UPSTREAM: selinux: Remove unnecessary check of array base in selinux_set_mapping()
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
6c954667 33#include <linux/pm_runtime.h>
55782138
LZ
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/block.h>
1da177e4 37
8324aa91 38#include "blk.h"
5efd6113 39#include "blk-cgroup.h"
8324aa91 40
d07335e5 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 45
a73f730d
TH
46DEFINE_IDA(blk_queue_ida);
47
1da177e4
LT
48/*
49 * For the allocated request tables
50 */
5ece6c52 51static struct kmem_cache *request_cachep;
1da177e4
LT
52
53/*
54 * For queue allocation
55 */
6728cb0e 56struct kmem_cache *blk_requestq_cachep;
1da177e4 57
1da177e4
LT
58/*
59 * Controlling structure to kblockd
60 */
ff856bad 61static struct workqueue_struct *kblockd_workqueue;
1da177e4 62
26b8256e
JA
63static void drive_stat_acct(struct request *rq, int new_io)
64{
28f13702 65 struct hd_struct *part;
26b8256e 66 int rw = rq_data_dir(rq);
c9959059 67 int cpu;
26b8256e 68
c2553b58 69 if (!blk_do_io_stat(rq))
26b8256e
JA
70 return;
71
074a7aca 72 cpu = part_stat_lock();
c9959059 73
09e099d4
JM
74 if (!new_io) {
75 part = rq->part;
074a7aca 76 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 79 if (!hd_struct_try_get(part)) {
09e099d4
JM
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
6c23a968 89 hd_struct_get(part);
09e099d4 90 }
074a7aca 91 part_round_stats(cpu, part);
316d315b 92 part_inc_in_flight(part, rw);
09e099d4 93 rq->part = part;
26b8256e 94 }
e71bf0d0 95
074a7aca 96 part_stat_unlock();
26b8256e
JA
97}
98
8324aa91 99void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
1da177e4
LT
114/**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124{
125 struct backing_dev_info *ret = NULL;
165125e1 126 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131}
1da177e4
LT
132EXPORT_SYMBOL(blk_get_backing_dev_info);
133
2a4aa30c 134void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 135{
1afb20f3
FT
136 memset(rq, 0, sizeof(*rq));
137
1da177e4 138 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 139 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 140 rq->cpu = -1;
63a71386 141 rq->q = q;
a2dec7b3 142 rq->__sector = (sector_t) -1;
2e662b65
JA
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 145 rq->cmd = rq->__cmd;
e2494e1b 146 rq->cmd_len = BLK_MAX_CDB;
63a71386 147 rq->tag = -1;
1da177e4 148 rq->ref_count = 1;
b243ddcb 149 rq->start_time = jiffies;
9195291e 150 set_start_time_ns(rq);
09e099d4 151 rq->part = NULL;
1da177e4 152}
2a4aa30c 153EXPORT_SYMBOL(blk_rq_init);
1da177e4 154
5bb23a68
N
155static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
1da177e4 157{
143a87f4
TH
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
f79ea416 166 bio_advance(bio, nbytes);
7ba1ba12 167
143a87f4
TH
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
3cca6dc1 196static void blk_delay_work(struct work_struct *work)
1da177e4 197{
3cca6dc1 198 struct request_queue *q;
1da177e4 199
3cca6dc1
JA
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
24ecfbe2 202 __blk_run_queue(q);
3cca6dc1 203 spin_unlock_irq(q->queue_lock);
1da177e4 204}
1da177e4
LT
205
206/**
3cca6dc1
JA
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
1da177e4
LT
210 *
211 * Description:
3cca6dc1
JA
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
70460571 214 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
215 */
216void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 217{
70460571
BVA
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
2ad8b1ef 221}
3cca6dc1 222EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 223
1da177e4
LT
224/**
225 * blk_start_queue - restart a previously stopped queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
165125e1 233void blk_start_queue(struct request_queue *q)
1da177e4 234{
a038e253
PBG
235 WARN_ON(!irqs_disabled());
236
75ad23bc 237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 238 __blk_run_queue(q);
1da177e4 239}
1da177e4
LT
240EXPORT_SYMBOL(blk_start_queue);
241
242/**
243 * blk_stop_queue - stop a queue
165125e1 244 * @q: The &struct request_queue in question
1da177e4
LT
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
165125e1 256void blk_stop_queue(struct request_queue *q)
1da177e4 257{
136b5721 258 cancel_delayed_work(&q->delay_work);
75ad23bc 259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
260}
261EXPORT_SYMBOL(blk_stop_queue);
262
263/**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
59c51591 272 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
da527770
VG
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 278 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 279 *
1da177e4
LT
280 */
281void blk_sync_queue(struct request_queue *q)
282{
70ed28b9 283 del_timer_sync(&q->timeout);
3cca6dc1 284 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
285}
286EXPORT_SYMBOL(blk_sync_queue);
287
c246e80d
BVA
288/**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299inline void __blk_run_queue_uncond(struct request_queue *q)
300{
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
24faf6f6
BVA
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
c246e80d 312 q->request_fn(q);
24faf6f6 313 q->request_fn_active--;
c246e80d
BVA
314}
315
1da177e4 316/**
80a4b58e 317 * __blk_run_queue - run a single device queue
1da177e4 318 * @q: The queue to run
80a4b58e
JA
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 322 * held and interrupts disabled.
1da177e4 323 */
24ecfbe2 324void __blk_run_queue(struct request_queue *q)
1da177e4 325{
a538cd03
TH
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
c246e80d 329 __blk_run_queue_uncond(q);
75ad23bc
NP
330}
331EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 332
24ecfbe2
CH
333/**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 339 * of us. The caller must hold the queue lock.
24ecfbe2
CH
340 */
341void blk_run_queue_async(struct request_queue *q)
342{
70460571 343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 345}
c21e6beb 346EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 347
75ad23bc
NP
348/**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
80a4b58e
JA
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 354 * May be used to restart queueing when a request has completed.
75ad23bc
NP
355 */
356void blk_run_queue(struct request_queue *q)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 361 __blk_run_queue(q);
1da177e4
LT
362 spin_unlock_irqrestore(q->queue_lock, flags);
363}
364EXPORT_SYMBOL(blk_run_queue);
365
165125e1 366void blk_put_queue(struct request_queue *q)
483f4afc
AV
367{
368 kobject_put(&q->kobj);
369}
d86e0e83 370EXPORT_SYMBOL(blk_put_queue);
483f4afc 371
e3c78ca5 372/**
807592a4 373 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 374 * @q: queue to drain
c9a929dd 375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 376 *
c9a929dd
TH
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 380 */
807592a4
BVA
381static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
e3c78ca5 384{
458f27a9
AH
385 int i;
386
807592a4
BVA
387 lockdep_assert_held(q->queue_lock);
388
e3c78ca5 389 while (true) {
481a7d64 390 bool drain = false;
e3c78ca5 391
b855b04a
TH
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
5efd6113 399 blkcg_drain_queue(q);
e3c78ca5 400
4eabc941
TH
401 /*
402 * This function might be called on a queue which failed
b855b04a
TH
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
4eabc941 407 */
b855b04a 408 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 409 __blk_run_queue(q);
c9a929dd 410
8a5ecdd4 411 drain |= q->nr_rqs_elvpriv;
24faf6f6 412 drain |= q->request_fn_active;
481a7d64
TH
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
8a5ecdd4 422 drain |= q->nr_rqs[i];
481a7d64
TH
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
e3c78ca5 427
481a7d64 428 if (!drain)
e3c78ca5 429 break;
807592a4
BVA
430
431 spin_unlock_irq(q->queue_lock);
432
e3c78ca5 433 msleep(10);
807592a4
BVA
434
435 spin_lock_irq(q->queue_lock);
e3c78ca5 436 }
458f27a9
AH
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
a051661c
TH
444 struct request_list *rl;
445
a051661c
TH
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
458f27a9 449 }
e3c78ca5
TH
450}
451
d732580b
TH
452/**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 458 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
d732580b
TH
461 */
462void blk_queue_bypass_start(struct request_queue *q)
463{
b82d4b19
TH
464 bool drain;
465
d732580b 466 spin_lock_irq(q->queue_lock);
b82d4b19 467 drain = !q->bypass_depth++;
d732580b
TH
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
b82d4b19 471 if (drain) {
807592a4
BVA
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
b82d4b19
TH
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
d732580b
TH
479}
480EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482/**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488void blk_queue_bypass_end(struct request_queue *q)
489{
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495}
496EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
c9a929dd
TH
498/**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
c246e80d
BVA
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 504 */
6728cb0e 505void blk_cleanup_queue(struct request_queue *q)
483f4afc 506{
c9a929dd 507 spinlock_t *lock = q->queue_lock;
e3335de9 508
3f3299d5 509 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 510 mutex_lock(&q->sysfs_lock);
3f3299d5 511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 512 spin_lock_irq(lock);
6ecf23af 513
80fd9979 514 /*
3f3299d5 515 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
6ecf23af
TH
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
c9a929dd
TH
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 528 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
c246e80d
BVA
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
807592a4
BVA
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
c246e80d 538 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 539 spin_unlock_irq(lock);
c9a929dd
TH
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
5e5cfac0
AH
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
c9a929dd 550 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
551 blk_put_queue(q);
552}
1da177e4
LT
553EXPORT_SYMBOL(blk_cleanup_queue);
554
5b788ce3
TH
555int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
1da177e4 557{
1abec4fd
MS
558 if (unlikely(rl->rq_pool))
559 return 0;
560
5b788ce3 561 rl->q = q;
1faa16d2
JA
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 566
1946089a 567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 568 mempool_free_slab, request_cachep,
5b788ce3 569 gfp_mask, q->node);
1da177e4
LT
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574}
575
5b788ce3
TH
576void blk_exit_rl(struct request_list *rl)
577{
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580}
581
165125e1 582struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 583{
c304a51b 584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
585}
586EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 587
165125e1 588struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 589{
165125e1 590 struct request_queue *q;
e0bf68dd 591 int err;
1946089a 592
8324aa91 593 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 594 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
595 if (!q)
596 return NULL;
597
00380a40 598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
599 if (q->id < 0)
600 goto fail_q;
601
0989a025
JA
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 606 q->backing_dev_info.name = "block";
5151412d 607 q->node = node_id;
0989a025 608
e0bf68dd 609 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
610 if (err)
611 goto fail_id;
e0bf68dd 612
31373d09
MG
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 616 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 617 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 618 INIT_LIST_HEAD(&q->icq_list);
4eef3049 619#ifdef CONFIG_BLK_CGROUP
e8989fae 620 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 621#endif
ae1b1539
TH
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 626
8324aa91 627 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 628
483f4afc 629 mutex_init(&q->sysfs_lock);
e7e72bf6 630 spin_lock_init(&q->__queue_lock);
483f4afc 631
c94a96ac
VG
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
b82d4b19
TH
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
b82d4b19
TH
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
5efd6113 647 if (blkcg_init_queue(q))
d8db1a5f 648 goto fail_bdi;
f51b802c 649
1da177e4 650 return q;
a73f730d 651
d8db1a5f
MP
652fail_bdi:
653 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
654fail_id:
655 ida_simple_remove(&blk_queue_ida, q->id);
656fail_q:
657 kmem_cache_free(blk_requestq_cachep, q);
658 return NULL;
1da177e4 659}
1946089a 660EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
661
662/**
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
667 *
668 * Description:
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
677 *
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
682 *
683 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
1da177e4 686 *
710027a4 687 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
688 * it didn't succeed.
