slab: alien caches must not be initialized if the allocation of the alien cache failed
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
a2468cc9 88struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
8d69aaee 101static inline unsigned char swap_count(unsigned char ent)
355cfa73 102{
570a335b 103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
104}
105
efa90a98 106/* returns 1 if swap entry is freed */
c9e44410
KH
107static int
108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109{
efa90a98 110 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
111 struct page *page;
112 int ret = 0;
113
f6ab1f7f 114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
09cbfeaf 128 put_page(page);
c9e44410
KH
129 return ret;
130}
355cfa73 131
6a6ba831
HD
132/*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136static int discard_swap(struct swap_info_struct *si)
137{
138 struct swap_extent *se;
9625a5f2
HD
139 sector_t start_block;
140 sector_t nr_blocks;
6a6ba831
HD
141 int err = 0;
142
9625a5f2
HD
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 149 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
150 if (err)
151 return err;
152 cond_resched();
153 }
6a6ba831 154
9625a5f2
HD
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
158
159 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 160 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167}
168
7992fde7
HD
169/*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175{
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
7992fde7
HD
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
858a2990 184 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 197 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
198 break;
199 }
200
a8ae4991 201 se = list_next_entry(se, list);
7992fde7
HD
202 }
203}
204
38d8b4e6
HY
205#ifdef CONFIG_THP_SWAP
206#define SWAPFILE_CLUSTER HPAGE_PMD_NR
207#else
048c27fd 208#define SWAPFILE_CLUSTER 256
38d8b4e6 209#endif
048c27fd
HD
210#define LATENCY_LIMIT 256
211
2a8f9449
SL
212static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214{
215 info->flags = flag;
216}
217
218static inline unsigned int cluster_count(struct swap_cluster_info *info)
219{
220 return info->data;
221}
222
223static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225{
226 info->data = c;
227}
228
229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231{
232 info->flags = f;
233 info->data = c;
234}
235
236static inline unsigned int cluster_next(struct swap_cluster_info *info)
237{
238 return info->data;
239}
240
241static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243{
244 info->data = n;
245}
246
247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249{
250 info->flags = f;
251 info->data = n;
252}
253
254static inline bool cluster_is_free(struct swap_cluster_info *info)
255{
256 return info->flags & CLUSTER_FLAG_FREE;
257}
258
259static inline bool cluster_is_null(struct swap_cluster_info *info)
260{
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262}
263
264static inline void cluster_set_null(struct swap_cluster_info *info)
265{
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268}
269
e0709829
HY
270static inline bool cluster_is_huge(struct swap_cluster_info *info)
271{
272 return info->flags & CLUSTER_FLAG_HUGE;
273}
274
275static inline void cluster_clear_huge(struct swap_cluster_info *info)
276{
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278}
279
235b6217
HY
280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282{
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291}
292
293static inline void unlock_cluster(struct swap_cluster_info *ci)
294{
295 if (ci)
296 spin_unlock(&ci->lock);
297}
298
299static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300 struct swap_info_struct *si,
301 unsigned long offset)
302{
303 struct swap_cluster_info *ci;
304
305 ci = lock_cluster(si, offset);
306 if (!ci)
307 spin_lock(&si->lock);
308
309 return ci;
310}
311
312static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313 struct swap_cluster_info *ci)
314{
315 if (ci)
316 unlock_cluster(ci);
317 else
318 spin_unlock(&si->lock);
319}
320
6b534915
HY
321static inline bool cluster_list_empty(struct swap_cluster_list *list)
322{
323 return cluster_is_null(&list->head);
324}
325
326static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327{
328 return cluster_next(&list->head);
329}
330
331static void cluster_list_init(struct swap_cluster_list *list)
332{
333 cluster_set_null(&list->head);
334 cluster_set_null(&list->tail);
335}
336
337static void cluster_list_add_tail(struct swap_cluster_list *list,
338 struct swap_cluster_info *ci,
339 unsigned int idx)
340{
341 if (cluster_list_empty(list)) {
342 cluster_set_next_flag(&list->head, idx, 0);
343 cluster_set_next_flag(&list->tail, idx, 0);
344 } else {
235b6217 345 struct swap_cluster_info *ci_tail;
6b534915
HY
346 unsigned int tail = cluster_next(&list->tail);
347
235b6217
HY
348 /*
349 * Nested cluster lock, but both cluster locks are
