(inode, newsize);
629 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
630 }
631 if (newsize < oldsize) {
632 loff_t holebegin = round_up(newsize, PAGE_SIZE);
633 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
634 shmem_truncate_range(inode, newsize, (loff_t)-1);
635 /* unmap again to remove racily COWed private pages */
636 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
637 }
1da177e4
LT
638 }
639
db78b877 640 setattr_copy(inode, attr);
39f0247d 641#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 642 if (attr->ia_valid & ATTR_MODE)
1c7c474c 643 error = generic_acl_chmod(inode);
39f0247d 644#endif
1da177e4
LT
645 return error;
646}
647
1f895f75 648static void shmem_evict_inode(struct inode *inode)
1da177e4 649{
1da177e4
LT
650 struct shmem_inode_info *info = SHMEM_I(inode);
651
3889e6e7 652 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
653 shmem_unacct_size(info->flags, inode->i_size);
654 inode->i_size = 0;
3889e6e7 655 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 656 if (!list_empty(&info->swaplist)) {
cb5f7b9a 657 mutex_lock(&shmem_swaplist_mutex);
1da177e4 658 list_del_init(&info->swaplist);
cb5f7b9a 659 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 660 }
69f07ec9
HD
661 } else
662 kfree(info->symlink);
b09e0fa4 663
38f38657 664 simple_xattrs_free(&info->xattrs);
0f3c42f5 665 WARN_ON(inode->i_blocks);
5b04c689 666 shmem_free_inode(inode->i_sb);
dbd5768f 667 clear_inode(inode);
1da177e4
LT
668}
669
46f65ec1
HD
670/*
671 * If swap found in inode, free it and move page from swapcache to filecache.
672 */
41ffe5d5 673static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 674 swp_entry_t swap, struct page **pagep)
1da177e4 675{
285b2c4f 676 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 677 void *radswap;
41ffe5d5 678 pgoff_t index;
bde05d1c
HD
679 gfp_t gfp;
680 int error = 0;
1da177e4 681
46f65ec1 682 radswap = swp_to_radix_entry(swap);
e504f3fd 683 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 684 if (index == -1)
285b2c4f 685 return 0;
2e0e26c7 686
1b1b32f2
HD
687 /*
688 * Move _head_ to start search for next from here.
1f895f75 689 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 690 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 691 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
692 */
693 if (shmem_swaplist.next != &info->swaplist)
694 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 695
bde05d1c
HD
696 gfp = mapping_gfp_mask(mapping);
697 if (shmem_should_replace_page(*pagep, gfp)) {
698 mutex_unlock(&shmem_swaplist_mutex);
699 error = shmem_replace_page(pagep, gfp, info, index);
700 mutex_lock(&shmem_swaplist_mutex);
701 /*
702 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
703 * allocation, but the inode might have been freed while we
704 * dropped it: although a racing shmem_evict_inode() cannot
705 * complete without emptying the radix_tree, our page lock
706 * on this swapcache page is not enough to prevent that -
707 * free_swap_and_cache() of our swap entry will only
708 * trylock_page(), removing swap from radix_tree whatever.
709 *
710 * We must not proceed to shmem_add_to_page_cache() if the
711 * inode has been freed, but of course we cannot rely on
712 * inode or mapping or info to check that. However, we can
713 * safely check if our swap entry is still in use (and here
714 * it can't have got reused for another page): if it's still
715 * in use, then the inode cannot have been freed yet, and we
716 * can safely proceed (if it's no longer in use, that tells
717 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
718 */
719 if (!page_swapcount(*pagep))
720 error = -ENOENT;
721 }
722
d13d1443 723 /*
778dd893
HD
724 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
725 * but also to hold up shmem_evict_inode(): so inode cannot be freed
726 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 727 */
bde05d1c
HD
728 if (!error)
729 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 730 GFP_NOWAIT, radswap);
48f170fb 731 if (error != -ENOMEM) {
46f65ec1
HD
732 /*
733 * Truncation and eviction use free_swap_and_cache(), which
734 * only does trylock page: if we raced, best clean up here.
735 */
bde05d1c
HD
736 delete_from_swap_cache(*pagep);
737 set_page_dirty(*pagep);
46f65ec1
HD
738 if (!error) {
739 spin_lock(&info->lock);
740 info->swapped--;
741 spin_unlock(&info->lock);
742 swap_free(swap);
743 }
2e0e26c7 744 error = 1; /* not an error, but entry was found */
1da177e4 745 }
2e0e26c7 746 return error;
1da177e4
LT
747}
748
749/*
46f65ec1 750 * Search through swapped inodes to find and replace swap by page.
1da177e4 751 */
41ffe5d5 752int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 753{
41ffe5d5 754 struct list_head *this, *next;
1da177e4
LT
755 struct shmem_inode_info *info;
756 int found = 0;
bde05d1c
HD
757 int error = 0;
758
759 /*
760 * There's a faint possibility that swap page was replaced before
0142ef6c 761 * caller locked it: caller will come back later with the right page.
bde05d1c 762 */
0142ef6c 763 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 764 goto out;
778dd893
HD
765
766 /*
767 * Charge page using GFP_KERNEL while we can wait, before taking
768 * the shmem_swaplist_mutex which might hold up shmem_writepage().
769 * Charged back to the user (not to caller) when swap account is used.
778dd893
HD
770 */
771 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
772 if (error)
773 goto out;
46f65ec1 774 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 775
cb5f7b9a 776 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
777 list_for_each_safe(this, next, &shmem_swaplist) {
778 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 779 if (info->swapped)
bde05d1c 780 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
781 else
782 list_del_init(&info->swaplist);
cb5f7b9a 783 cond_resched();
2e0e26c7 784 if (found)
778dd893 785 break;
1da177e4 786 }
cb5f7b9a 787 mutex_unlock(&shmem_swaplist_mutex);
778dd893 788
778dd893
HD
789 if (found < 0)
790 error = found;
791out:
aaa46865
HD
792 unlock_page(page);
793 page_cache_release(page);
778dd893 794 return error;
1da177e4
LT
795}
796
797/*
798 * Move the page from the page cache to the swap cache.
799 */
800static int shmem_writepage(struct page *page, struct writeback_control *wbc)
801{
802 struct shmem_inode_info *info;
1da177e4 803 struct address_space *mapping;
1da177e4 804 struct inode *inode;
6922c0c7
HD
805 swp_entry_t swap;
806 pgoff_t index;
1da177e4
LT
807
808 BUG_ON(!PageLocked(page));
1da177e4
LT
809 mapping = page->mapping;
810 index = page->index;
811 inode = mapping->host;
812 info = SHMEM_I(inode);
813 if (info->flags & VM_LOCKED)
814 goto redirty;
d9fe526a 815 if (!total_swap_pages)
1da177e4
LT
816 goto redirty;
817
d9fe526a
HD
818 /*
819 * shmem_backing_dev_info's capabilities prevent regular writeback or
820 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 821 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 822 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 823 * and not for the writeback threads or sync.
d9fe526a 824 */
48f170fb
HD
825 if (!wbc->for_reclaim) {
826 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
827 goto redirty;
828 }
1635f6a7
HD
829
830 /*
831 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
832 * value into swapfile.c, the only way we can correctly account for a
833 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
834 *
835 * That's okay for a page already fallocated earlier, but if we have
836 * not yet completed the fallocation, then (a) we want to keep track
837 * of this page in case we have to undo it, and (b) it may not be a
838 * good idea to continue anyway, once we're pushing into swap. So
839 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
840 */
841 if (!PageUptodate(page)) {
1aac1400
HD
842 if (inode->i_private) {
843 struct shmem_falloc *shmem_falloc;
844 spin_lock(&inode->i_lock);
845 shmem_falloc = inode->i_private;
846 if (shmem_falloc &&
887675c9 847 !shmem_falloc->waitq &&
1aac1400
HD
848 index >= shmem_falloc->start &&
849 index < shmem_falloc->next)
850 shmem_falloc->nr_unswapped++;
851 else
852 shmem_falloc = NULL;
853 spin_unlock(&inode->i_lock);
854 if (shmem_falloc)
855 goto redirty;
856 }
1635f6a7
HD
857 clear_highpage(page);
858 flush_dcache_page(page);
859 SetPageUptodate(page);
860 }
861
48f170fb
HD
862 swap = get_swap_page();
863 if (!swap.val)
864 goto redirty;
d9fe526a 865
b1dea800
HD
866 /*
867 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
868 * if it's not already there. Do it now before the page is
869 * moved to swap cache, when its pagelock no longer protects
b1dea800 870 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
871 * we've incremented swapped, because shmem_unuse_inode() will
872 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 873 */
48f170fb
HD
874 mutex_lock(&shmem_swaplist_mutex);
875 if (list_empty(&info->swaplist))
876 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 877
48f170fb 878 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 879 swap_shmem_alloc(swap);
6922c0c7
HD
880 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
881
882 spin_lock(&info->lock);
883 info->swapped++;
884 shmem_recalc_inode(inode);
826267cf 885 spin_unlock(&info->lock);
6922c0c7
HD
886
887 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 888 BUG_ON(page_mapped(page));
9fab5619 889 swap_writepage(page, wbc);
1da177e4
LT
890 return 0;
891 }
892
6922c0c7 893 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 894 swapcache_free(swap, NULL);
1da177e4
LT
895redirty:
896 set_page_dirty(page);
d9fe526a
HD
897 if (wbc->for_reclaim)
898 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
899 unlock_page(page);
900 return 0;
1da177e4
LT
901}
902
903#ifdef CONFIG_NUMA
680d794b 904#ifdef CONFIG_TMPFS
71fe804b 905static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 906{
095f1fc4 907 char buffer[64];
680d794b 908
71fe804b 909 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 910 return; /* show nothing */
680d794b 911
a7a88b23 912 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
913
914 seq_printf(seq, ",mpol=%s", buffer);
680d794b 915}
71fe804b
LS
916
917static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
918{
919 struct mempolicy *mpol = NULL;
920 if (sbinfo->mpol) {
921 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
922 mpol = sbinfo->mpol;
923 mpol_get(mpol);
924 spin_unlock(&sbinfo->stat_lock);
925 }
926 return mpol;
927}
680d794b 928#endif /* CONFIG_TMPFS */
929
41ffe5d5
HD
930static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
931 struct shmem_inode_info *info, pgoff_t index)
1da177e4 932{
1da177e4 933 struct vm_area_struct pvma;
18a2f371 934 struct page *page;
52cd3b07 935
1da177e4 936 /* Create a pseudo vma that just contains the policy */
c4cc6d07 937 pvma.vm_start = 0;
09c231cb
NZ
938 /* Bias interleave by inode number to distribute better across nodes */
939 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 940 pvma.vm_ops = NULL;
18a2f371
MG
941 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
942
943 page = swapin_readahead(swap, gfp, &pvma, 0);
944
945 /* Drop reference taken by mpol_shared_policy_lookup() */
946 mpol_cond_put(pvma.vm_policy);
947
948 return page;
1da177e4
LT
949}
950
02098fea 951static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 952 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
953{
954 struct vm_area_struct pvma;
18a2f371 955 struct page *page;
1da177e4 956
c4cc6d07
HD
957 /* Create a pseudo vma that just contains the policy */
958 pvma.vm_start = 0;
09c231cb
NZ
959 /* Bias interleave by inode number to distribute better across nodes */
960 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 961 pvma.vm_ops = NULL;
41ffe5d5 962 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 963
18a2f371 964 page = alloc_page_vma(gfp, &pvma, 0);
3c2a0909
S
965 if (page && is_cma_pageblock(page)) {
966 __free_page(page);
967 page = alloc_pages(gfp & ~__GFP_MOVABLE, 0);
968 }
18a2f371
MG
969
970 /* Drop reference taken by mpol_shared_policy_lookup() */
971 mpol_cond_put(pvma.vm_policy);
972
973 return page;
1da177e4 974}
680d794b 975#else /* !CONFIG_NUMA */
976#ifdef CONFIG_TMPFS
41ffe5d5 977static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 978{
979}
980#endif /* CONFIG_TMPFS */
981
41ffe5d5
HD
982static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
983 struct shmem_inode_info *info, pgoff_t index)
1da177e4 984{
41ffe5d5 985 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
986}
987
02098fea 988static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 989 struct shmem_inode_info *info, pgoff_t index)
1da177e4 990{
e84e2e13 991 return alloc_page(gfp);
1da177e4 992}
680d794b 993#endif /* CONFIG_NUMA */
1da177e4 994
71fe804b
LS
995#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
996static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
997{
998 return NULL;
999}
1000#endif
1001
bde05d1c
HD
1002/*
1003 * When a page is moved from swapcache to shmem filecache (either by the
1004 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1005 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1006 * ignorance of the mapping it belongs to. If that mapping has special
1007 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1008 * we may need to copy to a suitable page before moving to filecache.