689 *
690 * Note:
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
693 **/
1946089a 694
165125e1 695struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 696{
c304a51b 697 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
698}
699EXPORT_SYMBOL(blk_init_queue);
700
165125e1 701struct request_queue *
1946089a
CL
702blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
703{
c86d1b8a 704 struct request_queue *uninit_q, *q;
1da177e4 705
c86d1b8a
MS
706 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
707 if (!uninit_q)
708 return NULL;
709
5151412d 710 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
711 if (!q)
712 blk_cleanup_queue(uninit_q);
713
714 return q;
01effb0d
MS
715}
716EXPORT_SYMBOL(blk_init_queue_node);
717
718struct request_queue *
719blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
720 spinlock_t *lock)
01effb0d 721{
1da177e4
LT
722 if (!q)
723 return NULL;
724
a051661c 725 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 726 return NULL;
1da177e4
LT
727
728 q->request_fn = rfn;
1da177e4 729 q->prep_rq_fn = NULL;
28018c24 730 q->unprep_rq_fn = NULL;
60ea8226 731 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
732
733 /* Override internal queue lock with supplied lock pointer */
734 if (lock)
735 q->queue_lock = lock;
1da177e4 736
f3b144aa
JA
737 /*
738 * This also sets hw/phys segments, boundary and size
739 */
c20e8de2 740 blk_queue_make_request(q, blk_queue_bio);
1da177e4 741
44ec9542
AS
742 q->sg_reserved_size = INT_MAX;
743
6d53d392
TS
744 /* Protect q->elevator from elevator_change */
745 mutex_lock(&q->sysfs_lock);
746
b82d4b19 747 /* init elevator */
6d53d392
TS
748 if (elevator_init(q, NULL)) {
749 mutex_unlock(&q->sysfs_lock);
b82d4b19 750 return NULL;
6d53d392
TS
751 }
752
753 mutex_unlock(&q->sysfs_lock);
754
b82d4b19 755 return q;
1da177e4 756}
5151412d 757EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 758
09ac46c4 759bool blk_get_queue(struct request_queue *q)
1da177e4 760{
3f3299d5 761 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
762 __blk_get_queue(q);
763 return true;
1da177e4
LT
764 }
765
09ac46c4 766 return false;
1da177e4 767}
d86e0e83 768EXPORT_SYMBOL(blk_get_queue);
1da177e4 769
5b788ce3 770static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 771{
f1f8cc94 772 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 773 elv_put_request(rl->q, rq);
f1f8cc94 774 if (rq->elv.icq)
11a3122f 775 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
776 }
777
5b788ce3 778 mempool_free(rq, rl->rq_pool);
1da177e4
LT
779}
780
1da177e4
LT
781/*
782 * ioc_batching returns true if the ioc is a valid batching request and
783 * should be given priority access to a request.
784 */
165125e1 785static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
786{
787 if (!ioc)
788 return 0;
789
790 /*
791 * Make sure the process is able to allocate at least 1 request
792 * even if the batch times out, otherwise we could theoretically
793 * lose wakeups.
794 */
795 return ioc->nr_batch_requests == q->nr_batching ||
796 (ioc->nr_batch_requests > 0
797 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
798}
799
800/*
801 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
802 * will cause the process to be a "batcher" on all queues in the system. This
803 * is the behaviour we want though - once it gets a wakeup it should be given
804 * a nice run.
805 */
165125e1 806static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
807{
808 if (!ioc || ioc_batching(q, ioc))
809 return;
810
811 ioc->nr_batch_requests = q->nr_batching;
812 ioc->last_waited = jiffies;
813}
814
5b788ce3 815static void __freed_request(struct request_list *rl, int sync)
1da177e4 816{
5b788ce3 817 struct request_queue *q = rl->q;
1da177e4 818
a051661c
TH
819 /*
820 * bdi isn't aware of blkcg yet. As all async IOs end up root
821 * blkcg anyway, just use root blkcg state.
822 */
823 if (rl == &q->root_rl &&
824 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 825 blk_clear_queue_congested(q, sync);
1da177e4 826
1faa16d2
JA
827 if (rl->count[sync] + 1 <= q->nr_requests) {
828 if (waitqueue_active(&rl->wait[sync]))
829 wake_up(&rl->wait[sync]);
1da177e4 830
5b788ce3 831 blk_clear_rl_full(rl, sync);
1da177e4
LT
832 }
833}
834
835/*
836 * A request has just been released. Account for it, update the full and
837 * congestion status, wake up any waiters. Called under q->queue_lock.
838 */
5b788ce3 839static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 840{
5b788ce3 841 struct request_queue *q = rl->q;
75eb6c37 842 int sync = rw_is_sync(flags);
1da177e4 843
8a5ecdd4 844 q->nr_rqs[sync]--;
1faa16d2 845 rl->count[sync]--;
75eb6c37 846 if (flags & REQ_ELVPRIV)
8a5ecdd4 847 q->nr_rqs_elvpriv--;
1da177e4 848
5b788ce3 849 __freed_request(rl, sync);
1da177e4 850
1faa16d2 851 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 852 __freed_request(rl, sync ^ 1);
1da177e4
LT
853}
854
9d5a4e94
MS
855/*
856 * Determine if elevator data should be initialized when allocating the
857 * request associated with @bio.
858 */
859static bool blk_rq_should_init_elevator(struct bio *bio)
860{
861 if (!bio)
862 return true;
863
864 /*
865 * Flush requests do not use the elevator so skip initialization.
866 * This allows a request to share the flush and elevator data.
867 */
868 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
869 return false;
870
871 return true;
872}
873
852c788f
TH
874/**
875 * rq_ioc - determine io_context for request allocation
876 * @bio: request being allocated is for this bio (can be %NULL)
877 *
878 * Determine io_context to use for request allocation for @bio. May return
879 * %NULL if %current->io_context doesn't exist.
880 */
881static struct io_context *rq_ioc(struct bio *bio)
882{
883#ifdef CONFIG_BLK_CGROUP
884 if (bio && bio->bi_ioc)
885 return bio->bi_ioc;
886#endif
887 return current->io_context;
888}
889
da8303c6 890/**
a06e05e6 891 * __get_request - get a free request
5b788ce3 892 * @rl: request list to allocate from
da8303c6
TH
893 * @rw_flags: RW and SYNC flags
894 * @bio: bio to allocate request for (can be %NULL)
895 * @gfp_mask: allocation mask
896 *
897 * Get a free request from @q. This function may fail under memory
898 * pressure or if @q is dead.
899 *
900 * Must be callled with @q->queue_lock held and,
901 * Returns %NULL on failure, with @q->queue_lock held.
902 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 903 */
5b788ce3 904static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 905 struct bio *bio, gfp_t gfp_mask)
1da177e4 906{
5b788ce3 907 struct request_queue *q = rl->q;
b679281a 908 struct request *rq;
7f4b35d1
TH
909 struct elevator_type *et = q->elevator->type;
910 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 911 struct io_cq *icq = NULL;
1faa16d2 912 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 913 int may_queue;
88ee5ef1 914
3f3299d5 915 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
916 return NULL;
917
7749a8d4 918 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
919 if (may_queue == ELV_MQUEUE_NO)
920 goto rq_starved;
921
1faa16d2
JA
922 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
923 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
924 /*
925 * The queue will fill after this allocation, so set
926 * it as full, and mark this process as "batching".
927 * This process will be allowed to complete a batch of
928 * requests, others will be blocked.
929 */
5b788ce3 930 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 931 ioc_set_batching(q, ioc);
5b788ce3 932 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
933 } else {
934 if (may_queue != ELV_MQUEUE_MUST
935 && !ioc_batching(q, ioc)) {
936 /*
937 * The queue is full and the allocating
938 * process is not a "batcher", and not
939 * exempted by the IO scheduler
940 */
b679281a 941 return NULL;
88ee5ef1
JA
942 }
943 }
1da177e4 944 }
a051661c
TH
945 /*
946 * bdi isn't aware of blkcg yet. As all async IOs end up
947 * root blkcg anyway, just use root blkcg state.
948 */
949 if (rl == &q->root_rl)
950 blk_set_queue_congested(q, is_sync);
1da177e4
LT
951 }
952
082cf69e
JA
953 /*
954 * Only allow batching queuers to allocate up to 50% over the defined
955 * limit of requests, otherwise we could have thousands of requests
956 * allocated with any setting of ->nr_requests
957 */
1faa16d2 958 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 959 return NULL;
fd782a4a 960
8a5ecdd4 961 q->nr_rqs[is_sync]++;
1faa16d2
JA
962 rl->count[is_sync]++;
963 rl->starved[is_sync] = 0;
cb98fc8b 964
f1f8cc94
TH
965 /*
966 * Decide whether the new request will be managed by elevator. If
967 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
968 * prevent the current elevator from being destroyed until the new
969 * request is freed. This guarantees icq's won't be destroyed and
970 * makes creating new ones safe.
971 *
972 * Also, lookup icq while holding queue_lock. If it doesn't exist,
973 * it will be created after releasing queue_lock.
974 */
d732580b 975 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 976 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 977 q->nr_rqs_elvpriv++;
f1f8cc94
TH
978 if (et->icq_cache && ioc)
979 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 980 }
cb98fc8b 981
f253b86b
JA
982 if (blk_queue_io_stat(q))
983 rw_flags |= REQ_IO_STAT;
1da177e4
LT
984 spin_unlock_irq(q->queue_lock);
985
29e2b09a 986 /* allocate and init request */
5b788ce3 987 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 988 if (!rq)
b679281a 989 goto fail_alloc;
1da177e4 990
29e2b09a 991 blk_rq_init(q, rq);
a051661c 992 blk_rq_set_rl(rq, rl);
29e2b09a
TH
993 rq->cmd_flags = rw_flags | REQ_ALLOCED;
994
aaf7c680 995 /* init elvpriv */
29e2b09a 996 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 997 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
998 if (ioc)
999 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1000 if (!icq)
1001 goto fail_elvpriv;
29e2b09a 1002 }
aaf7c680
TH
1003
1004 rq->elv.icq = icq;
1005 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1006 goto fail_elvpriv;
1007
1008 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1009 if (icq)
1010 get_io_context(icq->ioc);
1011 }
aaf7c680 1012out:
88ee5ef1
JA
1013 /*
1014 * ioc may be NULL here, and ioc_batching will be false. That's
1015 * OK, if the queue is under the request limit then requests need
1016 * not count toward the nr_batch_requests limit. There will always
1017 * be some limit enforced by BLK_BATCH_TIME.
1018 */
1da177e4
LT
1019 if (ioc_batching(q, ioc))
1020 ioc->nr_batch_requests--;
6728cb0e 1021
1faa16d2 1022 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1023 return rq;
b679281a 1024
aaf7c680
TH
1025fail_elvpriv:
1026 /*
1027 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1028 * and may fail indefinitely under memory pressure and thus
1029 * shouldn't stall IO. Treat this request as !elvpriv. This will
1030 * disturb iosched and blkcg but weird is bettern than dead.
1031 */
1032 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1033 dev_name(q->backing_dev_info.dev));
1034
1035 rq->cmd_flags &= ~REQ_ELVPRIV;
1036 rq->elv.icq = NULL;
1037
1038 spin_lock_irq(q->queue_lock);
8a5ecdd4 1039 q->nr_rqs_elvpriv--;
aaf7c680
TH
1040 spin_unlock_irq(q->queue_lock);
1041 goto out;
1042
b679281a
TH
1043fail_alloc:
1044 /*
1045 * Allocation failed presumably due to memory. Undo anything we
1046 * might have messed up.
1047 *
1048 * Allocating task should really be put onto the front of the wait
1049 * queue, but this is pretty rare.
1050 */
1051 spin_lock_irq(q->queue_lock);
5b788ce3 1052 freed_request(rl, rw_flags);
b679281a
TH
1053
1054 /*
1055 * in the very unlikely event that allocation failed and no
1056 * requests for this direction was pending, mark us starved so that
1057 * freeing of a request in the other direction will notice
1058 * us. another possible fix would be to split the rq mempool into
1059 * READ and WRITE
1060 */
1061rq_starved:
1062 if (unlikely(rl->count[is_sync] == 0))
1063 rl->starved[is_sync] = 1;
1064 return NULL;
1da177e4
LT
1065}
1066
da8303c6 1067/**
a06e05e6 1068 * get_request - get a free request
da8303c6
TH
1069 * @q: request_queue to allocate request from
1070 * @rw_flags: RW and SYNC flags
1071 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1072 * @gfp_mask: allocation mask
da8303c6 1073 *
a06e05e6
TH
1074 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1075 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1076 *
da8303c6
TH
1077 * Must be callled with @q->queue_lock held and,
1078 * Returns %NULL on failure, with @q->queue_lock held.