350 * only acquired when we held swap_info_struct->lock
351 */
352 ci_tail = ci + tail;
353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354 cluster_set_next(ci_tail, idx);
0ef017d1 355 spin_unlock(&ci_tail->lock);
6b534915
HY
356 cluster_set_next_flag(&list->tail, idx, 0);
357 }
358}
359
360static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361 struct swap_cluster_info *ci)
362{
363 unsigned int idx;
364
365 idx = cluster_next(&list->head);
366 if (cluster_next(&list->tail) == idx) {
367 cluster_set_null(&list->head);
368 cluster_set_null(&list->tail);
369 } else
370 cluster_set_next_flag(&list->head,
371 cluster_next(&ci[idx]), 0);
372
373 return idx;
374}
375
815c2c54
SL
376/* Add a cluster to discard list and schedule it to do discard */
377static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378 unsigned int idx)
379{
380 /*
381 * If scan_swap_map() can't find a free cluster, it will check
382 * si->swap_map directly. To make sure the discarding cluster isn't
383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 * will be cleared after discard
385 */
386 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388
6b534915 389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
390
391 schedule_work(&si->discard_work);
392}
393
38d8b4e6
HY
394static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395{
396 struct swap_cluster_info *ci = si->cluster_info;
397
398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399 cluster_list_add_tail(&si->free_clusters, ci, idx);
400}
401
815c2c54
SL
402/*
403 * Doing discard actually. After a cluster discard is finished, the cluster
404 * will be added to free cluster list. caller should hold si->lock.
405*/
406static void swap_do_scheduled_discard(struct swap_info_struct *si)
407{
235b6217 408 struct swap_cluster_info *info, *ci;
815c2c54
SL
409 unsigned int idx;
410
411 info = si->cluster_info;
412
6b534915
HY
413 while (!cluster_list_empty(&si->discard_clusters)) {
414 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
415 spin_unlock(&si->lock);
416
417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418 SWAPFILE_CLUSTER);
419
420 spin_lock(&si->lock);
235b6217 421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 422 __free_cluster(si, idx);
815c2c54
SL
423 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 0, SWAPFILE_CLUSTER);
235b6217 425 unlock_cluster(ci);
815c2c54
SL
426 }
427}
428
429static void swap_discard_work(struct work_struct *work)
430{
431 struct swap_info_struct *si;
432
433 si = container_of(work, struct swap_info_struct, discard_work);
434
435 spin_lock(&si->lock);
436 swap_do_scheduled_discard(si);
437 spin_unlock(&si->lock);
438}
439
38d8b4e6
HY
440static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441{
442 struct swap_cluster_info *ci = si->cluster_info;
443
444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445 cluster_list_del_first(&si->free_clusters, ci);
446 cluster_set_count_flag(ci + idx, 0, 0);
447}
448
449static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450{
451 struct swap_cluster_info *ci = si->cluster_info + idx;
452
453 VM_BUG_ON(cluster_count(ci) != 0);
454 /*
455 * If the swap is discardable, prepare discard the cluster
456 * instead of free it immediately. The cluster will be freed
457 * after discard.
458 */
459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461 swap_cluster_schedule_discard(si, idx);
462 return;
463 }
464
465 __free_cluster(si, idx);
466}
467
2a8f9449
SL
468/*
469 * The cluster corresponding to page_nr will be used. The cluster will be
470 * removed from free cluster list and its usage counter will be increased.
471 */
472static void inc_cluster_info_page(struct swap_info_struct *p,
473 struct swap_cluster_info *cluster_info, unsigned long page_nr)
474{
475 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476
477 if (!cluster_info)
478 return;
38d8b4e6
HY
479 if (cluster_is_free(&cluster_info[idx]))
480 alloc_cluster(p, idx);
2a8f9449
SL
481
482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483 cluster_set_count(&cluster_info[idx],
484 cluster_count(&cluster_info[idx]) + 1);
485}
486
487/*
488 * The cluster corresponding to page_nr decreases one usage. If the usage
489 * counter becomes 0, which means no page in the cluster is in using, we can
490 * optionally discard the cluster and add it to free cluster list.
491 */
492static void dec_cluster_info_page(struct swap_info_struct *p,
493 struct swap_cluster_info *cluster_info, unsigned long page_nr)
494{
495 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496
497 if (!cluster_info)
498 return;
499
500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501 cluster_set_count(&cluster_info[idx],
502 cluster_count(&cluster_info[idx]) - 1);
503
38d8b4e6
HY
504 if (cluster_count(&cluster_info[idx]) == 0)
505 free_cluster(p, idx);
2a8f9449
SL
506}
507
508/*
509 * It's possible scan_swap_map() uses a free cluster in the middle of free
510 * cluster list. Avoiding such abuse to avoid list corruption.