1009 *
1010 * In a future release, this may well be extended to respect cpuset and
1011 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1012 * but for now it is a simple matter of zone.
1013 */
1014static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1015{
1016 return page_zonenum(page) > gfp_zone(gfp);
1017}
1018
1019static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1020 struct shmem_inode_info *info, pgoff_t index)
1021{
1022 struct page *oldpage, *newpage;
1023 struct address_space *swap_mapping;
1024 pgoff_t swap_index;
1025 int error;
1026
1027 oldpage = *pagep;
1028 swap_index = page_private(oldpage);
1029 swap_mapping = page_mapping(oldpage);
1030
1031 /*
1032 * We have arrived here because our zones are constrained, so don't
1033 * limit chance of success by further cpuset and node constraints.
1034 */
1035 gfp &= ~GFP_CONSTRAINT_MASK;
1036 newpage = shmem_alloc_page(gfp, info, index);
1037 if (!newpage)
1038 return -ENOMEM;
bde05d1c 1039
bde05d1c
HD
1040 page_cache_get(newpage);
1041 copy_highpage(newpage, oldpage);
0142ef6c 1042 flush_dcache_page(newpage);
bde05d1c 1043
bde05d1c 1044 __set_page_locked(newpage);
bde05d1c 1045 SetPageUptodate(newpage);
bde05d1c 1046 SetPageSwapBacked(newpage);
bde05d1c 1047 set_page_private(newpage, swap_index);
bde05d1c
HD
1048 SetPageSwapCache(newpage);
1049
1050 /*
1051 * Our caller will very soon move newpage out of swapcache, but it's
1052 * a nice clean interface for us to replace oldpage by newpage there.
1053 */
1054 spin_lock_irq(&swap_mapping->tree_lock);
1055 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1056 newpage);
0142ef6c
HD
1057 if (!error) {
1058 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1059 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1060 }
bde05d1c 1061 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1062
0142ef6c
HD
1063 if (unlikely(error)) {
1064 /*
1065 * Is this possible? I think not, now that our callers check
1066 * both PageSwapCache and page_private after getting page lock;
1067 * but be defensive. Reverse old to newpage for clear and free.
1068 */
1069 oldpage = newpage;
1070 } else {
1071 mem_cgroup_replace_page_cache(oldpage, newpage);
1072 lru_cache_add_anon(newpage);
1073 *pagep = newpage;
1074 }
bde05d1c
HD
1075
1076 ClearPageSwapCache(oldpage);
1077 set_page_private(oldpage, 0);
1078
1079 unlock_page(oldpage);
1080 page_cache_release(oldpage);
1081 page_cache_release(oldpage);
0142ef6c 1082 return error;
bde05d1c
HD
1083}
1084
1da177e4 1085/*
68da9f05 1086 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1087 *
1088 * If we allocate a new one we do not mark it dirty. That's up to the
1089 * vm. If we swap it in we mark it dirty since we also free the swap
1090 * entry since a page cannot live in both the swap and page cache
1091 */
41ffe5d5 1092static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1093 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1094{
1095 struct address_space *mapping = inode->i_mapping;
54af6042 1096 struct shmem_inode_info *info;
1da177e4 1097 struct shmem_sb_info *sbinfo;
27ab7006 1098 struct page *page;
1da177e4
LT
1099 swp_entry_t swap;
1100 int error;
54af6042 1101 int once = 0;
1635f6a7 1102 int alloced = 0;
1da177e4 1103
41ffe5d5 1104 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1105 return -EFBIG;
1da177e4 1106repeat:
54af6042 1107 swap.val = 0;
41ffe5d5 1108 page = find_lock_page(mapping, index);
54af6042
HD
1109 if (radix_tree_exceptional_entry(page)) {
1110 swap = radix_to_swp_entry(page);
1111 page = NULL;
1112 }
1113
1635f6a7 1114 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1115 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1116 error = -EINVAL;
1117 goto failed;
1118 }
1119
1635f6a7
HD
1120 /* fallocated page? */
1121 if (page && !PageUptodate(page)) {
1122 if (sgp != SGP_READ)
1123 goto clear;
1124 unlock_page(page);
1125 page_cache_release(page);
1126 page = NULL;
1127 }
54af6042 1128 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1129 *pagep = page;
1130 return 0;
27ab7006
HD
1131 }
1132
1133 /*
54af6042
HD
1134 * Fast cache lookup did not find it:
1135 * bring it back from swap or allocate.
27ab7006 1136 */
54af6042
HD
1137 info = SHMEM_I(inode);
1138 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1139
1da177e4
LT
1140 if (swap.val) {
1141 /* Look it up and read it in.. */
27ab7006
HD
1142 page = lookup_swap_cache(swap);
1143 if (!page) {
1da177e4 1144 /* here we actually do the io */
68da9f05
HD
1145 if (fault_type)
1146 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1147 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1148 if (!page) {
54af6042
HD
1149 error = -ENOMEM;
1150 goto failed;
1da177e4 1151 }
1da177e4
LT
1152 }
1153
1154 /* We have to do this with page locked to prevent races */
54af6042 1155 lock_page(page);
0142ef6c 1156 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1157 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1158 error = -EEXIST; /* try again */
d1899228 1159 goto unlock;
bde05d1c 1160 }
27ab7006 1161 if (!PageUptodate(page)) {
1da177e4 1162 error = -EIO;
54af6042 1163 goto failed;
1da177e4 1164 }
54af6042
HD
1165 wait_on_page_writeback(page);
1166
bde05d1c
HD
1167 if (shmem_should_replace_page(page, gfp)) {
1168 error = shmem_replace_page(&page, gfp, info, index);
1169 if (error)
1170 goto failed;
1da177e4 1171 }
27ab7006 1172
aa3b1895
HD
1173 error = mem_cgroup_cache_charge(page, current->mm,
1174 gfp & GFP_RECLAIM_MASK);
d1899228 1175 if (!error) {
aa3b1895
HD
1176 error = shmem_add_to_page_cache(page, mapping, index,
1177 gfp, swp_to_radix_entry(swap));
215c02bc
HD
1178 /*
1179 * We already confirmed swap under page lock, and make
1180 * no memory allocation here, so usually no possibility
1181 * of error; but free_swap_and_cache() only trylocks a
1182 * page, so it is just possible that the entry has been
1183 * truncated or holepunched since swap was confirmed.
1184 * shmem_undo_range() will have done some of the
1185 * unaccounting, now delete_from_swap_cache() will do
1186 * the rest (including mem_cgroup_uncharge_swapcache).
1187 * Reset swap.val? No, leave it so "failed" goes back to
1188 * "repeat": reading a hole and writing should succeed.
1189 */
1190 if (error)
1191 delete_from_swap_cache(page);
d1899228 1192 }
54af6042
HD
1193 if (error)
1194 goto failed;
1195
1196 spin_lock(&info->lock);
285b2c4f 1197 info->swapped--;
54af6042 1198 shmem_recalc_inode(inode);
27ab7006 1199 spin_unlock(&info->lock);
54af6042
HD
1200
1201 delete_from_swap_cache(page);
27ab7006
HD
1202 set_page_dirty(page);
1203 swap_free(swap);
1204
54af6042
HD
1205 } else {
1206 if (shmem_acct_block(info->flags)) {
1207 error = -ENOSPC;
1208 goto failed;
1da177e4 1209 }
0edd73b3 1210 if (sbinfo->max_blocks) {
fc5da22a 1211 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1212 sbinfo->max_blocks) >= 0) {
1213 error = -ENOSPC;
1214 goto unacct;
1215 }
7e496299 1216 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1217 }
1da177e4 1218
54af6042
HD
1219 page = shmem_alloc_page(gfp, info, index);
1220 if (!page) {
1221 error = -ENOMEM;
1222 goto decused;
1da177e4
LT
1223 }
1224
54af6042
HD
1225 SetPageSwapBacked(page);
1226 __set_page_locked(page);
aa3b1895
HD
1227 error = mem_cgroup_cache_charge(page, current->mm,
1228 gfp & GFP_RECLAIM_MASK);
54af6042
HD
1229 if (error)
1230 goto decused;
b065b432
HD
1231 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1232 if (!error) {
1233 error = shmem_add_to_page_cache(page, mapping, index,
1234 gfp, NULL);
1235 radix_tree_preload_end();
1236 }
1237 if (error) {
1238 mem_cgroup_uncharge_cache_page(page);
1239 goto decused;
1240 }
54af6042
HD
1241 lru_cache_add_anon(page);
1242
1243 spin_lock(&info->lock);
1da177e4 1244 info->alloced++;
54af6042
HD
1245 inode->i_blocks += BLOCKS_PER_PAGE;
1246 shmem_recalc_inode(inode);
1da177e4 1247 spin_unlock(&info->lock);
1635f6a7 1248 alloced = true;
54af6042 1249
ec9516fb 1250 /*
1635f6a7
HD
1251 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1252 */
1253 if (sgp == SGP_FALLOC)
1254 sgp = SGP_WRITE;
1255clear:
1256 /*
1257 * Let SGP_WRITE caller clear ends if write does not fill page;
1258 * but SGP_FALLOC on a page fallocated earlier must initialize
1259 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1260 */
1261 if (sgp != SGP_WRITE) {
1262 clear_highpage(page);
1263 flush_dcache_page(page);
1264 SetPageUptodate(page);
1265 }
a0ee5ec5 1266 if (sgp == SGP_DIRTY)
27ab7006 1267 set_page_dirty(page);
1da177e4 1268 }
bde05d1c 1269
54af6042 1270 /* Perhaps the file has been truncated since we checked */
1635f6a7 1271 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1272 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1273 error = -EINVAL;
1635f6a7
HD
1274 if (alloced)
1275 goto trunc;
1276 else
1277 goto failed;
e83c32e8 1278 }
54af6042
HD
1279 *pagep = page;
1280 return 0;
1da177e4 1281
59a16ead 1282 /*
54af6042 1283 * Error recovery.