1079 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1080 */
a06e05e6
TH
1081static struct request *get_request(struct request_queue *q, int rw_flags,
1082 struct bio *bio, gfp_t gfp_mask)
1da177e4 1083{
1faa16d2 1084 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1085 DEFINE_WAIT(wait);
a051661c 1086 struct request_list *rl;
1da177e4 1087 struct request *rq;
a051661c
TH
1088
1089 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1090retry:
a051661c 1091 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1092 if (rq)
1093 return rq;
1da177e4 1094
3f3299d5 1095 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1096 blk_put_rl(rl);
a06e05e6 1097 return NULL;
a051661c 1098 }
1da177e4 1099
a06e05e6
TH
1100 /* wait on @rl and retry */
1101 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1102 TASK_UNINTERRUPTIBLE);
1da177e4 1103
a06e05e6 1104 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1105
a06e05e6
TH
1106 spin_unlock_irq(q->queue_lock);
1107 io_schedule();
d6344532 1108
a06e05e6
TH
1109 /*
1110 * After sleeping, we become a "batching" process and will be able
1111 * to allocate at least one request, and up to a big batch of them
1112 * for a small period time. See ioc_batching, ioc_set_batching
1113 */
a06e05e6 1114 ioc_set_batching(q, current->io_context);
05caf8db 1115
a06e05e6
TH
1116 spin_lock_irq(q->queue_lock);
1117 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1118
a06e05e6 1119 goto retry;
1da177e4
LT
1120}
1121
165125e1 1122struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1123{
1124 struct request *rq;
1125
1126 BUG_ON(rw != READ && rw != WRITE);
1127
7f4b35d1
TH
1128 /* create ioc upfront */
1129 create_io_context(gfp_mask, q->node);
1130
d6344532 1131 spin_lock_irq(q->queue_lock);
a06e05e6 1132 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1133 if (!rq)
1134 spin_unlock_irq(q->queue_lock);
d6344532 1135 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1136
1137 return rq;
1138}
1da177e4
LT
1139EXPORT_SYMBOL(blk_get_request);
1140
dc72ef4a 1141/**
79eb63e9 1142 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1143 * @q: target request queue
79eb63e9
BH
1144 * @bio: The bio describing the memory mappings that will be submitted for IO.
1145 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1146 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1147 *
79eb63e9
BH
1148 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1149 * type commands. Where the struct request needs to be farther initialized by
1150 * the caller. It is passed a &struct bio, which describes the memory info of
1151 * the I/O transfer.
dc72ef4a 1152 *
79eb63e9
BH
1153 * The caller of blk_make_request must make sure that bi_io_vec
1154 * are set to describe the memory buffers. That bio_data_dir() will return
1155 * the needed direction of the request. (And all bio's in the passed bio-chain
1156 * are properly set accordingly)
1157 *
1158 * If called under none-sleepable conditions, mapped bio buffers must not
1159 * need bouncing, by calling the appropriate masked or flagged allocator,
1160 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1161 * BUG.
53674ac5
JA
1162 *
1163 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1164 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1165 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1166 * completion of a bio that hasn't been submitted yet, thus resulting in a
1167 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1168 * of bio_alloc(), as that avoids the mempool deadlock.
1169 * If possible a big IO should be split into smaller parts when allocation
1170 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1171 */
79eb63e9
BH
1172struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1173 gfp_t gfp_mask)
dc72ef4a 1174{
79eb63e9
BH
1175 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1176
1177 if (unlikely(!rq))
1178 return ERR_PTR(-ENOMEM);
1179
1180 for_each_bio(bio) {
1181 struct bio *bounce_bio = bio;
1182 int ret;
1183
1184 blk_queue_bounce(q, &bounce_bio);
1185 ret = blk_rq_append_bio(q, rq, bounce_bio);
1186 if (unlikely(ret)) {
1187 blk_put_request(rq);
1188 return ERR_PTR(ret);
1189 }
1190 }
1191
1192 return rq;
dc72ef4a 1193}
79eb63e9 1194EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1195
1da177e4
LT
1196/**
1197 * blk_requeue_request - put a request back on queue
1198 * @q: request queue where request should be inserted
1199 * @rq: request to be inserted
1200 *
1201 * Description:
1202 * Drivers often keep queueing requests until the hardware cannot accept
1203 * more, when that condition happens we need to put the request back
1204 * on the queue. Must be called with queue lock held.
1205 */
165125e1 1206void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1207{
242f9dcb
JA
1208 blk_delete_timer(rq);
1209 blk_clear_rq_complete(rq);
5f3ea37c 1210 trace_block_rq_requeue(q, rq);
2056a782 1211
1da177e4
LT
1212 if (blk_rq_tagged(rq))
1213 blk_queue_end_tag(q, rq);
1214
ba396a6c
JB
1215 BUG_ON(blk_queued_rq(rq));
1216
1da177e4
LT
1217 elv_requeue_request(q, rq);
1218}
1da177e4
LT
1219EXPORT_SYMBOL(blk_requeue_request);
1220
73c10101
JA
1221static void add_acct_request(struct request_queue *q, struct request *rq,
1222 int where)
1223{
1224 drive_stat_acct(rq, 1);
7eaceacc 1225 __elv_add_request(q, rq, where);
73c10101
JA
1226}
1227
074a7aca
TH
1228static void part_round_stats_single(int cpu, struct hd_struct *part,
1229 unsigned long now)
1230{
1231 if (now == part->stamp)
1232 return;
1233
316d315b 1234 if (part_in_flight(part)) {
074a7aca 1235 __part_stat_add(cpu, part, time_in_queue,
316d315b 1236 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1237 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1238 }
1239 part->stamp = now;
1240}
1241
1242/**
496aa8a9
RD
1243 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1244 * @cpu: cpu number for stats access
1245 * @part: target partition
1da177e4
LT
1246 *
1247 * The average IO queue length and utilisation statistics are maintained
1248 * by observing the current state of the queue length and the amount of
1249 * time it has been in this state for.
1250 *
1251 * Normally, that accounting is done on IO completion, but that can result
1252 * in more than a second's worth of IO being accounted for within any one
1253 * second, leading to >100% utilisation. To deal with that, we call this
1254 * function to do a round-off before returning the results when reading
1255 * /proc/diskstats. This accounts immediately for all queue usage up to
1256 * the current jiffies and restarts the counters again.
1257 */
c9959059 1258void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1259{
1260 unsigned long now = jiffies;
1261
074a7aca
TH
1262 if (part->partno)
1263 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1264 part_round_stats_single(cpu, part, now);
6f2576af 1265}
074a7aca 1266EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1267
c8158819
LM
1268#ifdef CONFIG_PM_RUNTIME
1269static void blk_pm_put_request(struct request *rq)
1270{
1271 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1272 pm_runtime_mark_last_busy(rq->q->dev);
1273}
1274#else
1275static inline void blk_pm_put_request(struct request *rq) {}
1276#endif
1277
1da177e4
LT
1278/*
1279 * queue lock must be held
1280 */
165125e1 1281void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1282{
1da177e4
LT
1283 if (unlikely(!q))
1284 return;
1285 if (unlikely(--req->ref_count))
1286 return;
1287
c8158819
LM
1288 blk_pm_put_request(req);
1289
8922e16c
TH
1290 elv_completed_request(q, req);
1291
1cd96c24
BH
1292 /* this is a bio leak */
1293 WARN_ON(req->bio != NULL);
1294
1da177e4
LT
1295 /*
1296 * Request may not have originated from ll_rw_blk. if not,
1297 * it didn't come out of our reserved rq pools
1298 */
49171e5c 1299 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1300 unsigned int flags = req->cmd_flags;
a051661c 1301 struct request_list *rl = blk_rq_rl(req);
1da177e4 1302
1da177e4 1303 BUG_ON(!list_empty(&req->queuelist));
9817064b 1304 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1305
a051661c
TH
1306 blk_free_request(rl, req);
1307 freed_request(rl, flags);
1308 blk_put_rl(rl);
1da177e4
LT
1309 }
1310}
6e39b69e
MC
1311EXPORT_SYMBOL_GPL(__blk_put_request);
1312
1da177e4
LT
1313void blk_put_request(struct request *req)
1314{
8922e16c 1315 unsigned long flags;
165125e1 1316 struct request_queue *q = req->q;
8922e16c 1317
52a93ba8
FT
1318 spin_lock_irqsave(q->queue_lock, flags);
1319 __blk_put_request(q, req);
1320 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1321}
1da177e4
LT
1322EXPORT_SYMBOL(blk_put_request);
1323
66ac0280
CH
1324/**
1325 * blk_add_request_payload - add a payload to a request
1326 * @rq: request to update
1327 * @page: page backing the payload
1328 * @len: length of the payload.
1329 *
1330 * This allows to later add a payload to an already submitted request by
1331 * a block driver. The driver needs to take care of freeing the payload
1332 * itself.
1333 *
1334 * Note that this is a quite horrible hack and nothing but handling of
1335 * discard requests should ever use it.
1336 */
1337void blk_add_request_payload(struct request *rq, struct page *page,
1338 unsigned int len)
1339{
1340 struct bio *bio = rq->bio;
1341
1342 bio->bi_io_vec->bv_page = page;
1343 bio->bi_io_vec->bv_offset = 0;
1344 bio->bi_io_vec->bv_len = len;
1345
1346 bio->bi_size = len;
1347 bio->bi_vcnt = 1;
1348 bio->bi_phys_segments = 1;
1349
1350 rq->__data_len = rq->resid_len = len;
1351 rq->nr_phys_segments = 1;
1352 rq->buffer = bio_data(bio);
1353}
1354EXPORT_SYMBOL_GPL(blk_add_request_payload);
1355
73c10101
JA
1356static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1357 struct bio *bio)
1358{
1359 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1360
73c10101
JA
1361 if (!ll_back_merge_fn(q, req, bio))
1362 return false;
1363
8c1cf6bb 1364 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1365
1366 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1367 blk_rq_set_mixed_merge(req);
1368
1369 req->biotail->bi_next = bio;
1370 req->biotail = bio;
1371 req->__data_len += bio->bi_size;
1372 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1373
1374 drive_stat_acct(req, 0);
1375 return true;
1376}
1377
1378static bool bio_attempt_front_merge(struct request_queue *q,
1379 struct request *req, struct bio *bio)
1380{
1381 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1382
73c10101
JA
1383 if (!ll_front_merge_fn(q, req, bio))
1384 return false;
1385
8c1cf6bb 1386 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1387
1388 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1389 blk_rq_set_mixed_merge(req);
1390
73c10101
JA
1391 bio->bi_next = req->bio;
1392 req->bio = bio;
1393
1394 /*
1395 * may not be valid. if the low level driver said
1396 * it didn't need a bounce buffer then it better
1397 * not touch req->buffer either...
1398 */
1399 req->buffer = bio_data(bio);
1400 req->__sector = bio->bi_sector;
1401 req->__data_len += bio->bi_size;
1402 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1403
1404 drive_stat_acct(req, 0);
1405 return true;
1406}
1407
bd87b589
TH
1408/**
1409 * attempt_plug_merge - try to merge with %current's plugged list
1410 * @q: request_queue new bio is being queued at
1411 * @bio: new bio being queued
1412 * @request_count: out parameter for number of traversed plugged requests
1413 *
1414 * Determine whether @bio being queued on @q can be merged with a request
1415 * on %current's plugged list. Returns %true if merge was successful,
1416 * otherwise %false.
1417 *
07c2bd37
TH
1418 * Plugging coalesces IOs from the same issuer for the same purpose without
1419 * going through @q->queue_lock. As such it's more of an issuing mechanism
1420 * than scheduling, and the request, while may have elvpriv data, is not
1421 * added on the elevator at this point. In addition, we don't have
1422 * reliable access to the elevator outside queue lock. Only check basic
1423 * merging parameters without querying the elevator.