511 */
ebc2a1a6
SL
512static bool
513scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
514 unsigned long offset)
515{
ebc2a1a6
SL
516 struct percpu_cluster *percpu_cluster;
517 bool conflict;
518
2a8f9449 519 offset /= SWAPFILE_CLUSTER;
6b534915
HY
520 conflict = !cluster_list_empty(&si->free_clusters) &&
521 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 522 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
523
524 if (!conflict)
525 return false;
526
527 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528 cluster_set_null(&percpu_cluster->index);
529 return true;
530}
531
532/*
533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534 * might involve allocating a new cluster for current CPU too.
535 */
36005bae 536static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
537 unsigned long *offset, unsigned long *scan_base)
538{
539 struct percpu_cluster *cluster;
235b6217 540 struct swap_cluster_info *ci;
ebc2a1a6 541 bool found_free;
235b6217 542 unsigned long tmp, max;
ebc2a1a6
SL
543
544new_cluster:
545 cluster = this_cpu_ptr(si->percpu_cluster);
546 if (cluster_is_null(&cluster->index)) {
6b534915
HY
547 if (!cluster_list_empty(&si->free_clusters)) {
548 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
549 cluster->next = cluster_next(&cluster->index) *
550 SWAPFILE_CLUSTER;
6b534915 551 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
552 /*
553 * we don't have free cluster but have some clusters in
554 * discarding, do discard now and reclaim them
555 */
556 swap_do_scheduled_discard(si);
557 *scan_base = *offset = si->cluster_next;
558 goto new_cluster;
559 } else
36005bae 560 return false;
ebc2a1a6
SL
561 }
562
563 found_free = false;
564
565 /*
566 * Other CPUs can use our cluster if they can't find a free cluster,
567 * check if there is still free entry in the cluster
568 */
569 tmp = cluster->next;
235b6217
HY
570 max = min_t(unsigned long, si->max,
571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572 if (tmp >= max) {
573 cluster_set_null(&cluster->index);
574 goto new_cluster;
575 }
576 ci = lock_cluster(si, tmp);
577 while (tmp < max) {
ebc2a1a6
SL
578 if (!si->swap_map[tmp]) {
579 found_free = true;
580 break;
581 }
582 tmp++;
583 }
235b6217 584 unlock_cluster(ci);
ebc2a1a6
SL
585 if (!found_free) {
586 cluster_set_null(&cluster->index);
587 goto new_cluster;
588 }
589 cluster->next = tmp + 1;
590 *offset = tmp;
591 *scan_base = tmp;
36005bae 592 return found_free;
2a8f9449
SL
593}
594
a2468cc9
AL
595static void __del_from_avail_list(struct swap_info_struct *p)
596{
597 int nid;
598
599 for_each_node(nid)
600 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
601}
602
603static void del_from_avail_list(struct swap_info_struct *p)
604{
605 spin_lock(&swap_avail_lock);
606 __del_from_avail_list(p);
607 spin_unlock(&swap_avail_lock);
608}
609
38d8b4e6
HY
610static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
611 unsigned int nr_entries)
612{
613 unsigned int end = offset + nr_entries - 1;
614
615 if (offset == si->lowest_bit)
616 si->lowest_bit += nr_entries;
617 if (end == si->highest_bit)
618 si->highest_bit -= nr_entries;
619 si->inuse_pages += nr_entries;
620 if (si->inuse_pages == si->pages) {
621 si->lowest_bit = si->max;
622 si->highest_bit = 0;
a2468cc9 623 del_from_avail_list(si);
38d8b4e6
HY
624 }
625}
626
a2468cc9
AL
627static void add_to_avail_list(struct swap_info_struct *p)
628{
629 int nid;
630
631 spin_lock(&swap_avail_lock);
632 for_each_node(nid) {
633 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
634 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
635 }
636 spin_unlock(&swap_avail_lock);
637}
638
38d8b4e6
HY
639static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