59a16ead 1284 */
54af6042 1285trunc:
1635f6a7 1286 info = SHMEM_I(inode);
54af6042
HD
1287 ClearPageDirty(page);
1288 delete_from_page_cache(page);
1289 spin_lock(&info->lock);
1290 info->alloced--;
1291 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1292 spin_unlock(&info->lock);
54af6042 1293decused:
1635f6a7 1294 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1295 if (sbinfo->max_blocks)
1296 percpu_counter_add(&sbinfo->used_blocks, -1);
1297unacct:
1298 shmem_unacct_blocks(info->flags, 1);
1299failed:
d1899228
HD
1300 if (swap.val && error != -EINVAL &&
1301 !shmem_confirm_swap(mapping, index, swap))
1302 error = -EEXIST;
1303unlock:
27ab7006 1304 if (page) {
54af6042 1305 unlock_page(page);
27ab7006 1306 page_cache_release(page);
54af6042
HD
1307 }
1308 if (error == -ENOSPC && !once++) {
1309 info = SHMEM_I(inode);
1310 spin_lock(&info->lock);
1311 shmem_recalc_inode(inode);
1312 spin_unlock(&info->lock);
27ab7006 1313 goto repeat;
ff36b801 1314 }
d1899228 1315 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1316 goto repeat;
1317 return error;
1da177e4
LT
1318}
1319
d0217ac0 1320static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1321{
496ad9aa 1322 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1323 int error;
68da9f05 1324 int ret = VM_FAULT_LOCKED;
1da177e4 1325
1ccc3ffa
HD
1326 /*
1327 * Trinity finds that probing a hole which tmpfs is punching can
1328 * prevent the hole-punch from ever completing: which in turn
1329 * locks writers out with its hold on i_mutex. So refrain from
887675c9
HD
1330 * faulting pages into the hole while it's being punched. Although
1331 * shmem_undo_range() does remove the additions, it may be unable to
1332 * keep up, as each new page needs its own unmap_mapping_range() call,
1333 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1334 *
1335 * It does not matter if we sometimes reach this check just before the
1336 * hole-punch begins, so that one fault then races with the punch:
1337 * we just need to make racing faults a rare case.
1338 *
1339 * The implementation below would be much simpler if we just used a
1340 * standard mutex or completion: but we cannot take i_mutex in fault,
1341 * and bloating every shmem inode for this unlikely case would be sad.
1ccc3ffa
HD
1342 */
1343 if (unlikely(inode->i_private)) {
1344 struct shmem_falloc *shmem_falloc;
1345
1346 spin_lock(&inode->i_lock);
1347 shmem_falloc = inode->i_private;
887675c9
HD
1348 if (shmem_falloc &&
1349 shmem_falloc->waitq &&
1350 vmf->pgoff >= shmem_falloc->start &&
1351 vmf->pgoff < shmem_falloc->next) {
1352 wait_queue_head_t *shmem_falloc_waitq;
1353 DEFINE_WAIT(shmem_fault_wait);
1354
1355 ret = VM_FAULT_NOPAGE;
1ccc3ffa
HD
1356 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1357 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
887675c9 1358 /* It's polite to up mmap_sem if we can */
1ccc3ffa 1359 up_read(&vma->vm_mm->mmap_sem);
887675c9 1360 ret = VM_FAULT_RETRY;
1ccc3ffa 1361 }
887675c9
HD
1362
1363 shmem_falloc_waitq = shmem_falloc->waitq;
1364 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1365 TASK_UNINTERRUPTIBLE);
1366 spin_unlock(&inode->i_lock);
1367 schedule();
1368
1369 /*
1370 * shmem_falloc_waitq points into the shmem_fallocate()
1371 * stack of the hole-punching task: shmem_falloc_waitq
1372 * is usually invalid by the time we reach here, but
1373 * finish_wait() does not dereference it in that case;
1374 * though i_lock needed lest racing with wake_up_all().
1375 */
1376 spin_lock(&inode->i_lock);
1377 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1378 spin_unlock(&inode->i_lock);
1379 return ret;
1ccc3ffa 1380 }
887675c9 1381 spin_unlock(&inode->i_lock);
1ccc3ffa
HD
1382 }
1383
27d54b39 1384 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1385 if (error)
1386 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1387
456f998e
YH
1388 if (ret & VM_FAULT_MAJOR) {
1389 count_vm_event(PGMAJFAULT);
1390 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1391 }
68da9f05 1392 return ret;
1da177e4
LT
1393}
1394
1da177e4 1395#ifdef CONFIG_NUMA
41ffe5d5 1396static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1397{
496ad9aa 1398 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1399 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1400}
1401
d8dc74f2
AB
1402static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1403 unsigned long addr)
1da177e4 1404{
496ad9aa 1405 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1406 pgoff_t index;
1da177e4 1407
41ffe5d5
HD
1408 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1409 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1410}
1411#endif
1412
1413int shmem_lock(struct file *file, int lock, struct user_struct *user)
1414{
496ad9aa 1415 struct inode *inode = file_inode(file);
1da177e4
LT
1416 struct shmem_inode_info *info = SHMEM_I(inode);
1417 int retval = -ENOMEM;
1418
1419 spin_lock(&info->lock);
1420 if (lock && !(info->flags & VM_LOCKED)) {
1421 if (!user_shm_lock(inode->i_size, user))
1422 goto out_nomem;
1423 info->flags |= VM_LOCKED;
89e004ea 1424 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1425 }
1426 if (!lock && (info->flags & VM_LOCKED) && user) {
1427 user_shm_unlock(inode->i_size, user);
1428 info->flags &= ~VM_LOCKED;
89e004ea 1429 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1430 }
1431 retval = 0;
89e004ea 1432
1da177e4
LT
1433out_nomem:
1434 spin_unlock(&info->lock);
1435 return retval;
1436}
1437
9b83a6a8 1438static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1439{
1440 file_accessed(file);
1441 vma->vm_ops = &shmem_vm_ops;
1442 return 0;
1443}
1444
454abafe 1445static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1446 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1447{
1448 struct inode *inode;
1449 struct shmem_inode_info *info;
1450 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1451
5b04c689
PE
1452 if (shmem_reserve_inode(sb))
1453 return NULL;
1da177e4
LT
1454
1455 inode = new_inode(sb);
1456 if (inode) {
85fe4025 1457 inode->i_ino = get_next_ino();
454abafe 1458 inode_init_owner(inode, dir, mode);
1da177e4 1459 inode->i_blocks = 0;
1da177e4
LT
1460 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1461 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1462 inode->i_generation = get_seconds();
1da177e4
LT
1463 info = SHMEM_I(inode);
1464 memset(info, 0, (char *)inode - (char *)info);
1465 spin_lock_init(&info->lock);
0b0a0806 1466 info->flags = flags & VM_NORESERVE;
1da177e4 1467 INIT_LIST_HEAD(&info->swaplist);
38f38657 1468 simple_xattrs_init(&info->xattrs);
72c04902 1469 cache_no_acl(inode);
1da177e4
LT
1470
1471 switch (mode & S_IFMT) {
1472 default:
39f0247d 1473 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1474 init_special_inode(inode, mode, dev);
1475 break;
1476 case S_IFREG:
14fcc23f 1477 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1478 inode->i_op = &shmem_inode_operations;
1479 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1480 mpol_shared_policy_init(&info->policy,
1481 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1482 break;
1483 case S_IFDIR:
d8c76e6f 1484 inc_nlink(inode);
1da177e4
LT
1485 /* Some things misbehave if size == 0 on a directory */
1486 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1487 inode->i_op = &shmem_dir_inode_operations;
1488 inode->i_fop = &simple_dir_operations;
1489 break;
1490 case S_IFLNK:
1491 /*
1492 * Must not load anything in the rbtree,
1493 * mpol_free_shared_policy will not be called.