73c10101 1424 */
bd87b589
TH
1425static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1426 unsigned int *request_count)
73c10101
JA
1427{
1428 struct blk_plug *plug;
1429 struct request *rq;
1430 bool ret = false;
1431
bd87b589 1432 plug = current->plug;
73c10101
JA
1433 if (!plug)
1434 goto out;
56ebdaf2 1435 *request_count = 0;
73c10101
JA
1436
1437 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1438 int el_ret;
1439
1b2e19f1
SL
1440 if (rq->q == q)
1441 (*request_count)++;
56ebdaf2 1442
07c2bd37 1443 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1444 continue;
1445
050c8ea8 1446 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1447 if (el_ret == ELEVATOR_BACK_MERGE) {
1448 ret = bio_attempt_back_merge(q, rq, bio);
1449 if (ret)
1450 break;
1451 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1452 ret = bio_attempt_front_merge(q, rq, bio);
1453 if (ret)
1454 break;
1455 }
1456 }
1457out:
1458 return ret;
1459}
1460
86db1e29 1461void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1462{
4aff5e23 1463 req->cmd_type = REQ_TYPE_FS;
52d9e675 1464
7b6d91da
CH
1465 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1466 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1467 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1468
52d9e675 1469 req->errors = 0;
a2dec7b3 1470 req->__sector = bio->bi_sector;
52d9e675 1471 req->ioprio = bio_prio(bio);
bc1c56fd 1472 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1473}
1474
5a7bbad2 1475void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1476{
5e00d1b5 1477 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1478 struct blk_plug *plug;
1479 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1480 struct request *req;
56ebdaf2 1481 unsigned int request_count = 0;
1da177e4 1482
1da177e4
LT
1483 /*
1484 * low level driver can indicate that it wants pages above a
1485 * certain limit bounced to low memory (ie for highmem, or even
1486 * ISA dma in theory)
1487 */
1488 blk_queue_bounce(q, &bio);
1489
ffecfd1a
DW
1490 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1491 bio_endio(bio, -EIO);
1492 return;
1493 }
1494
4fed947c 1495 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1496 spin_lock_irq(q->queue_lock);
ae1b1539 1497 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1498 goto get_rq;
1499 }
1500
73c10101
JA
1501 /*
1502 * Check if we can merge with the plugged list before grabbing
1503 * any locks.
1504 */
bd87b589 1505 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1506 return;
1da177e4 1507
73c10101 1508 spin_lock_irq(q->queue_lock);
2056a782 1509
73c10101
JA
1510 el_ret = elv_merge(q, &req, bio);
1511 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1512 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1513 elv_bio_merged(q, req, bio);
73c10101
JA
1514 if (!attempt_back_merge(q, req))
1515 elv_merged_request(q, req, el_ret);
1516 goto out_unlock;
1517 }
1518 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1519 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1520 elv_bio_merged(q, req, bio);
73c10101
JA
1521 if (!attempt_front_merge(q, req))
1522 elv_merged_request(q, req, el_ret);
1523 goto out_unlock;
80a761fd 1524 }
1da177e4
LT
1525 }
1526
450991bc 1527get_rq:
7749a8d4
JA
1528 /*
1529 * This sync check and mask will be re-done in init_request_from_bio(),
1530 * but we need to set it earlier to expose the sync flag to the
1531 * rq allocator and io schedulers.
1532 */
1533 rw_flags = bio_data_dir(bio);
1534 if (sync)
7b6d91da 1535 rw_flags |= REQ_SYNC;
7749a8d4 1536
1da177e4 1537 /*
450991bc 1538 * Grab a free request. This is might sleep but can not fail.
d6344532 1539 * Returns with the queue unlocked.
450991bc 1540 */
a06e05e6 1541 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1542 if (unlikely(!req)) {
1543 bio_endio(bio, -ENODEV); /* @q is dead */
1544 goto out_unlock;
1545 }
d6344532 1546
450991bc
NP
1547 /*
1548 * After dropping the lock and possibly sleeping here, our request
1549 * may now be mergeable after it had proven unmergeable (above).
1550 * We don't worry about that case for efficiency. It won't happen
1551 * often, and the elevators are able to handle it.
1da177e4 1552 */
52d9e675 1553 init_request_from_bio(req, bio);
1da177e4 1554
9562ad9a 1555 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1556 req->cpu = raw_smp_processor_id();
73c10101
JA
1557
1558 plug = current->plug;
721a9602 1559 if (plug) {
dc6d36c9
JA
1560 /*
1561 * If this is the first request added after a plug, fire
1562 * of a plug trace. If others have been added before, check
1563 * if we have multiple devices in this plug. If so, make a
1564 * note to sort the list before dispatch.
1565 */
1566 if (list_empty(&plug->list))
1567 trace_block_plug(q);
3540d5e8 1568 else {
019ceb7d 1569 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1570 blk_flush_plug_list(plug, false);
019ceb7d
SL
1571 trace_block_plug(q);
1572 }
73c10101 1573 }
73c10101
JA
1574 list_add_tail(&req->queuelist, &plug->list);
1575 drive_stat_acct(req, 1);
1576 } else {
1577 spin_lock_irq(q->queue_lock);
1578 add_acct_request(q, req, where);
24ecfbe2 1579 __blk_run_queue(q);
73c10101
JA
1580out_unlock:
1581 spin_unlock_irq(q->queue_lock);
1582 }
1da177e4 1583}
c20e8de2 1584EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1585
1586/*
1587 * If bio->bi_dev is a partition, remap the location
1588 */
1589static inline void blk_partition_remap(struct bio *bio)
1590{
1591 struct block_device *bdev = bio->bi_bdev;
1592
bf2de6f5 1593 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1594 struct hd_struct *p = bdev->bd_part;
1595
1da177e4
LT
1596 bio->bi_sector += p->start_sect;
1597 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1598
d07335e5
MS
1599 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1600 bdev->bd_dev,
1601 bio->bi_sector - p->start_sect);
1da177e4
LT
1602 }
1603}
1604
1da177e4
LT
1605static void handle_bad_sector(struct bio *bio)
1606{
1607 char b[BDEVNAME_SIZE];
1608
1609 printk(KERN_INFO "attempt to access beyond end of device\n");
1610 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1611 bdevname(bio->bi_bdev, b),
1612 bio->bi_rw,
f73a1c7d 1613 (unsigned long long)bio_end_sector(bio),
77304d2a 1614 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1615
1616 set_bit(BIO_EOF, &bio->bi_flags);
1617}
1618
c17bb495
AM
1619#ifdef CONFIG_FAIL_MAKE_REQUEST
1620
1621static DECLARE_FAULT_ATTR(fail_make_request);
1622
1623static int __init setup_fail_make_request(char *str)
1624{
1625 return setup_fault_attr(&fail_make_request, str);
1626}
1627__setup("fail_make_request=", setup_fail_make_request);
1628
b2c9cd37 1629static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1630{
b2c9cd37 1631 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1632}
1633
1634static int __init fail_make_request_debugfs(void)
1635{
dd48c085
AM
1636 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1637 NULL, &fail_make_request);
1638
1639 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1640}
1641
1642late_initcall(fail_make_request_debugfs);
1643
1644#else /* CONFIG_FAIL_MAKE_REQUEST */
1645
b2c9cd37
AM
1646static inline bool should_fail_request(struct hd_struct *part,
1647 unsigned int bytes)
c17bb495 1648{
b2c9cd37 1649 return false;
c17bb495
AM
1650}
1651
1652#endif /* CONFIG_FAIL_MAKE_REQUEST */
1653
c07e2b41
JA
1654/*
1655 * Check whether this bio extends beyond the end of the device.
1656 */
1657static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1658{
1659 sector_t maxsector;
1660
1661 if (!nr_sectors)
1662 return 0;
1663
1664 /* Test device or partition size, when known. */
77304d2a 1665 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1666 if (maxsector) {
1667 sector_t sector = bio->bi_sector;
1668
1669 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1670 /*
1671 * This may well happen - the kernel calls bread()
1672 * without checking the size of the device, e.g., when
1673 * mounting a device.
1674 */
1675 handle_bad_sector(bio);
1676 return 1;
1677 }
1678 }
1679
1680 return 0;
1681}
1682
27a84d54
CH
1683static noinline_for_stack bool
1684generic_make_request_checks(struct bio *bio)
1da177e4 1685{
165125e1 1686 struct request_queue *q;
5a7bbad2 1687 int nr_sectors = bio_sectors(bio);
51fd77bd 1688 int err = -EIO;
5a7bbad2
CH
1689 char b[BDEVNAME_SIZE];
1690 struct hd_struct *part;
1da177e4
LT
1691
1692 might_sleep();
1da177e4 1693
c07e2b41
JA
1694 if (bio_check_eod(bio, nr_sectors))
1695 goto end_io;
1da177e4 1696
5a7bbad2
CH
1697 q = bdev_get_queue(bio->bi_bdev);
1698 if (unlikely(!q)) {
1699 printk(KERN_ERR
1700 "generic_make_request: Trying to access "
1701 "nonexistent block-device %s (%Lu)\n",
1702 bdevname(bio->bi_bdev, b),
1703 (long long) bio->bi_sector);
1704 goto end_io;
1705 }
c17bb495 1706
e2a60da7
MP
1707 if (likely(bio_is_rw(bio) &&
1708 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1709 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1710 bdevname(bio->bi_bdev, b),
1711 bio_sectors(bio),
1712 queue_max_hw_sectors(q));
1713 goto end_io;
1714 }
1da177e4 1715
5a7bbad2
CH
1716 part = bio->bi_bdev->bd_part;
1717 if (should_fail_request(part, bio->bi_size) ||
1718 should_fail_request(&part_to_disk(part)->part0,
1719 bio->bi_size))
1720 goto end_io;
2056a782 1721
5a7bbad2
CH
1722 /*
1723 * If this device has partitions, remap block n
1724 * of partition p to block n+start(p) of the disk.
1725 */
1726 blk_partition_remap(bio);
2056a782 1727
5a7bbad2
CH
1728 if (bio_check_eod(bio, nr_sectors))
1729 goto end_io;
1e87901e 1730
5a7bbad2
CH
1731 /*
1732 * Filter flush bio's early so that make_request based
1733 * drivers without flush support don't have to worry
1734 * about them.
1735 */
1736 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1737 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1738 if (!nr_sectors) {
1739 err = 0;
51fd77bd
JA
1740 goto end_io;
1741 }
5a7bbad2 1742 }
5ddfe969 1743
5a7bbad2
CH
1744 if ((bio->bi_rw & REQ_DISCARD) &&
1745 (!blk_queue_discard(q) ||
e2a60da7 1746 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1747 err = -EOPNOTSUPP;
1748 goto end_io;
1749 }
01edede4 1750
4363ac7c 1751 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1752 err = -EOPNOTSUPP;
1753 goto end_io;
1754 }
01edede4 1755
7f4b35d1
TH
1756 /*
1757 * Various block parts want %current->io_context and lazy ioc
1758 * allocation ends up trading a lot of pain for a small amount of
1759 * memory. Just allocate it upfront. This may fail and block
1760 * layer knows how to live with it.
1761 */
1762 create_io_context(GFP_ATOMIC, q->node);
1763
bc16a4f9
TH
1764 if (blk_throtl_bio(q, bio))
1765 return false; /* throttled, will be resubmitted later */
27a84d54 1766
5a7bbad2 1767 trace_block_bio_queue(q, bio);
27a84d54 1768 return true;
a7384677
TH
1769
1770end_io:
1771 bio_endio(bio, err);
27a84d54 1772 return false;
1da177e4
LT
1773}
1774
27a84d54
CH
1775/**
1776 * generic_make_request - hand a buffer to its device driver for I/O
1777 * @bio: The bio describing the location in memory and on the device.
1778 *
1779 * generic_make_request() is used to make I/O requests of block
1780 * devices. It is passed a &struct bio, which describes the I/O that needs
1781 * to be done.