640 unsigned int nr_entries)
641{
642 unsigned long end = offset + nr_entries - 1;
643 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
644
645 if (offset < si->lowest_bit)
646 si->lowest_bit = offset;
647 if (end > si->highest_bit) {
648 bool was_full = !si->highest_bit;
649
650 si->highest_bit = end;
a2468cc9
AL
651 if (was_full && (si->flags & SWP_WRITEOK))
652 add_to_avail_list(si);
38d8b4e6
HY
653 }
654 atomic_long_add(nr_entries, &nr_swap_pages);
655 si->inuse_pages -= nr_entries;
656 if (si->flags & SWP_BLKDEV)
657 swap_slot_free_notify =
658 si->bdev->bd_disk->fops->swap_slot_free_notify;
659 else
660 swap_slot_free_notify = NULL;
661 while (offset <= end) {
662 frontswap_invalidate_page(si->type, offset);
663 if (swap_slot_free_notify)
664 swap_slot_free_notify(si->bdev, offset);
665 offset++;
666 }
667}
668
36005bae
TC
669static int scan_swap_map_slots(struct swap_info_struct *si,
670 unsigned char usage, int nr,
671 swp_entry_t slots[])
1da177e4 672{
235b6217 673 struct swap_cluster_info *ci;
ebebbbe9 674 unsigned long offset;
c60aa176 675 unsigned long scan_base;
7992fde7 676 unsigned long last_in_cluster = 0;
048c27fd 677 int latency_ration = LATENCY_LIMIT;
36005bae
TC
678 int n_ret = 0;
679
680 if (nr > SWAP_BATCH)
681 nr = SWAP_BATCH;
7dfad418 682
886bb7e9 683 /*
7dfad418
HD
684 * We try to cluster swap pages by allocating them sequentially
685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
686 * way, however, we resort to first-free allocation, starting
687 * a new cluster. This prevents us from scattering swap pages
688 * all over the entire swap partition, so that we reduce
689 * overall disk seek times between swap pages. -- sct
690 * But we do now try to find an empty cluster. -Andrea
c60aa176 691 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
692 */
693
52b7efdb 694 si->flags += SWP_SCANNING;
c60aa176 695 scan_base = offset = si->cluster_next;
ebebbbe9 696
ebc2a1a6
SL
697 /* SSD algorithm */
698 if (si->cluster_info) {
36005bae
TC
699 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
700 goto checks;
701 else
702 goto scan;
ebc2a1a6
SL
703 }
704
ebebbbe9
HD
705 if (unlikely(!si->cluster_nr--)) {
706 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
707 si->cluster_nr = SWAPFILE_CLUSTER - 1;
708 goto checks;
709 }
2a8f9449 710
ec8acf20 711 spin_unlock(&si->lock);
7dfad418 712
c60aa176
HD
713 /*
714 * If seek is expensive, start searching for new cluster from
715 * start of partition, to minimize the span of allocated swap.
50088c44
CY
716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
717 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 718 */
50088c44 719 scan_base = offset = si->lowest_bit;
7dfad418
HD
720 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
721
722 /* Locate the first empty (unaligned) cluster */
723 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 724 if (si->swap_map[offset])
7dfad418
HD
725 last_in_cluster = offset + SWAPFILE_CLUSTER;
726 else if (offset == last_in_cluster) {
ec8acf20 727 spin_lock(&si->lock);
ebebbbe9
HD
728 offset -= SWAPFILE_CLUSTER - 1;
729 si->cluster_next = offset;
730 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
731 goto checks;
732 }
733 if (unlikely(--latency_ration < 0)) {
734 cond_resched();
735 latency_ration = LATENCY_LIMIT;
736 }
737 }
738
739 offset = scan_base;
ec8acf20 740 spin_lock(&si->lock);
ebebbbe9 741 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 742 }
7dfad418 743
ebebbbe9 744checks:
ebc2a1a6 745 if (si->cluster_info) {
36005bae
TC
746 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
747 /* take a break if we already got some slots */
748 if (n_ret)
749 goto done;