1494 */
71fe804b 1495 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1496 break;
1497 }
5b04c689
PE
1498 } else
1499 shmem_free_inode(sb);
1da177e4
LT
1500 return inode;
1501}
1502
1503#ifdef CONFIG_TMPFS
92e1d5be 1504static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1505static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1506
6d9d88d0
JS
1507#ifdef CONFIG_TMPFS_XATTR
1508static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1509#else
1510#define shmem_initxattrs NULL
1511#endif
1512
1da177e4 1513static int
800d15a5
NP
1514shmem_write_begin(struct file *file, struct address_space *mapping,
1515 loff_t pos, unsigned len, unsigned flags,
1516 struct page **pagep, void **fsdata)
1da177e4 1517{
800d15a5
NP
1518 struct inode *inode = mapping->host;
1519 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1520 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1521}
1522
1523static int
1524shmem_write_end(struct file *file, struct address_space *mapping,
1525 loff_t pos, unsigned len, unsigned copied,
1526 struct page *page, void *fsdata)
1527{
1528 struct inode *inode = mapping->host;
1529
d3602444
HD
1530 if (pos + copied > inode->i_size)
1531 i_size_write(inode, pos + copied);
1532
ec9516fb
HD
1533 if (!PageUptodate(page)) {
1534 if (copied < PAGE_CACHE_SIZE) {
1535 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1536 zero_user_segments(page, 0, from,
1537 from + copied, PAGE_CACHE_SIZE);
1538 }
1539 SetPageUptodate(page);
1540 }
800d15a5 1541 set_page_dirty(page);
6746aff7 1542 unlock_page(page);
800d15a5
NP
1543 page_cache_release(page);
1544
800d15a5 1545 return copied;
1da177e4
LT
1546}
1547
1da177e4
LT
1548static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1549{
496ad9aa 1550 struct inode *inode = file_inode(filp);
1da177e4 1551 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1552 pgoff_t index;
1553 unsigned long offset;
a0ee5ec5
HD
1554 enum sgp_type sgp = SGP_READ;
1555
1556 /*
1557 * Might this read be for a stacking filesystem? Then when reading
1558 * holes of a sparse file, we actually need to allocate those pages,
1559 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1560 */
1561 if (segment_eq(get_fs(), KERNEL_DS))
1562 sgp = SGP_DIRTY;
1da177e4
LT
1563
1564 index = *ppos >> PAGE_CACHE_SHIFT;
1565 offset = *ppos & ~PAGE_CACHE_MASK;
1566
1567 for (;;) {
1568 struct page *page = NULL;
41ffe5d5
HD
1569 pgoff_t end_index;
1570 unsigned long nr, ret;
1da177e4
LT
1571 loff_t i_size = i_size_read(inode);
1572
1573 end_index = i_size >> PAGE_CACHE_SHIFT;
1574 if (index > end_index)
1575 break;
1576 if (index == end_index) {
1577 nr = i_size & ~PAGE_CACHE_MASK;
1578 if (nr <= offset)
1579 break;
1580 }
1581
a0ee5ec5 1582 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1583 if (desc->error) {
1584 if (desc->error == -EINVAL)
1585 desc->error = 0;
1586 break;
1587 }
d3602444
HD
1588 if (page)
1589 unlock_page(page);
1da177e4
LT
1590
1591 /*
1592 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1593 * are called without i_mutex protection against truncate
1da177e4
LT
1594 */
1595 nr = PAGE_CACHE_SIZE;
1596 i_size = i_size_read(inode);
1597 end_index = i_size >> PAGE_CACHE_SHIFT;
1598 if (index == end_index) {
1599 nr = i_size & ~PAGE_CACHE_MASK;
1600 if (nr <= offset) {
1601 if (page)
1602 page_cache_release(page);
1603 break;
1604 }
1605 }
1606 nr -= offset;
1607
1608 if (page) {
1609 /*
1610 * If users can be writing to this page using arbitrary
1611 * virtual addresses, take care about potential aliasing
1612 * before reading the page on the kernel side.
1613 */
1614 if (mapping_writably_mapped(mapping))
1615 flush_dcache_page(page);
1616 /*
1617 * Mark the page accessed if we read the beginning.
1618 */
1619 if (!offset)
1620 mark_page_accessed(page);
b5810039 1621 } else {
1da177e4 1622 page = ZERO_PAGE(0);
b5810039
NP
1623 page_cache_get(page);
1624 }
1da177e4
LT
1625
1626 /*
1627 * Ok, we have the page, and it's up-to-date, so
1628 * now we can copy it to user space...
1629 *
1630 * The actor routine returns how many bytes were actually used..
1631 * NOTE! This may not be the same as how much of a user buffer
1632 * we filled up (we may be padding etc), so we can only update
1633 * "pos" here (the actor routine has to update the user buffer
1634 * pointers and the remaining count).
1635 */
1636 ret = actor(desc, page, offset, nr);
1637 offset += ret;
1638 index += offset >> PAGE_CACHE_SHIFT;
1639 offset &= ~PAGE_CACHE_MASK;
1640
1641 page_cache_release(page);
1642 if (ret != nr || !desc->count)
1643 break;
1644
1645 cond_resched();
1646 }
1647
1648 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1649 file_accessed(filp);
1650}
1651
bcd78e49
HD
1652static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1653 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1654{
1655 struct file *filp = iocb->ki_filp;
1656 ssize_t retval;
1657 unsigned long seg;
1658 size_t count;
1659 loff_t *ppos = &iocb->ki_pos;
1660
1661 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1662 if (retval)
1663 return retval;
1664
1665 for (seg = 0; seg < nr_segs; seg++) {
1666 read_descriptor_t desc;
1667
1668 desc.written = 0;
1669 desc.arg.buf = iov[seg].iov_base;
1670 desc.count = iov[seg].iov_len;
1671 if (desc.count == 0)
1672 continue;
1673 desc.error = 0;
1674 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1675 retval += desc.written;
1676 if (desc.error) {
1677 retval = retval ?: desc.error;
1678 break;
1679 }
1680 if (desc.count > 0)
1681 break;
1682 }
1683 return retval;
1da177e4
LT
1684}
1685
708e3508
HD
1686static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1687 struct pipe_inode_info *pipe, size_t len,
1688 unsigned int flags)
1689{
1690 struct address_space *mapping = in->f_mapping;
71f0e07a 1691 struct inode *inode = mapping->host;
708e3508
HD
1692 unsigned int loff, nr_pages, req_pages;
1693 struct page *pages[PIPE_DEF_BUFFERS];
1694 struct partial_page partial[PIPE_DEF_BUFFERS];
1695 struct page *page;
1696 pgoff_t index, end_index;
1697 loff_t isize, left;
1698 int error, page_nr;
1699 struct splice_pipe_desc spd = {
1700 .pages = pages,
1701 .partial = partial,
047fe360 1702 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1703 .flags = flags,
1704 .ops = &page_cache_pipe_buf_ops,
1705 .spd_release = spd_release_page,
1706 };
1707
71f0e07a 1708 isize = i_size_read(inode);
708e3508
HD
1709 if (unlikely(*ppos >= isize))
1710 return 0;
1711
1712 left = isize - *ppos;
1713 if (unlikely(left < len))
1714 len = left;
1715
1716 if (splice_grow_spd(pipe, &spd))
1717 return -ENOMEM;
1718
1719 index = *ppos >> PAGE_CACHE_SHIFT;
1720 loff = *ppos & ~PAGE_CACHE_MASK;
1721 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1722 nr_pages = min(req_pages, pipe->buffers);
1723
708e3508
HD
1724 spd.nr_pages = find_get_pages_contig(mapping, index,
1725 nr_pages, spd.pages);
1726 index += spd.nr_pages;
708e3508 1727 error = 0;
708e3508 1728
71f0e07a 1729 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1730 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1731 if (error)
1732 break;
1733 unlock_page(page);
708e3508
HD
1734 spd.pages[spd.nr_pages++] = page;
1735 index++;
1736 }
1737
708e3508
HD
1738 index = *ppos >> PAGE_CACHE_SHIFT;
1739 nr_pages = spd.nr_pages;
1740 spd.nr_pages = 0;
71f0e07a 1741
708e3508
HD
1742 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1743 unsigned int this_len;
1744
1745 if (!len)
1746 break;
1747
708e3508
HD
1748 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1749 page = spd.pages[page_nr];
1750
71f0e07a 1751 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1752 error = shmem_getpage(inode, index, &page,
1753 SGP_CACHE, NULL);
1754 if (error)
708e3508 1755 break;
71f0e07a
HD
1756 unlock_page(page);
1757 page_cache_release(spd.pages[page_nr]);
1758 spd.pages[page_nr] = page;
708e3508 1759 }
71f0e07a
HD
1760
1761 isize = i_size_read(inode);
708e3508
HD
1762 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1763 if (unlikely(!isize || index > end_index))
1764 break;
1765
708e3508
HD
1766 if (end_index == index) {
1767 unsigned int plen;
1768
708e3508
HD
1769 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1770 if (plen <= loff)
1771 break;
1772
708e3508
HD
1773 this_len = min(this_len, plen - loff);
1774 len = this_len;
1775 }
1776
1777 spd.partial[page_nr].offset = loff;
1778 spd.partial[page_nr].len = this_len;
1779 len -= this_len;
1780 loff = 0;
1781 spd.nr_pages++;
1782 index++;
1783 }
1784
708e3508
HD
1785 while (page_nr < nr_pages)
1786 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1787
1788 if (spd.nr_pages)
1789 error = splice_to_pipe(pipe, &spd);
1790
047fe360 1791 splice_shrink_spd(&spd);
708e3508
HD
1792
1793 if (error > 0) {
1794 *ppos += error;
1795 file_accessed(in);
1796 }
1797 return error;
1798}
1799
220f2ac9
HD
1800/*
1801 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1802 */
1803static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1804 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1805{
1806 struct page *page;
1807 struct pagevec pvec;
1808 pgoff_t indices[PAGEVEC_SIZE];
1809 bool done = false;
1810 int i;
1811
1812 pagevec_init(&pvec, 0);
1813 pvec.nr = 1; /* start small: we may be there already */
1814 while (!done) {
1815 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1816 pvec.nr, pvec.pages, indices);
1817 if (!pvec.nr) {
965c8e59 1818 if (whence == SEEK_DATA)
220f2ac9
HD
1819 index = end;
1820 break;
1821 }
1822 for (i = 0; i < pvec.nr; i++, index++) {
1823 if (index < indices[i]) {
965c8e59 1824 if (whence == SEEK_HOLE) {
220f2ac9
HD
1825 done = true;
1826 break;
1827 }
1828 index = indices[i];
1829 }
1830 page = pvec.pages[i];
1831 if (page && !radix_tree_exceptional_entry(page)) {
1832 if (!PageUptodate(page))
1833 page = NULL;
1834 }
1835 if (index >= end ||
965c8e59
AM
1836 (page && whence == SEEK_DATA) ||
1837 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1838 done = true;
1839 break;
1840 }
1841 }
1842 shmem_deswap_pagevec(&pvec);
1843 pagevec_release(&pvec);
1844 pvec.nr = PAGEVEC_SIZE;
1845 cond_resched();
1846 }
1847 return index;
1848}
1849
965c8e59 1850static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1851{
1852 struct address_space *mapping = file->f_mapping;
1853 struct inode *inode = mapping->host;
1854 pgoff_t start, end;
1855 loff_t new_offset;
1856
965c8e59
AM
1857 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1858 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1859 MAX_LFS_FILESIZE, i_size_read(inode));
1860 mutex_lock(&inode->i_mutex);
1861 /* We're holding i_mutex so we can access i_size directly */
1862
1863 if (offset < 0)
1864 offset = -EINVAL;
1865 else if (offset >= inode->i_size)
1866 offset = -ENXIO;
1867 else {
1868 start = offset >> PAGE_CACHE_SHIFT;
1869 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1870 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1871 new_offset <<= PAGE_CACHE_SHIFT;
1872 if (new_offset > offset) {
1873 if (new_offset < inode->i_size)
1874 offset = new_offset;
965c8e59 1875 else if (whence == SEEK_DATA)
220f2ac9
HD
1876 offset = -ENXIO;
1877 else
1878 offset = inode->i_size;
1879 }
1880 }
1881
1882 if (offset >= 0 && offset != file->f_pos) {
1883 file->f_pos = offset;
1884 file->f_version = 0;
1885 }
1886 mutex_unlock(&inode->i_mutex);
1887 return offset;
1888}
1889
83e4fa9c
HD
1890static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1891 loff_t len)
1892{
496ad9aa 1893 struct inode *inode = file_inode(file);
e2d12e22 1894 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1895 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1896 pgoff_t start, index, end;
1897 int error;
83e4fa9c
HD
1898
1899 mutex_lock(&inode->i_mutex);
1900
1901 if (mode & FALLOC_FL_PUNCH_HOLE) {
1902 struct address_space *mapping = file->f_mapping;
1903 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1904 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
887675c9 1905 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 1906
887675c9 1907 shmem_falloc.waitq = &shmem_falloc_waitq;
1ccc3ffa
HD
1908 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1909 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1910 spin_lock(&inode->i_lock);
1911 inode->i_private = &shmem_falloc;
1912 spin_unlock(&inode->i_lock);
1913
83e4fa9c
HD
1914 if ((u64)unmap_end > (u64)unmap_start)
1915 unmap_mapping_range(mapping, unmap_start,
1916 1 + unmap_end - unmap_start, 0);
1917 shmem_truncate_range(inode, offset, offset + len - 1);
1918 /* No need to unmap again: hole-punching leaves COWed pages */
887675c9
HD
1919
1920 spin_lock(&inode->i_lock);
1921 inode->i_private = NULL;
1922 wake_up_all(&shmem_falloc_waitq);
1923 spin_unlock(&inode->i_lock);
83e4fa9c 1924 error = 0;
887675c9 1925 goto out;
e2d12e22
HD
1926 }
1927
1928 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1929 error = inode_newsize_ok(inode, offset + len);
1930 if (error)
1931 goto out;
1932
1933 start = offset >> PAGE_CACHE_SHIFT;
1934 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1935 /* Try to avoid a swapstorm if len is impossible to satisfy */
1936 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1937 error = -ENOSPC;
1938 goto out;
83e4fa9c
HD
1939 }
1940
887675c9 1941 shmem_falloc.waitq = NULL;
1aac1400
HD
1942 shmem_falloc.start = start;
1943 shmem_falloc.next = start;
1944 shmem_falloc.nr_falloced = 0;
1945 shmem_falloc.nr_unswapped = 0;
1946 spin_lock(&inode->i_lock);
1947 inode->i_private = &shmem_falloc;
1948 spin_unlock(&inode->i_lock);
1949
e2d12e22
HD
1950 for (index = start; index < end; index++) {
1951 struct page *page;
1952
1953 /*
1954 * Good, the fallocate(2) manpage permits EINTR: we may have
1955 * been interrupted because we are using up too much memory.