1782 *
1783 * generic_make_request() does not return any status. The
1784 * success/failure status of the request, along with notification of
1785 * completion, is delivered asynchronously through the bio->bi_end_io
1786 * function described (one day) else where.
1787 *
1788 * The caller of generic_make_request must make sure that bi_io_vec
1789 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1790 * set to describe the device address, and the
1791 * bi_end_io and optionally bi_private are set to describe how
1792 * completion notification should be signaled.
1793 *
1794 * generic_make_request and the drivers it calls may use bi_next if this
1795 * bio happens to be merged with someone else, and may resubmit the bio to
1796 * a lower device by calling into generic_make_request recursively, which
1797 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1798 */
1799void generic_make_request(struct bio *bio)
1800{
bddd87c7
AM
1801 struct bio_list bio_list_on_stack;
1802
27a84d54
CH
1803 if (!generic_make_request_checks(bio))
1804 return;
1805
1806 /*
1807 * We only want one ->make_request_fn to be active at a time, else
1808 * stack usage with stacked devices could be a problem. So use
1809 * current->bio_list to keep a list of requests submited by a
1810 * make_request_fn function. current->bio_list is also used as a
1811 * flag to say if generic_make_request is currently active in this
1812 * task or not. If it is NULL, then no make_request is active. If
1813 * it is non-NULL, then a make_request is active, and new requests
1814 * should be added at the tail
1815 */
bddd87c7 1816 if (current->bio_list) {
bddd87c7 1817 bio_list_add(current->bio_list, bio);
d89d8796
NB
1818 return;
1819 }
27a84d54 1820
d89d8796
NB
1821 /* following loop may be a bit non-obvious, and so deserves some
1822 * explanation.
1823 * Before entering the loop, bio->bi_next is NULL (as all callers
1824 * ensure that) so we have a list with a single bio.
1825 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1826 * we assign bio_list to a pointer to the bio_list_on_stack,
1827 * thus initialising the bio_list of new bios to be
27a84d54 1828 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1829 * through a recursive call to generic_make_request. If it
1830 * did, we find a non-NULL value in bio_list and re-enter the loop
1831 * from the top. In this case we really did just take the bio
bddd87c7 1832 * of the top of the list (no pretending) and so remove it from
27a84d54 1833 * bio_list, and call into ->make_request() again.
d89d8796
NB
1834 */
1835 BUG_ON(bio->bi_next);
bddd87c7
AM
1836 bio_list_init(&bio_list_on_stack);
1837 current->bio_list = &bio_list_on_stack;
d89d8796 1838 do {
27a84d54
CH
1839 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1840
1841 q->make_request_fn(q, bio);
1842
bddd87c7 1843 bio = bio_list_pop(current->bio_list);
d89d8796 1844 } while (bio);
bddd87c7 1845 current->bio_list = NULL; /* deactivate */
d89d8796 1846}
1da177e4
LT
1847EXPORT_SYMBOL(generic_make_request);
1848
1849/**
710027a4 1850 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1851 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1852 * @bio: The &struct bio which describes the I/O
1853 *
1854 * submit_bio() is very similar in purpose to generic_make_request(), and
1855 * uses that function to do most of the work. Both are fairly rough
710027a4 1856 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1857 *
1858 */
1859void submit_bio(int rw, struct bio *bio)
1860{
22e2c507 1861 bio->bi_rw |= rw;
1da177e4 1862
bf2de6f5
JA
1863 /*
1864 * If it's a regular read/write or a barrier with data attached,
1865 * go through the normal accounting stuff before submission.
1866 */
e2a60da7 1867 if (bio_has_data(bio)) {
4363ac7c
MP
1868 unsigned int count;
1869
1870 if (unlikely(rw & REQ_WRITE_SAME))
1871 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1872 else
1873 count = bio_sectors(bio);
1874
bf2de6f5
JA
1875 if (rw & WRITE) {
1876 count_vm_events(PGPGOUT, count);
1877 } else {
1878 task_io_account_read(bio->bi_size);
1879 count_vm_events(PGPGIN, count);
1880 }
1881
1882 if (unlikely(block_dump)) {
1883 char b[BDEVNAME_SIZE];
8dcbdc74 1884 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1885 current->comm, task_pid_nr(current),
bf2de6f5
JA
1886 (rw & WRITE) ? "WRITE" : "READ",
1887 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1888 bdevname(bio->bi_bdev, b),
1889 count);
bf2de6f5 1890 }
1da177e4
LT
1891 }
1892
1893 generic_make_request(bio);
1894}
1da177e4
LT
1895EXPORT_SYMBOL(submit_bio);
1896
82124d60
KU
1897/**
1898 * blk_rq_check_limits - Helper function to check a request for the queue limit
1899 * @q: the queue
1900 * @rq: the request being checked
1901 *
1902 * Description:
1903 * @rq may have been made based on weaker limitations of upper-level queues
1904 * in request stacking drivers, and it may violate the limitation of @q.
1905 * Since the block layer and the underlying device driver trust @rq
1906 * after it is inserted to @q, it should be checked against @q before
1907 * the insertion using this generic function.
1908 *
1909 * This function should also be useful for request stacking drivers
eef35c2d 1910 * in some cases below, so export this function.
82124d60
KU
1911 * Request stacking drivers like request-based dm may change the queue
1912 * limits while requests are in the queue (e.g. dm's table swapping).
1913 * Such request stacking drivers should check those requests agaist
1914 * the new queue limits again when they dispatch those requests,
1915 * although such checkings are also done against the old queue limits
1916 * when submitting requests.
1917 */
1918int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1919{
e2a60da7 1920 if (!rq_mergeable(rq))
3383977f
S
1921 return 0;
1922
f31dc1cd 1923 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1924 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1925 return -EIO;
1926 }
1927
1928 /*
1929 * queue's settings related to segment counting like q->bounce_pfn
1930 * may differ from that of other stacking queues.
1931 * Recalculate it to check the request correctly on this queue's
1932 * limitation.
1933 */
1934 blk_recalc_rq_segments(rq);
8a78362c 1935 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1936 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1937 return -EIO;
1938 }
1939
1940 return 0;
1941}
1942EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1943
1944/**
1945 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1946 * @q: the queue to submit the request
1947 * @rq: the request being queued
1948 */
1949int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1950{
1951 unsigned long flags;
4853abaa 1952 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1953
1954 if (blk_rq_check_limits(q, rq))
1955 return -EIO;
1956
b2c9cd37
AM
1957 if (rq->rq_disk &&
1958 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1959 return -EIO;
82124d60
KU
1960
1961 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1962 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1964 return -ENODEV;
1965 }
82124d60
KU
1966
1967 /*
1968 * Submitting request must be dequeued before calling this function
1969 * because it will be linked to another request_queue
1970 */
1971 BUG_ON(blk_queued_rq(rq));
1972
4853abaa
JM
1973 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1974 where = ELEVATOR_INSERT_FLUSH;
1975
1976 add_acct_request(q, rq, where);
e67b77c7
JM
1977 if (where == ELEVATOR_INSERT_FLUSH)
1978 __blk_run_queue(q);
82124d60
KU
1979 spin_unlock_irqrestore(q->queue_lock, flags);
1980
1981 return 0;
1982}
1983EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1984
80a761fd
TH
1985/**
1986 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1987 * @rq: request to examine
1988 *
1989 * Description:
1990 * A request could be merge of IOs which require different failure
1991 * handling. This function determines the number of bytes which
1992 * can be failed from the beginning of the request without
1993 * crossing into area which need to be retried further.
1994 *
1995 * Return:
1996 * The number of bytes to fail.
1997 *
1998 * Context:
1999 * queue_lock must be held.
2000 */
2001unsigned int blk_rq_err_bytes(const struct request *rq)
2002{
2003 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2004 unsigned int bytes = 0;
2005 struct bio *bio;
2006
2007 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2008 return blk_rq_bytes(rq);
2009
2010 /*
2011 * Currently the only 'mixing' which can happen is between
2012 * different fastfail types. We can safely fail portions
2013 * which have all the failfast bits that the first one has -
2014 * the ones which are at least as eager to fail as the first
2015 * one.
2016 */
2017 for (bio = rq->bio; bio; bio = bio->bi_next) {
2018 if ((bio->bi_rw & ff) != ff)
2019 break;
2020 bytes += bio->bi_size;
2021 }
2022
2023 /* this could lead to infinite loop */
2024 BUG_ON(blk_rq_bytes(rq) && !bytes);
2025 return bytes;
2026}
2027EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2028
bc58ba94
JA
2029static void blk_account_io_completion(struct request *req, unsigned int bytes)
2030{
c2553b58 2031 if (blk_do_io_stat(req)) {
bc58ba94
JA
2032 const int rw = rq_data_dir(req);
2033 struct hd_struct *part;
2034 int cpu;
2035
2036 cpu = part_stat_lock();
09e099d4 2037 part = req->part;
bc58ba94 2038 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
3c2a0909
S
2039 if (req->cmd_flags & REQ_DISCARD)
2040 part_stat_add(cpu, part, discard_sectors, bytes >> 9);
bc58ba94
JA
2041 part_stat_unlock();
2042 }
2043}
2044
2045static void blk_account_io_done(struct request *req)
2046{
bc58ba94 2047 /*
dd4c133f
TH
2048 * Account IO completion. flush_rq isn't accounted as a
2049 * normal IO on queueing nor completion. Accounting the
2050 * containing request is enough.
bc58ba94 2051 */
414b4ff5 2052 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2053 unsigned long duration = jiffies - req->start_time;
2054 const int rw = rq_data_dir(req);
2055 struct hd_struct *part;
2056 int cpu;
2057
2058 cpu = part_stat_lock();
09e099d4 2059 part = req->part;
bc58ba94
JA
2060
2061 part_stat_inc(cpu, part, ios[rw]);
2062 part_stat_add(cpu, part, ticks[rw], duration);
2063 part_round_stats(cpu, part);
316d315b 2064 part_dec_in_flight(part, rw);
3c2a0909
S
2065 if (req->cmd_flags & REQ_DISCARD)
2066 part_stat_inc(cpu, part, discard_ios);
2067 if (!(req->cmd_flags & REQ_STARTED))
2068 part_stat_inc(cpu, part, flush_ios);
bc58ba94 2069
6c23a968 2070 hd_struct_put(part);
bc58ba94
JA
2071 part_stat_unlock();
2072 }
3c2a0909
S
2073
2074 if (req->cmd_flags & REQ_FLUSH_SEQ)
2075 req->q->flush_ios++;
bc58ba94
JA
2076}
2077
c8158819
LM
2078#ifdef CONFIG_PM_RUNTIME
2079/*
2080 * Don't process normal requests when queue is suspended
2081 * or in the process of suspending/resuming
2082 */
2083static struct request *blk_pm_peek_request(struct request_queue *q,
2084 struct request *rq)
2085{
2086 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2087 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2088 return NULL;
2089 else
2090 return rq;
2091}
2092#else
2093static inline struct request *blk_pm_peek_request(struct request_queue *q,
2094 struct request *rq)
2095{
2096 return rq;
2097}
2098#endif
2099
3bcddeac 2100/**
9934c8c0
TH
2101 * blk_peek_request - peek at the top of a request queue
2102 * @q: request queue to peek at
2103 *
2104 * Description:
2105 * Return the request at the top of @q. The returned request
2106 * should be started using blk_start_request() before LLD starts
2107 * processing it.
2108 *
2109 * Return:
2110 * Pointer to the request at the top of @q if available. Null
2111 * otherwise.
2112 *
2113 * Context:
2114 * queue_lock must be held.
2115 */
2116struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2117{
2118 struct request *rq;
2119 int ret;
2120
2121 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2122
2123 rq = blk_pm_peek_request(q, rq);
2124 if (!rq)
2125 break;
2126
158dbda0
TH
2127 if (!(rq->cmd_flags & REQ_STARTED)) {
2128 /*
2129 * This is the first time the device driver
2130 * sees this request (possibly after
2131 * requeueing). Notify IO scheduler.