750 if (!scan_swap_map_try_ssd_cluster(si, &offset,
751 &scan_base))
752 goto scan;
753 }
ebc2a1a6 754 }
ebebbbe9 755 if (!(si->flags & SWP_WRITEOK))
52b7efdb 756 goto no_page;
7dfad418
HD
757 if (!si->highest_bit)
758 goto no_page;
ebebbbe9 759 if (offset > si->highest_bit)
c60aa176 760 scan_base = offset = si->lowest_bit;
c9e44410 761
235b6217 762 ci = lock_cluster(si, offset);
b73d7fce
HD
763 /* reuse swap entry of cache-only swap if not busy. */
764 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 765 int swap_was_freed;
235b6217 766 unlock_cluster(ci);
ec8acf20 767 spin_unlock(&si->lock);
c9e44410 768 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 769 spin_lock(&si->lock);
c9e44410
KH
770 /* entry was freed successfully, try to use this again */
771 if (swap_was_freed)
772 goto checks;
773 goto scan; /* check next one */
774 }
775
235b6217
HY
776 if (si->swap_map[offset]) {
777 unlock_cluster(ci);
36005bae
TC
778 if (!n_ret)
779 goto scan;
780 else
781 goto done;
235b6217 782 }
2872bb2d
HY
783 si->swap_map[offset] = usage;
784 inc_cluster_info_page(si, si->cluster_info, offset);
785 unlock_cluster(ci);
ebebbbe9 786
38d8b4e6 787 swap_range_alloc(si, offset, 1);
ebebbbe9 788 si->cluster_next = offset + 1;
36005bae
TC
789 slots[n_ret++] = swp_entry(si->type, offset);
790
791 /* got enough slots or reach max slots? */
792 if ((n_ret == nr) || (offset >= si->highest_bit))
793 goto done;
794
795 /* search for next available slot */
796
797 /* time to take a break? */
798 if (unlikely(--latency_ration < 0)) {
799 if (n_ret)
800 goto done;
801 spin_unlock(&si->lock);
802 cond_resched();
803 spin_lock(&si->lock);
804 latency_ration = LATENCY_LIMIT;
805 }
806
807 /* try to get more slots in cluster */
808 if (si->cluster_info) {
809 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 goto checks;
811 else
812 goto done;
813 }
814 /* non-ssd case */
815 ++offset;
816
817 /* non-ssd case, still more slots in cluster? */
818 if (si->cluster_nr && !si->swap_map[offset]) {
819 --si->cluster_nr;
820 goto checks;
821 }
7992fde7 822
36005bae
TC
823done:
824 si->flags -= SWP_SCANNING;
825 return n_ret;
7dfad418 826
ebebbbe9 827scan:
ec8acf20 828 spin_unlock(&si->lock);
7dfad418 829 while (++offset <= si->highest_bit) {
52b7efdb 830 if (!si->swap_map[offset]) {
ec8acf20 831 spin_lock(&si->lock);
52b7efdb
HD
832 goto checks;
833 }
c9e44410 834 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 835 spin_lock(&si->lock);
c9e44410
KH
836 goto checks;
837 }
048c27fd
HD
838 if (unlikely(--latency_ration < 0)) {
839 cond_resched();
840 latency_ration = LATENCY_LIMIT;
841 }
7dfad418 842 }
c60aa176 843 offset = si->lowest_bit;
a5998061 844 while (offset < scan_base) {
c60aa176 845 if (!si->swap_map[offset]) {
ec8acf20 846 spin_lock(&si->lock);
c60aa176
HD
847 goto checks;
848 }
c9e44410 849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 850 spin_lock(&si->lock);
c9e44410
KH
851 goto checks;
852 }
c60aa176
HD
853 if (unlikely(--latency_ration < 0)) {
854 cond_resched();
855 latency_ration = LATENCY_LIMIT;
856 }
a5998061 857 offset++;
c60aa176 858 }
ec8acf20 859 spin_lock(&si->lock);
7dfad418
HD
860
861no_page:
52b7efdb 862 si->flags -= SWP_SCANNING;
36005bae 863 return n_ret;
1da177e4
LT
864}
865
38d8b4e6
HY
866#ifdef CONFIG_THP_SWAP
867static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
868{
869 unsigned long idx;
870 struct swap_cluster_info *ci;
871 unsigned long offset, i;
872 unsigned char *map;
873
874 if (cluster_list_empty(&si->free_clusters))
875 return 0;
876
877 idx = cluster_list_first(&si->free_clusters);
878 offset = idx * SWAPFILE_CLUSTER;
879 ci = lock_cluster(si, offset);
880 alloc_cluster(si, idx);