1956 */
1957 if (signal_pending(current))
1958 error = -EINTR;
1aac1400
HD
1959 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1960 error = -ENOMEM;
e2d12e22 1961 else
1635f6a7 1962 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1963 NULL);
1964 if (error) {
1635f6a7 1965 /* Remove the !PageUptodate pages we added */
42a22cd4
HD
1966 if (index > start) {
1967 shmem_undo_range(inode,
1968 (loff_t)start << PAGE_CACHE_SHIFT,
1969 ((loff_t)index << PAGE_CACHE_SHIFT) - 1, true);
1970 }
1aac1400 1971 goto undone;
e2d12e22
HD
1972 }
1973
1aac1400
HD
1974 /*
1975 * Inform shmem_writepage() how far we have reached.
1976 * No need for lock or barrier: we have the page lock.
1977 */
1978 shmem_falloc.next++;
1979 if (!PageUptodate(page))
1980 shmem_falloc.nr_falloced++;
1981
e2d12e22 1982 /*
1635f6a7
HD
1983 * If !PageUptodate, leave it that way so that freeable pages
1984 * can be recognized if we need to rollback on error later.
1985 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1986 * than free the pages we are allocating (and SGP_CACHE pages
1987 * might still be clean: we now need to mark those dirty too).
1988 */
1989 set_page_dirty(page);
1990 unlock_page(page);
1991 page_cache_release(page);
1992 cond_resched();
1993 }
1994
1995 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1996 i_size_write(inode, offset + len);
e2d12e22 1997 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1998undone:
1999 spin_lock(&inode->i_lock);
2000 inode->i_private = NULL;
2001 spin_unlock(&inode->i_lock);
e2d12e22 2002out:
83e4fa9c
HD
2003 mutex_unlock(&inode->i_mutex);
2004 return error;
2005}
2006
726c3342 2007static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2008{
726c3342 2009 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2010
2011 buf->f_type = TMPFS_MAGIC;
2012 buf->f_bsize = PAGE_CACHE_SIZE;
2013 buf->f_namelen = NAME_MAX;
0edd73b3 2014 if (sbinfo->max_blocks) {
1da177e4 2015 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2016 buf->f_bavail =
2017 buf->f_bfree = sbinfo->max_blocks -
2018 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2019 }
2020 if (sbinfo->max_inodes) {
1da177e4
LT
2021 buf->f_files = sbinfo->max_inodes;
2022 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2023 }
2024 /* else leave those fields 0 like simple_statfs */
2025 return 0;
2026}
2027
2028/*
2029 * File creation. Allocate an inode, and we're done..
2030 */
2031static int
1a67aafb 2032shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2033{
0b0a0806 2034 struct inode *inode;
1da177e4
LT
2035 int error = -ENOSPC;
2036
454abafe 2037 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2038 if (inode) {
2a7dba39 2039 error = security_inode_init_security(inode, dir,
9d8f13ba 2040 &dentry->d_name,
6d9d88d0 2041 shmem_initxattrs, NULL);
570bc1c2
SS
2042 if (error) {
2043 if (error != -EOPNOTSUPP) {
2044 iput(inode);
2045 return error;
2046 }
39f0247d 2047 }
1c7c474c
CH
2048#ifdef CONFIG_TMPFS_POSIX_ACL
2049 error = generic_acl_init(inode, dir);
39f0247d
AG
2050 if (error) {
2051 iput(inode);
2052 return error;
570bc1c2 2053 }
718deb6b
AV
2054#else
2055 error = 0;
1c7c474c 2056#endif
1da177e4
LT
2057 dir->i_size += BOGO_DIRENT_SIZE;
2058 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2059 d_instantiate(dentry, inode);
2060 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2061 }
2062 return error;
2063}
2064
aa8cc8ee
AV
2065static int
2066shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2067{
2068 struct inode *inode;
2069 int error = -ENOSPC;
2070
2071 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2072 if (inode) {
2073 error = security_inode_init_security(inode, dir,
2074 NULL,
2075 shmem_initxattrs, NULL);
2076 if (error) {
2077 if (error != -EOPNOTSUPP) {
2078 iput(inode);
2079 return error;
2080 }
2081 }
2082#ifdef CONFIG_TMPFS_POSIX_ACL
2083 error = generic_acl_init(inode, dir);
2084 if (error) {
2085 iput(inode);
2086 return error;
2087 }
2088#else
2089 error = 0;
2090#endif
2091 d_tmpfile(dentry, inode);
2092 }
2093 return error;
2094}
2095
18bb1db3 2096static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2097{
2098 int error;
2099
2100 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2101 return error;
d8c76e6f 2102 inc_nlink(dir);
1da177e4
LT
2103 return 0;
2104}
2105
4acdaf27 2106static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2107 bool excl)
1da177e4
LT
2108{
2109 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2110}
2111
2112/*
2113 * Link a file..
2114 */
2115static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2116{
2117 struct inode *inode = old_dentry->d_inode;
5b04c689 2118 int ret;
1da177e4
LT
2119
2120 /*
2121 * No ordinary (disk based) filesystem counts links as inodes;
2122 * but each new link needs a new dentry, pinning lowmem, and
2123 * tmpfs dentries cannot be pruned until they are unlinked.
2124 */
5b04c689
PE
2125 ret = shmem_reserve_inode(inode->i_sb);
2126 if (ret)
2127 goto out;
1da177e4
LT
2128
2129 dir->i_size += BOGO_DIRENT_SIZE;
2130 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2131 inc_nlink(inode);
7de9c6ee 2132 ihold(inode); /* New dentry reference */
1da177e4
LT
2133 dget(dentry); /* Extra pinning count for the created dentry */
2134 d_instantiate(dentry, inode);
5b04c689
PE
2135out:
2136 return ret;
1da177e4
LT
2137}
2138
2139static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2140{
2141 struct inode *inode = dentry->d_inode;
2142
5b04c689
PE
2143 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2144 shmem_free_inode(inode->i_sb);
1da177e4
LT
2145
2146 dir->i_size -= BOGO_DIRENT_SIZE;
2147 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2148 drop_nlink(inode);
1da177e4
LT
2149 dput(dentry); /* Undo the count from "create" - this does all the work */
2150 return 0;
2151}
2152
2153static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2154{
2155 if (!simple_empty(dentry))
2156 return -ENOTEMPTY;
2157
9a53c3a7
DH
2158 drop_nlink(dentry->d_inode);
2159 drop_nlink(dir);
1da177e4
LT
2160 return shmem_unlink(dir, dentry);
2161}
2162
2163/*
2164 * The VFS layer already does all the dentry stuff for rename,
2165 * we just have to decrement the usage count for the target if
2166 * it exists so that the VFS layer correctly free's it when it
2167 * gets overwritten.