2132 */
33659ebb 2133 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2134 elv_activate_rq(q, rq);
2135
2136 /*
2137 * just mark as started even if we don't start
2138 * it, a request that has been delayed should
2139 * not be passed by new incoming requests
2140 */
2141 rq->cmd_flags |= REQ_STARTED;
2142 trace_block_rq_issue(q, rq);
2143 }
2144
2145 if (!q->boundary_rq || q->boundary_rq == rq) {
2146 q->end_sector = rq_end_sector(rq);
2147 q->boundary_rq = NULL;
2148 }
2149
2150 if (rq->cmd_flags & REQ_DONTPREP)
2151 break;
2152
2e46e8b2 2153 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2154 /*
2155 * make sure space for the drain appears we
2156 * know we can do this because max_hw_segments
2157 * has been adjusted to be one fewer than the
2158 * device can handle
2159 */
2160 rq->nr_phys_segments++;
2161 }
2162
2163 if (!q->prep_rq_fn)
2164 break;
2165
2166 ret = q->prep_rq_fn(q, rq);
2167 if (ret == BLKPREP_OK) {
2168 break;
2169 } else if (ret == BLKPREP_DEFER) {
2170 /*
2171 * the request may have been (partially) prepped.
2172 * we need to keep this request in the front to
2173 * avoid resource deadlock. REQ_STARTED will
2174 * prevent other fs requests from passing this one.
2175 */
2e46e8b2 2176 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2177 !(rq->cmd_flags & REQ_DONTPREP)) {
2178 /*
2179 * remove the space for the drain we added
2180 * so that we don't add it again
2181 */
2182 --rq->nr_phys_segments;
2183 }
2184
2185 rq = NULL;
2186 break;
2187 } else if (ret == BLKPREP_KILL) {
2188 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2189 /*
2190 * Mark this request as started so we don't trigger
2191 * any debug logic in the end I/O path.
2192 */
2193 blk_start_request(rq);
40cbbb78 2194 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2195 } else {
2196 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2197 break;
2198 }
2199 }
2200
2201 return rq;
2202}
9934c8c0 2203EXPORT_SYMBOL(blk_peek_request);
158dbda0 2204
9934c8c0 2205void blk_dequeue_request(struct request *rq)
158dbda0 2206{
9934c8c0
TH
2207 struct request_queue *q = rq->q;
2208
158dbda0
TH
2209 BUG_ON(list_empty(&rq->queuelist));
2210 BUG_ON(ELV_ON_HASH(rq));
2211
2212 list_del_init(&rq->queuelist);
2213
2214 /*
2215 * the time frame between a request being removed from the lists
2216 * and to it is freed is accounted as io that is in progress at
2217 * the driver side.
2218 */
9195291e 2219 if (blk_account_rq(rq)) {
3c2a0909
S
2220 if (!queue_in_flight(q))
2221 q->in_flight_stamp = ktime_get();
0a7ae2ff 2222 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2223 set_io_start_time_ns(rq);
2224 }
158dbda0
TH
2225}
2226
9934c8c0
TH
2227/**
2228 * blk_start_request - start request processing on the driver
2229 * @req: request to dequeue
2230 *
2231 * Description:
2232 * Dequeue @req and start timeout timer on it. This hands off the
2233 * request to the driver.
2234 *
2235 * Block internal functions which don't want to start timer should
2236 * call blk_dequeue_request().
2237 *
2238 * Context:
2239 * queue_lock must be held.
2240 */
2241void blk_start_request(struct request *req)
2242{
2243 blk_dequeue_request(req);
2244
2245 /*
5f49f631
TH
2246 * We are now handing the request to the hardware, initialize
2247 * resid_len to full count and add the timeout handler.
9934c8c0 2248 */
5f49f631 2249 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2250 if (unlikely(blk_bidi_rq(req)))
2251 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2252
869d4e7f 2253 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2254 blk_add_timer(req);
2255}
2256EXPORT_SYMBOL(blk_start_request);
2257
2258/**
2259 * blk_fetch_request - fetch a request from a request queue
2260 * @q: request queue to fetch a request from
2261 *
2262 * Description:
2263 * Return the request at the top of @q. The request is started on
2264 * return and LLD can start processing it immediately.
2265 *
2266 * Return:
2267 * Pointer to the request at the top of @q if available. Null
2268 * otherwise.
2269 *
2270 * Context:
2271 * queue_lock must be held.
2272 */
2273struct request *blk_fetch_request(struct request_queue *q)
2274{
2275 struct request *rq;
2276
2277 rq = blk_peek_request(q);
2278 if (rq)
2279 blk_start_request(rq);
2280 return rq;
2281}
2282EXPORT_SYMBOL(blk_fetch_request);
2283
3bcddeac 2284/**
2e60e022 2285 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2286 * @req: the request being processed
710027a4 2287 * @error: %0 for success, < %0 for error
8ebf9756 2288 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2289 *
2290 * Description:
8ebf9756
RD
2291 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2292 * the request structure even if @req doesn't have leftover.
2293 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2294 *
2295 * This special helper function is only for request stacking drivers
2296 * (e.g. request-based dm) so that they can handle partial completion.
2297 * Actual device drivers should use blk_end_request instead.
2298 *
2299 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2300 * %false return from this function.
3bcddeac
KU
2301 *
2302 * Return:
2e60e022
TH
2303 * %false - this request doesn't have any more data
2304 * %true - this request has more data
3bcddeac 2305 **/
2e60e022 2306bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2307{
f79ea416 2308 int total_bytes;
1da177e4 2309
2e60e022
TH
2310 if (!req->bio)
2311 return false;
2312
e9d93394 2313 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2314
1da177e4 2315 /*
6f41469c
TH
2316 * For fs requests, rq is just carrier of independent bio's
2317 * and each partial completion should be handled separately.
2318 * Reset per-request error on each partial completion.
2319 *
2320 * TODO: tj: This is too subtle. It would be better to let
2321 * low level drivers do what they see fit.
1da177e4 2322 */
33659ebb 2323 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2324 req->errors = 0;
2325
33659ebb
CH
2326 if (error && req->cmd_type == REQ_TYPE_FS &&
2327 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2328 char *error_type;
2329
2330 switch (error) {
2331 case -ENOLINK:
2332 error_type = "recoverable transport";
2333 break;
2334 case -EREMOTEIO:
2335 error_type = "critical target";
2336 break;
2337 case -EBADE:
2338 error_type = "critical nexus";
2339 break;
2340 case -EIO:
2341 default:
2342 error_type = "I/O";
2343 break;
2344 }
37d7b34f
YZ
2345 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2346 error_type, req->rq_disk ?
2347 req->rq_disk->disk_name : "?",
2348 (unsigned long long)blk_rq_pos(req));
2349
1da177e4
LT
2350 }
2351
bc58ba94 2352 blk_account_io_completion(req, nr_bytes);
d72d904a 2353
f79ea416
KO
2354 total_bytes = 0;
2355 while (req->bio) {
2356 struct bio *bio = req->bio;
2357 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2358
f79ea416 2359 if (bio_bytes == bio->bi_size)
1da177e4 2360 req->bio = bio->bi_next;
1da177e4 2361
f79ea416 2362 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2363
f79ea416
KO
2364 total_bytes += bio_bytes;
2365 nr_bytes -= bio_bytes;
1da177e4 2366
f79ea416
KO
2367 if (!nr_bytes)
2368 break;
1da177e4
LT
2369 }
2370
2371 /*
2372 * completely done
2373 */
2e60e022
TH
2374 if (!req->bio) {
2375 /*
2376 * Reset counters so that the request stacking driver
2377 * can find how many bytes remain in the request
2378 * later.
2379 */
a2dec7b3 2380 req->__data_len = 0;
2e60e022
TH
2381 return false;
2382 }
1da177e4 2383
a2dec7b3 2384 req->__data_len -= total_bytes;
2e46e8b2
TH
2385 req->buffer = bio_data(req->bio);
2386
2387 /* update sector only for requests with clear definition of sector */
e2a60da7 2388 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2389 req->__sector += total_bytes >> 9;
2e46e8b2 2390
80a761fd
TH
2391 /* mixed attributes always follow the first bio */
2392 if (req->cmd_flags & REQ_MIXED_MERGE) {
2393 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2394 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2395 }
2396
2e46e8b2
TH
2397 /*
2398 * If total number of sectors is less than the first segment
2399 * size, something has gone terribly wrong.
2400 */
2401 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2402 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2403 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2404 }
2405
2406 /* recalculate the number of segments */
1da177e4 2407 blk_recalc_rq_segments(req);
2e46e8b2 2408
2e60e022 2409 return true;
1da177e4 2410}
2e60e022 2411EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2412
2e60e022
TH
2413static bool blk_update_bidi_request(struct request *rq, int error,
2414 unsigned int nr_bytes,
2415 unsigned int bidi_bytes)
5efccd17 2416{
2e60e022
TH
2417 if (blk_update_request(rq, error, nr_bytes))
2418 return true;
5efccd17 2419
2e60e022
TH
2420 /* Bidi request must be completed as a whole */
2421 if (unlikely(blk_bidi_rq(rq)) &&
2422 blk_update_request(rq->next_rq, error, bidi_bytes))
2423 return true;
5efccd17 2424
e2e1a148
JA
2425 if (blk_queue_add_random(rq->q))
2426 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2427
2428 return false;
1da177e4
LT
2429}
2430
28018c24
JB
2431/**
2432 * blk_unprep_request - unprepare a request
2433 * @req: the request
2434 *
2435 * This function makes a request ready for complete resubmission (or
2436 * completion). It happens only after all error handling is complete,
2437 * so represents the appropriate moment to deallocate any resources
2438 * that were allocated to the request in the prep_rq_fn. The queue
2439 * lock is held when calling this.
2440 */
2441void blk_unprep_request(struct request *req)
2442{
2443 struct request_queue *q = req->q;
2444
2445 req->cmd_flags &= ~REQ_DONTPREP;
2446 if (q->unprep_rq_fn)
2447 q->unprep_rq_fn(q, req);
2448}
2449EXPORT_SYMBOL_GPL(blk_unprep_request);
2450
1da177e4
LT
2451/*
2452 * queue lock must be held
2453 */
2e60e022 2454static void blk_finish_request(struct request *req, int error)
1da177e4 2455{
b8286239
KU
2456 if (blk_rq_tagged(req))
2457 blk_queue_end_tag(req->q, req);
2458
ba396a6c 2459 BUG_ON(blk_queued_rq(req));
1da177e4 2460
33659ebb 2461 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2462 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2463
e78042e5
MA
2464 blk_delete_timer(req);
2465
28018c24
JB
2466 if (req->cmd_flags & REQ_DONTPREP)
2467 blk_unprep_request(req);
2468
2469
bc58ba94 2470 blk_account_io_done(req);
b8286239 2471
1da177e4 2472 if (req->end_io)
8ffdc655 2473 req->end_io(req, error);
b8286239
KU
2474 else {
2475 if (blk_bidi_rq(req))
2476 __blk_put_request(req->next_rq->q, req->next_rq);
2477
1da177e4 2478 __blk_put_request(req->q, req);
b8286239 2479 }
1da177e4
LT
2480}
2481
3b11313a 2482/**
2e60e022
TH
2483 * blk_end_bidi_request - Complete a bidi request
2484 * @rq: the request to complete
2485 * @error: %0 for success, < %0 for error
2486 * @nr_bytes: number of bytes to complete @rq
2487 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2488 *
2489 * Description:
e3a04fe3 2490 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2491 * Drivers that supports bidi can safely call this member for any
2492 * type of request, bidi or uni. In the later case @bidi_bytes is
2493 * just ignored.