e0709829 881 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
882
883 map = si->swap_map + offset;
884 for (i = 0; i < SWAPFILE_CLUSTER; i++)
885 map[i] = SWAP_HAS_CACHE;
886 unlock_cluster(ci);
887 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
888 *slot = swp_entry(si->type, offset);
889
890 return 1;
891}
892
893static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
894{
895 unsigned long offset = idx * SWAPFILE_CLUSTER;
896 struct swap_cluster_info *ci;
897
898 ci = lock_cluster(si, offset);
899 cluster_set_count_flag(ci, 0, 0);
900 free_cluster(si, idx);
901 unlock_cluster(ci);
902 swap_range_free(si, offset, SWAPFILE_CLUSTER);
903}
904#else
905static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
906{
907 VM_WARN_ON_ONCE(1);
908 return 0;
909}
910#endif /* CONFIG_THP_SWAP */
911
36005bae
TC
912static unsigned long scan_swap_map(struct swap_info_struct *si,
913 unsigned char usage)
914{
915 swp_entry_t entry;
916 int n_ret;
917
918 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
919
920 if (n_ret)
921 return swp_offset(entry);
922 else
923 return 0;
924
925}
926
38d8b4e6 927int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 928{
38d8b4e6 929 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 930 struct swap_info_struct *si, *next;
36005bae
TC
931 long avail_pgs;
932 int n_ret = 0;
a2468cc9 933 int node;
1da177e4 934
38d8b4e6
HY
935 /* Only single cluster request supported */
936 WARN_ON_ONCE(n_goal > 1 && cluster);
937
938 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 939 if (avail_pgs <= 0)
fb4f88dc 940 goto noswap;
36005bae
TC
941
942 if (n_goal > SWAP_BATCH)
943 n_goal = SWAP_BATCH;
944
945 if (n_goal > avail_pgs)
946 n_goal = avail_pgs;
947
38d8b4e6 948 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 949
18ab4d4c
DS
950 spin_lock(&swap_avail_lock);
951
952start_over:
a2468cc9
AL
953 node = numa_node_id();
954 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 955 /* requeue si to after same-priority siblings */
a2468cc9 956 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 957 spin_unlock(&swap_avail_lock);
ec8acf20 958 spin_lock(&si->lock);
adfab836 959 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 960 spin_lock(&swap_avail_lock);
a2468cc9 961 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
962 spin_unlock(&si->lock);
963 goto nextsi;
964 }
965 WARN(!si->highest_bit,
966 "swap_info %d in list but !highest_bit\n",
967 si->type);
968 WARN(!(si->flags & SWP_WRITEOK),
969 "swap_info %d in list but !SWP_WRITEOK\n",
970 si->type);
a2468cc9 971 __del_from_avail_list(si);
ec8acf20 972 spin_unlock(&si->lock);
18ab4d4c 973 goto nextsi;
ec8acf20 974 }
f0eea189
HY
975 if (cluster) {
976 if (!(si->flags & SWP_FILE))
977 n_ret = swap_alloc_cluster(si, swp_entries);
978 } else
38d8b4e6
HY
979 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
980 n_goal, swp_entries);
ec8acf20 981 spin_unlock(&si->lock);
38d8b4e6 982 if (n_ret || cluster)
36005bae 983 goto check_out;
18ab4d4c 984 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
985 si->type);
986
18ab4d4c
DS
987 spin_lock(&swap_avail_lock);
988nextsi:
adfab836
DS
989 /*
990 * if we got here, it's likely that si was almost full before,
991 * and since scan_swap_map() can drop the si->lock, multiple
992 * callers probably all tried to get a page from the same si
18ab4d4c
DS
993 * and it filled up before we could get one; or, the si filled
994 * up between us dropping swap_avail_lock and taking si->lock.
995 * Since we dropped the swap_avail_lock, the swap_avail_head
996 * list may have been modified; so if next is still in the
36005bae
TC
997 * swap_avail_head list then try it, otherwise start over
998 * if we have not gotten any slots.