2168 */
2169static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2170{
2171 struct inode *inode = old_dentry->d_inode;
2172 int they_are_dirs = S_ISDIR(inode->i_mode);
2173
2174 if (!simple_empty(new_dentry))
2175 return -ENOTEMPTY;
2176
2177 if (new_dentry->d_inode) {
2178 (void) shmem_unlink(new_dir, new_dentry);
474740b9
MS
2179 if (they_are_dirs) {
2180 drop_nlink(new_dentry->d_inode);
9a53c3a7 2181 drop_nlink(old_dir);
474740b9 2182 }
1da177e4 2183 } else if (they_are_dirs) {
9a53c3a7 2184 drop_nlink(old_dir);
d8c76e6f 2185 inc_nlink(new_dir);
1da177e4
LT
2186 }
2187
2188 old_dir->i_size -= BOGO_DIRENT_SIZE;
2189 new_dir->i_size += BOGO_DIRENT_SIZE;
2190 old_dir->i_ctime = old_dir->i_mtime =
2191 new_dir->i_ctime = new_dir->i_mtime =
2192 inode->i_ctime = CURRENT_TIME;
2193 return 0;
2194}
2195
2196static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2197{
2198 int error;
2199 int len;
2200 struct inode *inode;
9276aad6 2201 struct page *page;
1da177e4
LT
2202 char *kaddr;
2203 struct shmem_inode_info *info;
2204
2205 len = strlen(symname) + 1;
2206 if (len > PAGE_CACHE_SIZE)
2207 return -ENAMETOOLONG;
2208
454abafe 2209 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2210 if (!inode)
2211 return -ENOSPC;
2212
9d8f13ba 2213 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2214 shmem_initxattrs, NULL);
570bc1c2
SS
2215 if (error) {
2216 if (error != -EOPNOTSUPP) {
2217 iput(inode);
2218 return error;
2219 }
2220 error = 0;
2221 }
2222
1da177e4
LT
2223 info = SHMEM_I(inode);
2224 inode->i_size = len-1;
69f07ec9
HD
2225 if (len <= SHORT_SYMLINK_LEN) {
2226 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2227 if (!info->symlink) {
2228 iput(inode);
2229 return -ENOMEM;
2230 }
2231 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2232 } else {
2233 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2234 if (error) {
2235 iput(inode);
2236 return error;
2237 }
14fcc23f 2238 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2239 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2240 kaddr = kmap_atomic(page);
1da177e4 2241 memcpy(kaddr, symname, len);
9b04c5fe 2242 kunmap_atomic(kaddr);
ec9516fb 2243 SetPageUptodate(page);
1da177e4 2244 set_page_dirty(page);
6746aff7 2245 unlock_page(page);
1da177e4
LT
2246 page_cache_release(page);
2247 }
1da177e4
LT
2248 dir->i_size += BOGO_DIRENT_SIZE;
2249 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2250 d_instantiate(dentry, inode);
2251 dget(dentry);
2252 return 0;
2253}
2254
69f07ec9 2255static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2256{
69f07ec9 2257 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2258 return NULL;
1da177e4
LT
2259}
2260
cc314eef 2261static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2262{
2263 struct page *page = NULL;
41ffe5d5
HD
2264 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2265 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2266 if (page)
2267 unlock_page(page);
cc314eef 2268 return page;
1da177e4
LT
2269}
2270
cc314eef 2271static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2272{
2273 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2274 struct page *page = cookie;
1da177e4
LT
2275 kunmap(page);
2276 mark_page_accessed(page);
2277 page_cache_release(page);
1da177e4
LT
2278 }
2279}
2280
b09e0fa4 2281#ifdef CONFIG_TMPFS_XATTR
46711810 2282/*
b09e0fa4
EP
2283 * Superblocks without xattr inode operations may get some security.* xattr
2284 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2285 * like ACLs, we also need to implement the security.* handlers at
2286 * filesystem level, though.
2287 */
2288
6d9d88d0
JS
2289/*
2290 * Callback for security_inode_init_security() for acquiring xattrs.
2291 */
2292static int shmem_initxattrs(struct inode *inode,
2293 const struct xattr *xattr_array,
2294 void *fs_info)
2295{
2296 struct shmem_inode_info *info = SHMEM_I(inode);
2297 const struct xattr *xattr;
38f38657 2298 struct simple_xattr *new_xattr;
6d9d88d0
JS
2299 size_t len;
2300
2301 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2302 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2303 if (!new_xattr)
2304 return -ENOMEM;
2305
2306 len = strlen(xattr->name) + 1;
2307 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2308 GFP_KERNEL);
2309 if (!new_xattr->name) {
2310 kfree(new_xattr);
2311 return -ENOMEM;
2312 }
2313
2314 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2315 XATTR_SECURITY_PREFIX_LEN);
2316 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2317 xattr->name, len);
2318
38f38657 2319 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2320 }
2321
2322 return 0;
2323}
2324
bb435453 2325static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2326#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c
CH
2327 &generic_acl_access_handler,
2328 &generic_acl_default_handler,
b09e0fa4 2329#endif
39f0247d
AG
2330 NULL
2331};
b09e0fa4
EP
2332
2333static int shmem_xattr_validate(const char *name)
2334{
2335 struct { const char *prefix; size_t len; } arr[] = {
2336 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2337 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2338 };
2339 int i;
2340
2341 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2342 size_t preflen = arr[i].len;
2343 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2344 if (!name[preflen])
2345 return -EINVAL;
2346 return 0;
2347 }
2348 }
2349 return -EOPNOTSUPP;
2350}
2351
2352static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2353 void *buffer, size_t size)
2354{
38f38657 2355 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2356 int err;
2357
2358 /*
2359 * If this is a request for a synthetic attribute in the system.*
2360 * namespace use the generic infrastructure to resolve a handler
2361 * for it via sb->s_xattr.
2362 */
2363 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2364 return generic_getxattr(dentry, name, buffer, size);
2365
2366 err = shmem_xattr_validate(name);
2367 if (err)
2368 return err;
2369
38f38657 2370 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2371}
2372
2373static int shmem_setxattr(struct dentry *dentry, const char *name,
2374 const void *value, size_t size, int flags)
2375{
38f38657 2376 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2377 int err;
2378
2379 /*
2380 * If this is a request for a synthetic attribute in the system.*
2381 * namespace use the generic infrastructure to resolve a handler
2382 * for it via sb->s_xattr.
2383 */
2384 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2385 return generic_setxattr(dentry, name, value, size, flags);
2386
2387 err = shmem_xattr_validate(name);
2388 if (err)
2389 return err;
2390
38f38657 2391 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2392}
2393
2394static int shmem_removexattr(struct dentry *dentry, const char *name)
2395{
38f38657 2396 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2397 int err;
2398
2399 /*
2400 * If this is a request for a synthetic attribute in the system.*
2401 * namespace use the generic infrastructure to resolve a handler
2402 * for it via sb->s_xattr.
2403 */
2404 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2405 return generic_removexattr(dentry, name);
2406
2407 err = shmem_xattr_validate(name);
2408 if (err)
2409 return err;
2410
38f38657 2411 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2412}
2413
2414static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2415{
38f38657
AR
2416 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2417 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2418}
2419#endif /* CONFIG_TMPFS_XATTR */
2420
69f07ec9 2421static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2422 .readlink = generic_readlink,
69f07ec9 2423 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2424#ifdef CONFIG_TMPFS_XATTR
2425 .setxattr = shmem_setxattr,
2426 .getxattr = shmem_getxattr,
2427 .listxattr = shmem_listxattr,
2428 .removexattr = shmem_removexattr,
2429#endif
2430};
2431
2432static const struct inode_operations shmem_symlink_inode_operations = {
2433 .readlink = generic_readlink,
2434 .follow_link = shmem_follow_link,
2435 .put_link = shmem_put_link,
2436#ifdef CONFIG_TMPFS_XATTR
2437 .setxattr = shmem_setxattr,
2438 .getxattr = shmem_getxattr,
2439 .listxattr = shmem_listxattr,
2440 .removexattr = shmem_removexattr,
39f0247d 2441#endif
b09e0fa4 2442};
39f0247d 2443
91828a40
DG
2444static struct dentry *shmem_get_parent(struct dentry *child)
2445{
2446 return ERR_PTR(-ESTALE);
2447}
2448
2449static int shmem_match(struct inode *ino, void *vfh)
2450{
2451 __u32 *fh = vfh;
2452 __u64 inum = fh[2];
2453 inum = (inum << 32) | fh[1];
2454 return ino->i_ino == inum && fh[0] == ino->i_generation;
2455}
2456
480b116c
CH
2457static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2458 struct fid *fid, int fh_len, int fh_type)
91828a40 2459{
91828a40 2460 struct inode *inode;
480b116c 2461 struct dentry *dentry = NULL;
35c2a7f4 2462 u64 inum;
480b116c
CH
2463
2464 if (fh_len < 3)
2465 return NULL;
91828a40 2466
35c2a7f4
HD
2467 inum = fid->raw[2];
2468 inum = (inum << 32) | fid->raw[1];
2469
480b116c
CH
2470 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2471 shmem_match, fid->raw);
91828a40 2472 if (inode) {
480b116c 2473 dentry = d_find_alias(inode);
91828a40
DG
2474 iput(inode);
2475 }
2476
480b116c 2477 return dentry;
91828a40
DG
2478}
2479
b0b0382b
AV
2480static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2481 struct inode *parent)
91828a40 2482{
5fe0c237
AK
2483 if (*len < 3) {
2484 *len = 3;
94e07a75 2485 return FILEID_INVALID;
5fe0c237 2486 }
91828a40 2487
1d3382cb 2488 if (inode_unhashed(inode)) {
91828a40
DG
2489 /* Unfortunately insert_inode_hash is not idempotent,
2490 * so as we hash inodes here rather than at creation
2491 * time, we need a lock to ensure we only try
2492 * to do it once
2493 */
2494 static DEFINE_SPINLOCK(lock);
2495 spin_lock(&lock);
1d3382cb 2496 if (inode_unhashed(inode))
91828a40
DG
2497 __insert_inode_hash(inode,
2498 inode->i_ino + inode->i_generation);
2499 spin_unlock(&lock);
2500 }
2501
2502 fh[0] = inode->i_generation;
2503 fh[1] = inode->i_ino;
2504 fh[2] = ((__u64)inode->i_ino) >> 32;
2505
2506 *len = 3;
2507 return 1;
2508}
2509
39655164 2510static const struct export_operations shmem_export_ops = {
91828a40 2511 .get_parent = shmem_get_parent,
91828a40 2512 .encode_fh = shmem_encode_fh,
480b116c 2513 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2514};
2515
680d794b 2516static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2517 bool remount)
1da177e4
LT
2518{
2519 char *this_char, *value, *rest;
49cd0a5c 2520 struct mempolicy *mpol = NULL;
8751e039
EB
2521 uid_t uid;
2522 gid_t gid;
1da177e4 2523
b00dc3ad
HD
2524 while (options != NULL) {
2525 this_char = options;
2526 for (;;) {
2527 /*
2528 * NUL-terminate this option: unfortunately,
2529 * mount options form a comma-separated list,
2530 * but mpol's nodelist may also contain commas.