336cdb40
KU
2494 *
2495 * Return:
2e60e022
TH
2496 * %false - we are done with this request
2497 * %true - still buffers pending for this request
a0cd1285 2498 **/
b1f74493 2499static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2500 unsigned int nr_bytes, unsigned int bidi_bytes)
2501{
336cdb40 2502 struct request_queue *q = rq->q;
2e60e022 2503 unsigned long flags;
32fab448 2504
2e60e022
TH
2505 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2506 return true;
32fab448 2507
336cdb40 2508 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2509 blk_finish_request(rq, error);
336cdb40
KU
2510 spin_unlock_irqrestore(q->queue_lock, flags);
2511
2e60e022 2512 return false;
32fab448
KU
2513}
2514
336cdb40 2515/**
2e60e022
TH
2516 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2517 * @rq: the request to complete
710027a4 2518 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2519 * @nr_bytes: number of bytes to complete @rq
2520 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2521 *
2522 * Description:
2e60e022
TH
2523 * Identical to blk_end_bidi_request() except that queue lock is
2524 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2525 *
2526 * Return:
2e60e022
TH
2527 * %false - we are done with this request
2528 * %true - still buffers pending for this request
336cdb40 2529 **/
4853abaa 2530bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2531 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2532{
2e60e022
TH
2533 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2534 return true;
336cdb40 2535
2e60e022 2536 blk_finish_request(rq, error);
336cdb40 2537
2e60e022 2538 return false;
336cdb40 2539}
e19a3ab0
KU
2540
2541/**
2542 * blk_end_request - Helper function for drivers to complete the request.
2543 * @rq: the request being processed
710027a4 2544 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2545 * @nr_bytes: number of bytes to complete
2546 *
2547 * Description:
2548 * Ends I/O on a number of bytes attached to @rq.
2549 * If @rq has leftover, sets it up for the next range of segments.
2550 *
2551 * Return:
b1f74493
FT
2552 * %false - we are done with this request
2553 * %true - still buffers pending for this request
e19a3ab0 2554 **/
b1f74493 2555bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2556{
b1f74493 2557 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2558}
56ad1740 2559EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2560
2561/**
b1f74493
FT
2562 * blk_end_request_all - Helper function for drives to finish the request.
2563 * @rq: the request to finish
8ebf9756 2564 * @error: %0 for success, < %0 for error
336cdb40
KU
2565 *
2566 * Description:
b1f74493
FT
2567 * Completely finish @rq.
2568 */
2569void blk_end_request_all(struct request *rq, int error)
336cdb40 2570{
b1f74493
FT
2571 bool pending;
2572 unsigned int bidi_bytes = 0;
336cdb40 2573
b1f74493
FT
2574 if (unlikely(blk_bidi_rq(rq)))
2575 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2576
b1f74493
FT
2577 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2578 BUG_ON(pending);
2579}
56ad1740 2580EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2581
b1f74493
FT
2582/**
2583 * blk_end_request_cur - Helper function to finish the current request chunk.
2584 * @rq: the request to finish the current chunk for
8ebf9756 2585 * @error: %0 for success, < %0 for error
b1f74493
FT
2586 *
2587 * Description:
2588 * Complete the current consecutively mapped chunk from @rq.
2589 *
2590 * Return:
2591 * %false - we are done with this request
2592 * %true - still buffers pending for this request
2593 */
2594bool blk_end_request_cur(struct request *rq, int error)
2595{
2596 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2597}
56ad1740 2598EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2599
80a761fd
TH
2600/**
2601 * blk_end_request_err - Finish a request till the next failure boundary.
2602 * @rq: the request to finish till the next failure boundary for
2603 * @error: must be negative errno
2604 *
2605 * Description:
2606 * Complete @rq till the next failure boundary.
2607 *
2608 * Return:
2609 * %false - we are done with this request
2610 * %true - still buffers pending for this request
2611 */
2612bool blk_end_request_err(struct request *rq, int error)
2613{
2614 WARN_ON(error >= 0);
2615 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2616}
2617EXPORT_SYMBOL_GPL(blk_end_request_err);
2618
e3a04fe3 2619/**
b1f74493
FT
2620 * __blk_end_request - Helper function for drivers to complete the request.
2621 * @rq: the request being processed
2622 * @error: %0 for success, < %0 for error
2623 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2624 *
2625 * Description:
b1f74493 2626 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2627 *
2628 * Return:
b1f74493
FT
2629 * %false - we are done with this request
2630 * %true - still buffers pending for this request
e3a04fe3 2631 **/
b1f74493 2632bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2633{
b1f74493 2634 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2635}
56ad1740 2636EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2637
32fab448 2638/**
b1f74493
FT
2639 * __blk_end_request_all - Helper function for drives to finish the request.
2640 * @rq: the request to finish
8ebf9756 2641 * @error: %0 for success, < %0 for error
32fab448
KU
2642 *
2643 * Description:
b1f74493 2644 * Completely finish @rq. Must be called with queue lock held.
32fab448 2645 */
b1f74493 2646void __blk_end_request_all(struct request *rq, int error)
32fab448 2647{
b1f74493
FT
2648 bool pending;
2649 unsigned int bidi_bytes = 0;
2650
2651 if (unlikely(blk_bidi_rq(rq)))
2652 bidi_bytes = blk_rq_bytes(rq->next_rq);
2653
2654 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2655 BUG_ON(pending);
32fab448 2656}
56ad1740 2657EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2658
e19a3ab0 2659/**
b1f74493
FT
2660 * __blk_end_request_cur - Helper function to finish the current request chunk.
2661 * @rq: the request to finish the current chunk for
8ebf9756 2662 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2663 *
2664 * Description:
b1f74493
FT
2665 * Complete the current consecutively mapped chunk from @rq. Must
2666 * be called with queue lock held.
e19a3ab0
KU
2667 *
2668 * Return:
b1f74493
FT
2669 * %false - we are done with this request
2670 * %true - still buffers pending for this request
2671 */
2672bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2673{
b1f74493 2674 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2675}
56ad1740 2676EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2677
80a761fd
TH
2678/**
2679 * __blk_end_request_err - Finish a request till the next failure boundary.
2680 * @rq: the request to finish till the next failure boundary for
2681 * @error: must be negative errno
2682 *
2683 * Description:
2684 * Complete @rq till the next failure boundary. Must be called
2685 * with queue lock held.
2686 *
2687 * Return:
2688 * %false - we are done with this request
2689 * %true - still buffers pending for this request
2690 */
2691bool __blk_end_request_err(struct request *rq, int error)
2692{
2693 WARN_ON(error >= 0);
2694 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2695}
2696EXPORT_SYMBOL_GPL(__blk_end_request_err);
2697
86db1e29
JA
2698void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2699 struct bio *bio)
1da177e4 2700{
a82afdfc 2701 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2702 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2703
fb2dce86
DW
2704 if (bio_has_data(bio)) {
2705 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2706 rq->buffer = bio_data(bio);
2707 }
a2dec7b3 2708 rq->__data_len = bio->bi_size;
1da177e4 2709 rq->bio = rq->biotail = bio;
1da177e4 2710
66846572
N
2711 if (bio->bi_bdev)
2712 rq->rq_disk = bio->bi_bdev->bd_disk;
2713}
1da177e4 2714
2d4dc890
IL
2715#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2716/**
2717 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2718 * @rq: the request to be flushed
2719 *
2720 * Description:
2721 * Flush all pages in @rq.
2722 */
2723void rq_flush_dcache_pages(struct request *rq)
2724{
2725 struct req_iterator iter;
2726 struct bio_vec *bvec;
2727
2728 rq_for_each_segment(bvec, rq, iter)
2729 flush_dcache_page(bvec->bv_page);
2730}
2731EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2732#endif
2733
ef9e3fac
KU
2734/**
2735 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2736 * @q : the queue of the device being checked
2737 *
2738 * Description:
2739 * Check if underlying low-level drivers of a device are busy.
2740 * If the drivers want to export their busy state, they must set own
2741 * exporting function using blk_queue_lld_busy() first.
2742 *
2743 * Basically, this function is used only by request stacking drivers
2744 * to stop dispatching requests to underlying devices when underlying
2745 * devices are busy. This behavior helps more I/O merging on the queue
2746 * of the request stacking driver and prevents I/O throughput regression
2747 * on burst I/O load.
2748 *
2749 * Return:
2750 * 0 - Not busy (The request stacking driver should dispatch request)
2751 * 1 - Busy (The request stacking driver should stop dispatching request)
2752 */
2753int blk_lld_busy(struct request_queue *q)
2754{
2755 if (q->lld_busy_fn)
2756 return q->lld_busy_fn(q);
2757
2758 return 0;
2759}
2760EXPORT_SYMBOL_GPL(blk_lld_busy);
2761
b0fd271d
KU
2762/**
2763 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2764 * @rq: the clone request to be cleaned up
2765 *
2766 * Description:
2767 * Free all bios in @rq for a cloned request.
2768 */
2769void blk_rq_unprep_clone(struct request *rq)
2770{
2771 struct bio *bio;
2772
2773 while ((bio = rq->bio) != NULL) {
2774 rq->bio = bio->bi_next;
2775
2776 bio_put(bio);
2777 }
2778}
2779EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2780
2781/*
2782 * Copy attributes of the original request to the clone request.
2783 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2784 */
2785static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2786{
2787 dst->cpu = src->cpu;
3a2edd0d 2788 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2789 dst->cmd_type = src->cmd_type;
2790 dst->__sector = blk_rq_pos(src);
2791 dst->__data_len = blk_rq_bytes(src);
2792 dst->nr_phys_segments = src->nr_phys_segments;
2793 dst->ioprio = src->ioprio;
2794 dst->extra_len = src->extra_len;
2795}
2796
2797/**
2798 * blk_rq_prep_clone - Helper function to setup clone request
2799 * @rq: the request to be setup
2800 * @rq_src: original request to be cloned
2801 * @bs: bio_set that bios for clone are allocated from
2802 * @gfp_mask: memory allocation mask for bio
2803 * @bio_ctr: setup function to be called for each clone bio.
2804 * Returns %0 for success, non %0 for failure.
2805 * @data: private data to be passed to @bio_ctr
2806 *
2807 * Description:
2808 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2809 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2810 * are not copied, and copying such parts is the caller's responsibility.
2811 * Also, pages which the original bios are pointing to are not copied
2812 * and the cloned bios just point same pages.
2813 * So cloned bios must be completed before original bios, which means
2814 * the caller must complete @rq before @rq_src.
2815 */
2816int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2817 struct bio_set *bs, gfp_t gfp_mask,
2818 int (*bio_ctr)(struct bio *, struct bio *, void *),
2819 void *data)
2820{
2821 struct bio *bio, *bio_src;
2822
2823 if (!bs)
2824 bs = fs_bio_set;
2825
2826 blk_rq_init(NULL, rq);
2827
2828 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2829 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2830 if (!bio)
2831 goto free_and_out;
2832
b0fd271d
KU
2833 if (bio_ctr && bio_ctr(bio, bio_src, data))
2834 goto free_and_out;
2835
2836 if (rq->bio) {
2837 rq->biotail->bi_next = bio;
2838 rq->biotail = bio;
2839 } else
2840 rq->bio = rq->biotail = bio;
2841 }
2842
2843 __blk_rq_prep_clone(rq, rq_src);
2844
2845 return 0;
2846
2847free_and_out:
2848 if (bio)
4254bba1 2849 bio_put(bio);
b0fd271d
KU
2850 blk_rq_unprep_clone(rq);
2851
2852 return -ENOMEM;
2853}
2854EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2855
18887ad9 2856int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2857{
2858 return queue_work(kblockd_workqueue, work);
2859}
1da177e4
LT
2860EXPORT_SYMBOL(kblockd_schedule_work);
2861
e43473b7
VG
2862int kblockd_schedule_delayed_work(struct request_queue *q,
2863 struct delayed_work *dwork, unsigned long delay)
2864{
2865 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2866}
2867EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2868
73c10101
JA
2869#define PLUG_MAGIC 0x91827364
2870
75df7136
SJ
2871/**
2872 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2873 * @plug: The &struct blk_plug that needs to be initialized
2874 *
2875 * Description:
2876 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2877 * pending I/O should the task end up blocking between blk_start_plug() and
2878 * blk_finish_plug(). This is important from a performance perspective, but
2879 * also ensures that we don't deadlock. For instance, if the task is blocking
2880 * for a memory allocation, memory reclaim could end up wanting to free a
2881 * page belonging to that request that is currently residing in our private
2882 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2883 * this kind of deadlock.