adfab836 999 */
a2468cc9 1000 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1001 goto start_over;
1da177e4 1002 }
fb4f88dc 1003
18ab4d4c
DS
1004 spin_unlock(&swap_avail_lock);
1005
36005bae
TC
1006check_out:
1007 if (n_ret < n_goal)
38d8b4e6
HY
1008 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009 &nr_swap_pages);
fb4f88dc 1010noswap:
36005bae
TC
1011 return n_ret;
1012}
1013
2de1a7e4 1014/* The only caller of this function is now suspend routine */
910321ea
HD
1015swp_entry_t get_swap_page_of_type(int type)
1016{
1017 struct swap_info_struct *si;
1018 pgoff_t offset;
1019
910321ea 1020 si = swap_info[type];
ec8acf20 1021 spin_lock(&si->lock);
910321ea 1022 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 1023 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1024 /* This is called for allocating swap entry, not cache */
1025 offset = scan_swap_map(si, 1);
1026 if (offset) {
ec8acf20 1027 spin_unlock(&si->lock);
910321ea
HD
1028 return swp_entry(type, offset);
1029 }
ec8acf20 1030 atomic_long_inc(&nr_swap_pages);
910321ea 1031 }
ec8acf20 1032 spin_unlock(&si->lock);
910321ea
HD
1033 return (swp_entry_t) {0};
1034}
1035
e8c26ab6 1036static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1037{
73c34b6a 1038 struct swap_info_struct *p;
1da177e4
LT
1039 unsigned long offset, type;
1040
1041 if (!entry.val)
1042 goto out;
1043 type = swp_type(entry);
1044 if (type >= nr_swapfiles)
1045 goto bad_nofile;
efa90a98 1046 p = swap_info[type];
1da177e4
LT
1047 if (!(p->flags & SWP_USED))
1048 goto bad_device;
1049 offset = swp_offset(entry);
1050 if (offset >= p->max)
1051 goto bad_offset;
1da177e4
LT
1052 return p;
1053
1da177e4 1054bad_offset:
6a991fc7 1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1056 goto out;
1057bad_device:
6a991fc7 1058 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1059 goto out;
1060bad_nofile:
6a991fc7 1061 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1062out:
1063 return NULL;
886bb7e9 1064}
1da177e4 1065
e8c26ab6
TC
1066static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067{
1068 struct swap_info_struct *p;
1069
1070 p = __swap_info_get(entry);
1071 if (!p)
1072 goto out;
1073 if (!p->swap_map[swp_offset(entry)])
1074 goto bad_free;
1075 return p;
1076
1077bad_free:
1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079 goto out;
1080out:
1081 return NULL;
1082}
1083
235b6217
HY
1084static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085{
1086 struct swap_info_struct *p;
1087
1088 p = _swap_info_get(entry);
1089 if (p)
1090 spin_lock(&p->lock);
1091 return p;
1092}
1093
7c00bafe
TC
1094static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095 struct swap_info_struct *q)
1096{
1097 struct swap_info_struct *p;
1098
1099 p = _swap_info_get(entry);
1100
1101 if (p != q) {
1102 if (q != NULL)
1103 spin_unlock(&q->lock);
1104 if (p != NULL)
1105 spin_lock(&p->lock);
1106 }
1107 return p;
1108}
1109
1110static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111 swp_entry_t entry, unsigned char usage)
1da177e4 1112{
235b6217 1113 struct swap_cluster_info *ci;
253d553b 1114 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1115 unsigned char count;
1116 unsigned char has_cache;
235b6217 1117
7c00bafe 1118 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1119
253d553b 1120 count = p->swap_map[offset];
235b6217 1121
253d553b
HD
1122 has_cache = count & SWAP_HAS_CACHE;
1123 count &= ~SWAP_HAS_CACHE;
355cfa73 1124
253d553b 1125 if (usage == SWAP_HAS_CACHE) {
355cfa73 1126 VM_BUG_ON(!has_cache);
253d553b 1127 has_cache = 0;
aaa46865
HD
1128 } else if (count == SWAP_MAP_SHMEM) {
1129 /*
1130 * Or we could insist on shmem.c using a special
1131 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132 */
1133 count = 0;
570a335b
HD
1134 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135 if (count == COUNT_CONTINUED) {
1136 if (swap_count_continued(p, offset, count))
1137 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138 else
1139 count = SWAP_MAP_MAX;
1140 } else
1141 count--;
1142 }
253d553b 1143
253d553b 1144 usage = count | has_cache;
7c00bafe
TC
1145 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147 unlock_cluster_or_swap_info(p, ci);
1148
1149 return usage;
1150}
355cfa73 1151
7c00bafe
TC
1152static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153{
1154 struct swap_cluster_info *ci;
1155 unsigned long offset = swp_offset(entry);
1156 unsigned char count;
1157
1158 ci = lock_cluster(p, offset);
1159 count = p->swap_map[offset];
1160 VM_BUG_ON(count != SWAP_HAS_CACHE);
1161 p->swap_map[offset] = 0;
1162 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1163 unlock_cluster(ci);
1164
38d8b4e6
HY
1165 mem_cgroup_uncharge_swap(entry, 1);
1166 swap_range_free(p, offset, 1);
1da177e4
LT
1167}
1168
1169/*
2de1a7e4 1170 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1171 * is still around or has not been recycled.