2531 */
2532 options = strchr(options, ',');
2533 if (options == NULL)
2534 break;
2535 options++;
2536 if (!isdigit(*options)) {
2537 options[-1] = '\0';
2538 break;
2539 }
2540 }
1da177e4
LT
2541 if (!*this_char)
2542 continue;
2543 if ((value = strchr(this_char,'=')) != NULL) {
2544 *value++ = 0;
2545 } else {
2546 printk(KERN_ERR
2547 "tmpfs: No value for mount option '%s'\n",
2548 this_char);
49cd0a5c 2549 goto error;
1da177e4
LT
2550 }
2551
2552 if (!strcmp(this_char,"size")) {
2553 unsigned long long size;
2554 size = memparse(value,&rest);
2555 if (*rest == '%') {
2556 size <<= PAGE_SHIFT;
2557 size *= totalram_pages;
2558 do_div(size, 100);
2559 rest++;
2560 }
2561 if (*rest)
2562 goto bad_val;
680d794b 2563 sbinfo->max_blocks =
2564 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2565 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2566 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2567 if (*rest)
2568 goto bad_val;
2569 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2570 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2571 if (*rest)
2572 goto bad_val;
2573 } else if (!strcmp(this_char,"mode")) {
680d794b 2574 if (remount)
1da177e4 2575 continue;
680d794b 2576 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2577 if (*rest)
2578 goto bad_val;
2579 } else if (!strcmp(this_char,"uid")) {
680d794b 2580 if (remount)
1da177e4 2581 continue;
8751e039 2582 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2583 if (*rest)
2584 goto bad_val;
8751e039
EB
2585 sbinfo->uid = make_kuid(current_user_ns(), uid);
2586 if (!uid_valid(sbinfo->uid))
2587 goto bad_val;
1da177e4 2588 } else if (!strcmp(this_char,"gid")) {
680d794b 2589 if (remount)
1da177e4 2590 continue;
8751e039 2591 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2592 if (*rest)
2593 goto bad_val;
8751e039
EB
2594 sbinfo->gid = make_kgid(current_user_ns(), gid);
2595 if (!gid_valid(sbinfo->gid))
2596 goto bad_val;
7339ff83 2597 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2598 mpol_put(mpol);
2599 mpol = NULL;
2600 if (mpol_parse_str(value, &mpol))
7339ff83 2601 goto bad_val;
1da177e4
LT
2602 } else {
2603 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2604 this_char);
49cd0a5c 2605 goto error;
1da177e4
LT
2606 }
2607 }
49cd0a5c 2608 sbinfo->mpol = mpol;
1da177e4
LT
2609 return 0;
2610
2611bad_val:
2612 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2613 value, this_char);
49cd0a5c
GT
2614error:
2615 mpol_put(mpol);
1da177e4
LT
2616 return 1;
2617
2618}
2619
2620static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2621{
2622 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2623 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2624 unsigned long inodes;
2625 int error = -EINVAL;
2626
5f00110f 2627 config.mpol = NULL;
680d794b 2628 if (shmem_parse_options(data, &config, true))
0edd73b3 2629 return error;
1da177e4 2630
0edd73b3 2631 spin_lock(&sbinfo->stat_lock);
0edd73b3 2632 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2633 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2634 goto out;
680d794b 2635 if (config.max_inodes < inodes)
0edd73b3
HD
2636 goto out;
2637 /*
54af6042 2638 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2639 * but we must separately disallow unlimited->limited, because
2640 * in that case we have no record of how much is already in use.
2641 */
680d794b 2642 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2643 goto out;
680d794b 2644 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2645 goto out;
2646
2647 error = 0;
680d794b 2648 sbinfo->max_blocks = config.max_blocks;
680d794b 2649 sbinfo->max_inodes = config.max_inodes;
2650 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2651
5f00110f
GT
2652 /*
2653 * Preserve previous mempolicy unless mpol remount option was specified.
2654 */
2655 if (config.mpol) {
2656 mpol_put(sbinfo->mpol);
2657 sbinfo->mpol = config.mpol; /* transfers initial ref */
2658 }
0edd73b3
HD
2659out:
2660 spin_unlock(&sbinfo->stat_lock);
2661 return error;
1da177e4 2662}
680d794b 2663
34c80b1d 2664static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2665{
34c80b1d 2666 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 2667
2668 if (sbinfo->max_blocks != shmem_default_max_blocks())
2669 seq_printf(seq, ",size=%luk",
2670 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2671 if (sbinfo->max_inodes != shmem_default_max_inodes())
2672 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2673 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2674 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2675 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2676 seq_printf(seq, ",uid=%u",
2677 from_kuid_munged(&init_user_ns, sbinfo->uid));
2678 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2679 seq_printf(seq, ",gid=%u",
2680 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2681 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2682 return 0;
2683}
8a09920f
DH
2684
2685#define MFD_NAME_PREFIX "memfd:"
2686#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2687#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2688
2689#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2690
2691SYSCALL_DEFINE2(memfd_create,
2692 const char __user *, uname,
2693 unsigned int, flags)
2694{
2695 struct shmem_inode_info *info;
2696 struct file *file;
2697 int fd, error;
2698 char *name;
2699 long len;
2700
2701 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2702 return -EINVAL;
2703
2704 /* length includes terminating zero */
2705 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2706 if (len <= 0)
2707 return -EFAULT;
2708 if (len > MFD_NAME_MAX_LEN + 1)
2709 return -EINVAL;
2710
2711 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2712 if (!name)
2713 return -ENOMEM;
2714
2715 strcpy(name, MFD_NAME_PREFIX);
2716 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2717 error = -EFAULT;
2718 goto err_name;
2719 }
2720
2721 /* terminating-zero may have changed after strnlen_user() returned */
2722 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2723 error = -EFAULT;
2724 goto err_name;
2725 }
2726
2727 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2728 if (fd < 0) {
2729 error = fd;
2730 goto err_name;
2731 }
2732
2733 file = shmem_file_setup(name, 0, VM_NORESERVE);
2734 if (IS_ERR(file)) {
2735 error = PTR_ERR(file);
2736 goto err_fd;
2737 }
2738 info = SHMEM_I(file->f_path.dentry->d_inode);
2739 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2740 file->f_flags |= O_RDWR | O_LARGEFILE;
2741
2742 fd_install(fd, file);
2743 kfree(name);
2744 return fd;
2745
2746err_fd:
2747 put_unused_fd(fd);
2748err_name:
2749 kfree(name);
2750 return error;
2751}
2752
680d794b 2753#endif /* CONFIG_TMPFS */
1da177e4
LT
2754
2755static void shmem_put_super(struct super_block *sb)
2756{
602586a8
HD
2757 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2758
2759 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2760 mpol_put(sbinfo->mpol);
602586a8 2761 kfree(sbinfo);
1da177e4
LT
2762 sb->s_fs_info = NULL;
2763}
2764
2b2af54a 2765int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2766{
2767 struct inode *inode;
0edd73b3 2768 struct shmem_sb_info *sbinfo;
680d794b 2769 int err = -ENOMEM;
2770
2771 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2772 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2773 L1_CACHE_BYTES), GFP_KERNEL);
2774 if (!sbinfo)
2775 return -ENOMEM;
2776
680d794b 2777 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2778 sbinfo->uid = current_fsuid();
2779 sbinfo->gid = current_fsgid();
680d794b 2780 sb->s_fs_info = sbinfo;
1da177e4 2781
0edd73b3 2782#ifdef CONFIG_TMPFS
1da177e4
LT
2783 /*
2784 * Per default we only allow half of the physical ram per
2785 * tmpfs instance, limiting inodes to one per page of lowmem;
2786 * but the internal instance is left unlimited.
2787 */
2788 if (!(sb->s_flags & MS_NOUSER)) {
680d794b 2789 sbinfo->max_blocks = shmem_default_max_blocks();
2790 sbinfo->max_inodes = shmem_default_max_inodes();
2791 if (shmem_parse_options(data, sbinfo, false)) {
2792 err = -EINVAL;
2793 goto failed;
2794 }
1da177e4 2795 }
91828a40 2796 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2797 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2798#else
2799 sb->s_flags |= MS_NOUSER;
2800#endif
2801
0edd73b3 2802 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2803 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2804 goto failed;
680d794b 2805 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2806
285b2c4f 2807 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2808 sb->s_blocksize = PAGE_CACHE_SIZE;
2809 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2810 sb->s_magic = TMPFS_MAGIC;
2811 sb->s_op = &shmem_ops;
cfd95a9c 2812 sb->s_time_gran = 1;
b09e0fa4 2813#ifdef CONFIG_TMPFS_XATTR
39f0247d 2814 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2815#endif
2816#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2817 sb->s_flags |= MS_POSIXACL;
2818#endif
0edd73b3 2819
454abafe 2820 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2821 if (!inode)
2822 goto failed;
680d794b 2823 inode->i_uid = sbinfo->uid;
2824 inode->i_gid = sbinfo->gid;
318ceed0
AV
2825 sb->s_root = d_make_root(inode);
2826 if (!sb->s_root)
48fde701 2827 goto failed;
1da177e4
LT
2828 return 0;
2829
1da177e4
LT
2830failed:
2831 shmem_put_super(sb);
2832 return err;
2833}
2834
fcc234f8 2835static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2836
2837static struct inode *shmem_alloc_inode(struct super_block *sb)
2838{
41ffe5d5
HD
2839 struct shmem_inode_info *info;
2840 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2841 if (!info)
1da177e4 2842 return NULL;
41ffe5d5 2843 return &info->vfs_inode;
1da177e4
LT
2844}
2845
41ffe5d5 2846static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2847{
2848 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2849 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2850}
2851
1da177e4
LT
2852static void shmem_destroy_inode(struct inode *inode)
2853{
09208d15 2854 if (S_ISREG(inode->i_mode))
1da177e4 2855 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2856 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2857}
2858
41ffe5d5 2859static void shmem_init_inode(void *foo)
1da177e4 2860{
41ffe5d5
HD
2861 struct shmem_inode_info *info = foo;
2862 inode_init_once(&info->vfs_inode);
1da177e4
LT
2863}
2864
41ffe5d5 2865static int shmem_init_inodecache(void)
1da177e4
LT
2866{
2867 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2868 sizeof(struct shmem_inode_info),
41ffe5d5 2869 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2870 return 0;
2871}
2872
41ffe5d5 2873static void shmem_destroy_inodecache(void)
1da177e4 2874{