2884 */
73c10101
JA
2885void blk_start_plug(struct blk_plug *plug)
2886{
2887 struct task_struct *tsk = current;
2888
2889 plug->magic = PLUG_MAGIC;
2890 INIT_LIST_HEAD(&plug->list);
048c9374 2891 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2892
2893 /*
2894 * If this is a nested plug, don't actually assign it. It will be
2895 * flushed on its own.
2896 */
2897 if (!tsk->plug) {
2898 /*
2899 * Store ordering should not be needed here, since a potential
2900 * preempt will imply a full memory barrier
2901 */
2902 tsk->plug = plug;
2903 }
2904}
2905EXPORT_SYMBOL(blk_start_plug);
2906
2907static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2908{
2909 struct request *rqa = container_of(a, struct request, queuelist);
2910 struct request *rqb = container_of(b, struct request, queuelist);
2911
975927b9
JM
2912 return !(rqa->q < rqb->q ||
2913 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2914}
2915
49cac01e
JA
2916/*
2917 * If 'from_schedule' is true, then postpone the dispatch of requests
2918 * until a safe kblockd context. We due this to avoid accidental big
2919 * additional stack usage in driver dispatch, in places where the originally
2920 * plugger did not intend it.
2921 */
f6603783 2922static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2923 bool from_schedule)
99e22598 2924 __releases(q->queue_lock)
94b5eb28 2925{
49cac01e 2926 trace_block_unplug(q, depth, !from_schedule);
99e22598 2927
70460571 2928 if (from_schedule)
24ecfbe2 2929 blk_run_queue_async(q);
70460571 2930 else
24ecfbe2 2931 __blk_run_queue(q);
70460571 2932 spin_unlock(q->queue_lock);
94b5eb28
JA
2933}
2934
74018dc3 2935static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2936{
2937 LIST_HEAD(callbacks);
2938
2a7d5559
SL
2939 while (!list_empty(&plug->cb_list)) {
2940 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2941
2a7d5559
SL
2942 while (!list_empty(&callbacks)) {
2943 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2944 struct blk_plug_cb,
2945 list);
2a7d5559 2946 list_del(&cb->list);
74018dc3 2947 cb->callback(cb, from_schedule);
2a7d5559 2948 }
048c9374
N
2949 }
2950}
2951
9cbb1750
N
2952struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2953 int size)
2954{
2955 struct blk_plug *plug = current->plug;
2956 struct blk_plug_cb *cb;
2957
2958 if (!plug)
2959 return NULL;
2960
2961 list_for_each_entry(cb, &plug->cb_list, list)
2962 if (cb->callback == unplug && cb->data == data)
2963 return cb;
2964
2965 /* Not currently on the callback list */
2966 BUG_ON(size < sizeof(*cb));
2967 cb = kzalloc(size, GFP_ATOMIC);
2968 if (cb) {
2969 cb->data = data;
2970 cb->callback = unplug;
2971 list_add(&cb->list, &plug->cb_list);
2972 }
2973 return cb;
2974}
2975EXPORT_SYMBOL(blk_check_plugged);
2976
49cac01e 2977void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2978{
2979 struct request_queue *q;
2980 unsigned long flags;
2981 struct request *rq;
109b8129 2982 LIST_HEAD(list);
94b5eb28 2983 unsigned int depth;
73c10101
JA
2984
2985 BUG_ON(plug->magic != PLUG_MAGIC);
2986
74018dc3 2987 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2988 if (list_empty(&plug->list))
2989 return;
2990
109b8129
N
2991 list_splice_init(&plug->list, &list);
2992
422765c2 2993 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
2994
2995 q = NULL;
94b5eb28 2996 depth = 0;
18811272
JA
2997
2998 /*
2999 * Save and disable interrupts here, to avoid doing it for every
3000 * queue lock we have to take.
3001 */
73c10101 3002 local_irq_save(flags);
109b8129
N
3003 while (!list_empty(&list)) {
3004 rq = list_entry_rq(list.next);
73c10101 3005 list_del_init(&rq->queuelist);
73c10101
JA
3006 BUG_ON(!rq->q);
3007 if (rq->q != q) {
99e22598
JA
3008 /*
3009 * This drops the queue lock
3010 */
3011 if (q)
49cac01e 3012 queue_unplugged(q, depth, from_schedule);
73c10101 3013 q = rq->q;
94b5eb28 3014 depth = 0;
73c10101
JA
3015 spin_lock(q->queue_lock);
3016 }
8ba61435
TH
3017
3018 /*
3019 * Short-circuit if @q is dead
3020 */
3f3299d5 3021 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3022 __blk_end_request_all(rq, -ENODEV);
3023 continue;
3024 }
3025
73c10101
JA
3026 /*
3027 * rq is already accounted, so use raw insert
3028 */
401a18e9
JA
3029 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3030 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3031 else
3032 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3033
3034 depth++;
73c10101
JA
3035 }
3036
99e22598
JA
3037 /*
3038 * This drops the queue lock
3039 */
3040 if (q)
49cac01e 3041 queue_unplugged(q, depth, from_schedule);
73c10101 3042
73c10101
JA
3043 local_irq_restore(flags);
3044}
73c10101
JA
3045
3046void blk_finish_plug(struct blk_plug *plug)
3047{
f6603783 3048 blk_flush_plug_list(plug, false);
73c10101 3049
88b996cd
CH
3050 if (plug == current->plug)
3051 current->plug = NULL;
73c10101 3052}
88b996cd 3053EXPORT_SYMBOL(blk_finish_plug);
73c10101 3054
6c954667
LM
3055#ifdef CONFIG_PM_RUNTIME
3056/**
3057 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3058 * @q: the queue of the device
3059 * @dev: the device the queue belongs to
3060 *
3061 * Description:
3062 * Initialize runtime-PM-related fields for @q and start auto suspend for
3063 * @dev. Drivers that want to take advantage of request-based runtime PM
3064 * should call this function after @dev has been initialized, and its
3065 * request queue @q has been allocated, and runtime PM for it can not happen
3066 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3067 * cases, driver should call this function before any I/O has taken place.
3068 *
3069 * This function takes care of setting up using auto suspend for the device,
3070 * the autosuspend delay is set to -1 to make runtime suspend impossible
3071 * until an updated value is either set by user or by driver. Drivers do
3072 * not need to touch other autosuspend settings.
3073 *
3074 * The block layer runtime PM is request based, so only works for drivers
3075 * that use request as their IO unit instead of those directly use bio's.
3076 */
3077void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3078{
3079 q->dev = dev;
3080 q->rpm_status = RPM_ACTIVE;
3081 pm_runtime_set_autosuspend_delay(q->dev, -1);
3082 pm_runtime_use_autosuspend(q->dev);
3083}
3084EXPORT_SYMBOL(blk_pm_runtime_init);
3085
3086/**
3087 * blk_pre_runtime_suspend - Pre runtime suspend check
3088 * @q: the queue of the device
3089 *
3090 * Description:
3091 * This function will check if runtime suspend is allowed for the device
3092 * by examining if there are any requests pending in the queue. If there
3093 * are requests pending, the device can not be runtime suspended; otherwise,
3094 * the queue's status will be updated to SUSPENDING and the driver can
3095 * proceed to suspend the device.
3096 *
3097 * For the not allowed case, we mark last busy for the device so that
3098 * runtime PM core will try to autosuspend it some time later.
3099 *
3100 * This function should be called near the start of the device's
3101 * runtime_suspend callback.
3102 *
3103 * Return:
3104 * 0 - OK to runtime suspend the device
3105 * -EBUSY - Device should not be runtime suspended
3106 */
3107int blk_pre_runtime_suspend(struct request_queue *q)
3108{
3109 int ret = 0;
3110
17cb82c2
KX
3111 if (!q->dev)
3112 return ret;
3113
6c954667
LM
3114 spin_lock_irq(q->queue_lock);
3115 if (q->nr_pending) {
3116 ret = -EBUSY;
3117 pm_runtime_mark_last_busy(q->dev);
3118 } else {
3119 q->rpm_status = RPM_SUSPENDING;
3120 }
3121 spin_unlock_irq(q->queue_lock);
3122 return ret;
3123}
3124EXPORT_SYMBOL(blk_pre_runtime_suspend);
3125
3126/**
3127 * blk_post_runtime_suspend - Post runtime suspend processing
3128 * @q: the queue of the device
3129 * @err: return value of the device's runtime_suspend function
3130 *
3131 * Description:
3132 * Update the queue's runtime status according to the return value of the
3133 * device's runtime suspend function and mark last busy for the device so
3134 * that PM core will try to auto suspend the device at a later time.
3135 *
3136 * This function should be called near the end of the device's
3137 * runtime_suspend callback.
3138 */
3139void blk_post_runtime_suspend(struct request_queue *q, int err)
3140{
17cb82c2
KX
3141 if (!q->dev)
3142 return;
3143
6c954667
LM
3144 spin_lock_irq(q->queue_lock);
3145 if (!err) {
3146 q->rpm_status = RPM_SUSPENDED;
3147 } else {
3148 q->rpm_status = RPM_ACTIVE;
3149 pm_runtime_mark_last_busy(q->dev);
3150 }
3151 spin_unlock_irq(q->queue_lock);
3152}
3153EXPORT_SYMBOL(blk_post_runtime_suspend);
3154
3155/**
3156 * blk_pre_runtime_resume - Pre runtime resume processing
3157 * @q: the queue of the device
3158 *
3159 * Description:
3160 * Update the queue's runtime status to RESUMING in preparation for the
3161 * runtime resume of the device.
3162 *
3163 * This function should be called near the start of the device's
3164 * runtime_resume callback.
3165 */
3166void blk_pre_runtime_resume(struct request_queue *q)
3167{
17cb82c2
KX
3168 if (!q->dev)
3169 return;
3170
6c954667
LM
3171 spin_lock_irq(q->queue_lock);
3172 q->rpm_status = RPM_RESUMING;
3173 spin_unlock_irq(q->queue_lock);
3174}
3175EXPORT_SYMBOL(blk_pre_runtime_resume);
3176
3177/**
3178 * blk_post_runtime_resume - Post runtime resume processing
3179 * @q: the queue of the device
3180 * @err: return value of the device's runtime_resume function
3181 *
3182 * Description:
3183 * Update the queue's runtime status according to the return value of the
3184 * device's runtime_resume function. If it is successfully resumed, process
3185 * the requests that are queued into the device's queue when it is resuming
3186 * and then mark last busy and initiate autosuspend for it.
3187 *
3188 * This function should be called near the end of the device's
3189 * runtime_resume callback.
3190 */
3191void blk_post_runtime_resume(struct request_queue *q, int err)
3192{
17cb82c2
KX
3193 if (!q->dev)
3194 return;
3195
6c954667
LM
3196 spin_lock_irq(q->queue_lock);
3197 if (!err) {
3198 q->rpm_status = RPM_ACTIVE;
3199 __blk_run_queue(q);
3200 pm_runtime_mark_last_busy(q->dev);
c60855cd 3201 pm_request_autosuspend(q->dev);
6c954667
LM
3202 } else {
3203 q->rpm_status = RPM_SUSPENDED;
3204 }
3205 spin_unlock_irq(q->queue_lock);
3206}
3207EXPORT_SYMBOL(blk_post_runtime_resume);
3208#endif
3209
1da177e4
LT
3210int __init blk_dev_init(void)
3211{
9eb55b03
NK
3212 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3213 sizeof(((struct request *)0)->cmd_flags));
3214
89b90be2
TH
3215 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3216 kblockd_workqueue = alloc_workqueue("kblockd",
3c2a0909
S
3217 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3218 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3219 if (!kblockd_workqueue)
3220 panic("Failed to create kblockd\n");
3221
3222 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3223 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3224
8324aa91 3225 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3226 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3227
d38ecf93 3228 return 0;
1da177e4 3229}