1a1d92c1 2875 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2876}
2877
f5e54d6e 2878static const struct address_space_operations shmem_aops = {
1da177e4 2879 .writepage = shmem_writepage,
76719325 2880 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2881#ifdef CONFIG_TMPFS
800d15a5
NP
2882 .write_begin = shmem_write_begin,
2883 .write_end = shmem_write_end,
1da177e4 2884#endif
304dbdb7 2885 .migratepage = migrate_page,
aa261f54 2886 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2887};
2888
15ad7cdc 2889static const struct file_operations shmem_file_operations = {
1da177e4
LT
2890 .mmap = shmem_mmap,
2891#ifdef CONFIG_TMPFS
220f2ac9 2892 .llseek = shmem_file_llseek,
bcd78e49 2893 .read = do_sync_read,
5402b976 2894 .write = do_sync_write,
bcd78e49 2895 .aio_read = shmem_file_aio_read,
5402b976 2896 .aio_write = generic_file_aio_write,
1b061d92 2897 .fsync = noop_fsync,
708e3508 2898 .splice_read = shmem_file_splice_read,
ae976416 2899 .splice_write = generic_file_splice_write,
83e4fa9c 2900 .fallocate = shmem_fallocate,
1da177e4
LT
2901#endif
2902};
2903
92e1d5be 2904static const struct inode_operations shmem_inode_operations = {
94c1e62d 2905 .setattr = shmem_setattr,
b09e0fa4
EP
2906#ifdef CONFIG_TMPFS_XATTR
2907 .setxattr = shmem_setxattr,
2908 .getxattr = shmem_getxattr,
2909 .listxattr = shmem_listxattr,
2910 .removexattr = shmem_removexattr,
2911#endif
1da177e4
LT
2912};
2913
92e1d5be 2914static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2915#ifdef CONFIG_TMPFS
2916 .create = shmem_create,
2917 .lookup = simple_lookup,
2918 .link = shmem_link,
2919 .unlink = shmem_unlink,
2920 .symlink = shmem_symlink,
2921 .mkdir = shmem_mkdir,
2922 .rmdir = shmem_rmdir,
2923 .mknod = shmem_mknod,
2924 .rename = shmem_rename,
aa8cc8ee 2925 .tmpfile = shmem_tmpfile,
1da177e4 2926#endif
b09e0fa4
EP
2927#ifdef CONFIG_TMPFS_XATTR
2928 .setxattr = shmem_setxattr,
2929 .getxattr = shmem_getxattr,
2930 .listxattr = shmem_listxattr,
2931 .removexattr = shmem_removexattr,
2932#endif
39f0247d 2933#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2934 .setattr = shmem_setattr,
39f0247d
AG
2935#endif
2936};
2937
92e1d5be 2938static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2939#ifdef CONFIG_TMPFS_XATTR
2940 .setxattr = shmem_setxattr,
2941 .getxattr = shmem_getxattr,
2942 .listxattr = shmem_listxattr,
2943 .removexattr = shmem_removexattr,
2944#endif
39f0247d 2945#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2946 .setattr = shmem_setattr,
39f0247d 2947#endif
1da177e4
LT
2948};
2949
759b9775 2950static const struct super_operations shmem_ops = {
1da177e4
LT
2951 .alloc_inode = shmem_alloc_inode,
2952 .destroy_inode = shmem_destroy_inode,
2953#ifdef CONFIG_TMPFS
2954 .statfs = shmem_statfs,
2955 .remount_fs = shmem_remount_fs,
680d794b 2956 .show_options = shmem_show_options,
1da177e4 2957#endif
1f895f75 2958 .evict_inode = shmem_evict_inode,
1da177e4
LT
2959 .drop_inode = generic_delete_inode,
2960 .put_super = shmem_put_super,
2961};
2962
f0f37e2f 2963static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2964 .fault = shmem_fault,
1da177e4
LT
2965#ifdef CONFIG_NUMA
2966 .set_policy = shmem_set_policy,
2967 .get_policy = shmem_get_policy,
2968#endif
0b173bc4 2969 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2970};
2971
3c26ff6e
AV
2972static struct dentry *shmem_mount(struct file_system_type *fs_type,
2973 int flags, const char *dev_name, void *data)
1da177e4 2974{
3c26ff6e 2975 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2976}
2977
41ffe5d5 2978static struct file_system_type shmem_fs_type = {
1da177e4
LT
2979 .owner = THIS_MODULE,
2980 .name = "tmpfs",
3c26ff6e 2981 .mount = shmem_mount,
1da177e4 2982 .kill_sb = kill_litter_super,
2b8576cb 2983 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2984};
1da177e4 2985
41ffe5d5 2986int __init shmem_init(void)
1da177e4
LT
2987{
2988 int error;
2989
e0bf68dd
PZ
2990 error = bdi_init(&shmem_backing_dev_info);
2991 if (error)
2992 goto out4;
2993
41ffe5d5 2994 error = shmem_init_inodecache();
1da177e4
LT
2995 if (error)
2996 goto out3;
2997
41ffe5d5 2998 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2999 if (error) {
3000 printk(KERN_ERR "Could not register tmpfs\n");
3001 goto out2;
3002 }
95dc112a 3003
41ffe5d5
HD
3004 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
3005 shmem_fs_type.name, NULL);
1da177e4
LT
3006 if (IS_ERR(shm_mnt)) {
3007 error = PTR_ERR(shm_mnt);
3008 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3009 goto out1;
3010 }
3011 return 0;
3012
3013out1:
41ffe5d5 3014 unregister_filesystem(&shmem_fs_type);
1da177e4 3015out2:
41ffe5d5 3016 shmem_destroy_inodecache();
1da177e4 3017out3:
e0bf68dd
PZ
3018 bdi_destroy(&shmem_backing_dev_info);
3019out4:
1da177e4
LT
3020 shm_mnt = ERR_PTR(error);
3021 return error;
3022}
853ac43a
MM
3023
3024#else /* !CONFIG_SHMEM */
3025
3026/*
3027 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3028 *
3029 * This is intended for small system where the benefits of the full
3030 * shmem code (swap-backed and resource-limited) are outweighed by
3031 * their complexity. On systems without swap this code should be
3032 * effectively equivalent, but much lighter weight.
3033 */
3034
41ffe5d5 3035static struct file_system_type shmem_fs_type = {
853ac43a 3036 .name = "tmpfs",
3c26ff6e 3037 .mount = ramfs_mount,
853ac43a 3038 .kill_sb = kill_litter_super,
2b8576cb 3039 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3040};
3041
41ffe5d5 3042int __init shmem_init(void)
853ac43a 3043{
41ffe5d5 3044 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3045
41ffe5d5 3046 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3047 BUG_ON(IS_ERR(shm_mnt));
3048
3049 return 0;
3050}
3051
41ffe5d5 3052int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3053{
3054 return 0;
3055}
3056
3f96b79a
HD
3057int shmem_lock(struct file *file, int lock, struct user_struct *user)
3058{
3059 return 0;
3060}
3061
24513264
HD
3062void shmem_unlock_mapping(struct address_space *mapping)
3063{
3064}
3065
41ffe5d5 3066void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3067{
41ffe5d5 3068 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3069}
3070EXPORT_SYMBOL_GPL(shmem_truncate_range);
3071
0b0a0806
HD
3072#define shmem_vm_ops generic_file_vm_ops
3073#define shmem_file_operations ramfs_file_operations
454abafe 3074#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3075#define shmem_acct_size(flags, size) 0
3076#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3077
3078#endif /* CONFIG_SHMEM */
3079
3080/* common code */
1da177e4 3081
3451538a 3082static struct dentry_operations anon_ops = {
ad4c3cc4 3083 .d_dname = simple_dname
3451538a
AV
3084};
3085
46711810 3086/**
1da177e4 3087 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
3088 * @name: name for dentry (to be seen in /proc/<pid>/maps
3089 * @size: size to be set for the file
0b0a0806 3090 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 3091 */
168f5ac6 3092struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4 3093{
6b4d0b27 3094 struct file *res;
1da177e4 3095 struct inode *inode;
2c48b9c4 3096 struct path path;
3451538a 3097 struct super_block *sb;
1da177e4
LT
3098 struct qstr this;
3099
3100 if (IS_ERR(shm_mnt))
6b4d0b27 3101 return ERR_CAST(shm_mnt);
1da177e4 3102
285b2c4f 3103 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3104 return ERR_PTR(-EINVAL);
3105
3106 if (shmem_acct_size(flags, size))
3107 return ERR_PTR(-ENOMEM);
3108
6b4d0b27 3109 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3110 this.name = name;
3111 this.len = strlen(name);
3112 this.hash = 0; /* will go */
3451538a
AV
3113 sb = shm_mnt->mnt_sb;
3114 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3115 if (!path.dentry)
1da177e4 3116 goto put_memory;
3451538a 3117 d_set_d_op(path.dentry, &anon_ops);
2c48b9c4 3118 path.mnt = mntget(shm_mnt);
1da177e4 3119
6b4d0b27 3120 res = ERR_PTR(-ENOSPC);
3451538a 3121 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3122 if (!inode)
4b42af81 3123 goto put_dentry;
1da177e4 3124
2c48b9c4 3125 d_instantiate(path.dentry, inode);
1da177e4 3126 inode->i_size = size;
6d6b77f1 3127 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3128 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3129 if (IS_ERR(res))
4b42af81 3130 goto put_dentry;
4b42af81 3131
6b4d0b27 3132 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3133 &shmem_file_operations);
6b4d0b27 3134 if (IS_ERR(res))
4b42af81
AV
3135 goto put_dentry;
3136
6b4d0b27 3137 return res;
1da177e4 3138
1da177e4 3139put_dentry:
2c48b9c4 3140 path_put(&path);
1da177e4
LT
3141put_memory:
3142 shmem_unacct_size(flags, size);
6b4d0b27 3143 return res;
1da177e4 3144}
395e0ddc 3145EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3146
3c2a0909
S
3147void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3148{
3149 if (vma->vm_file)
3150 fput(vma->vm_file);
3151 vma->vm_file = file;
3152 vma->vm_ops = &shmem_vm_ops;
3153}
3154
46711810 3155/**
1da177e4 3156 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3157 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3158 */
3159int shmem_zero_setup(struct vm_area_struct *vma)
3160{
3161 struct file *file;
3162 loff_t size = vma->vm_end - vma->vm_start;
3163
3164 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3165 if (IS_ERR(file))
3166 return PTR_ERR(file);
3167
3c2a0909 3168 shmem_set_file(vma, file);
1da177e4
LT
3169 return 0;
3170}
d9d90e5e
HD
3171
3172/**
3173 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3174 * @mapping: the page's address_space
3175 * @index: the page index
3176 * @gfp: the page allocator flags to use if allocating
3177 *
3178 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3179 * with any new page allocations done using the specified allocation flags.
3180 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3181 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3182 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3183 *
68da9f05
HD
3184 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3185 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3186 */
3187struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3188 pgoff_t index, gfp_t gfp)
3189{
68da9f05
HD
3190#ifdef CONFIG_SHMEM
3191 struct inode *inode = mapping->host;
9276aad6 3192 struct page *page;
68da9f05
HD
3193 int error;
3194
3195 BUG_ON(mapping->a_ops != &shmem_aops);
3196 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3197 if (error)
3198 page = ERR_PTR(error);
3199 else
3200 unlock_page(page);
3201 return page;
3202#else
3203 /*
3204 * The tiny !SHMEM case uses ramfs without swap
3205 */
d9d90e5e 3206 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3207#endif
d9d90e5e
HD
3208}
3209EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);