1172 */
1173void swap_free(swp_entry_t entry)
1174{
73c34b6a 1175 struct swap_info_struct *p;
1da177e4 1176
235b6217 1177 p = _swap_info_get(entry);
7c00bafe
TC
1178 if (p) {
1179 if (!__swap_entry_free(p, entry, 1))
67afa38e 1180 free_swap_slot(entry);
7c00bafe 1181 }
1da177e4
LT
1182}
1183
cb4b86ba
KH
1184/*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1186 */
75f6d6d2 1187static void swapcache_free(swp_entry_t entry)
cb4b86ba 1188{
355cfa73
KH
1189 struct swap_info_struct *p;
1190
235b6217 1191 p = _swap_info_get(entry);
7c00bafe
TC
1192 if (p) {
1193 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1194 free_swap_slot(entry);
7c00bafe
TC
1195 }
1196}
1197
38d8b4e6 1198#ifdef CONFIG_THP_SWAP
75f6d6d2 1199static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1200{
1201 unsigned long offset = swp_offset(entry);
1202 unsigned long idx = offset / SWAPFILE_CLUSTER;
1203 struct swap_cluster_info *ci;
1204 struct swap_info_struct *si;
1205 unsigned char *map;
a3aea839
HY
1206 unsigned int i, free_entries = 0;
1207 unsigned char val;
38d8b4e6 1208
a3aea839 1209 si = _swap_info_get(entry);
38d8b4e6
HY
1210 if (!si)
1211 return;
1212
1213 ci = lock_cluster(si, offset);
e0709829 1214 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1215 map = si->swap_map + offset;
1216 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1217 val = map[i];
1218 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219 if (val == SWAP_HAS_CACHE)
1220 free_entries++;
1221 }
1222 if (!free_entries) {
1223 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1225 }
e0709829 1226 cluster_clear_huge(ci);
38d8b4e6 1227 unlock_cluster(ci);
a3aea839
HY
1228 if (free_entries == SWAPFILE_CLUSTER) {
1229 spin_lock(&si->lock);
1230 ci = lock_cluster(si, offset);
1231 memset(map, 0, SWAPFILE_CLUSTER);
1232 unlock_cluster(ci);
1233 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234 swap_free_cluster(si, idx);
1235 spin_unlock(&si->lock);
1236 } else if (free_entries) {
1237 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239 free_swap_slot(entry);
1240 }
1241 }
38d8b4e6 1242}
59807685
HY
1243
1244int split_swap_cluster(swp_entry_t entry)
1245{
1246 struct swap_info_struct *si;
1247 struct swap_cluster_info *ci;
1248 unsigned long offset = swp_offset(entry);
1249
1250 si = _swap_info_get(entry);
1251 if (!si)
1252 return -EBUSY;
1253 ci = lock_cluster(si, offset);
1254 cluster_clear_huge(ci);
1255 unlock_cluster(ci);
1256 return 0;
1257}
75f6d6d2
MK
1258#else
1259static inline void swapcache_free_cluster(swp_entry_t entry)
1260{
1261}
38d8b4e6
HY
1262#endif /* CONFIG_THP_SWAP */
1263
75f6d6d2
MK
1264void put_swap_page(struct page *page, swp_entry_t entry)
1265{
1266 if (!PageTransHuge(page))
1267 swapcache_free(entry);
1268 else
1269 swapcache_free_cluster(entry);
1270}
1271
155b5f88
HY
1272static int swp_entry_cmp(const void *ent1, const void *ent2)
1273{
1274 const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276 return (int)swp_type(*e1) - (int)swp_type(*e2);
1277}
1278
7c00bafe
TC
1279void swapcache_free_entries(swp_entry_t *entries, int n)
1280{
1281 struct swap_info_struct *p, *prev;
1282 int i;
1283
1284 if (n <= 0)
1285 return;
1286
1287 prev = NULL;
1288 p = NULL;
155b5f88
HY
1289
1290 /*
1291 * Sort swap entries by swap device, so each lock is only taken once.
1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293 * so low that it isn't necessary to optimize further.
1294 */
1295 if (nr_swapfiles > 1)
1296 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1297 for (i = 0; i < n; ++i) {
1298 p = swap_info_get_cont(entries[i], prev);
1299 if (p)
1300 swap_entry_free(p, entries[i]);
7c00bafe
TC
1301 prev = p;
1302 }
235b6217 1303 if (p)
7c00bafe 1304 spin_unlock(&p->lock);
cb4b86ba
KH
1305}
1306
1da177e4 1307/*
c475a8ab 1308 * How many references to page are currently swapped out?
570a335b
HD
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1311 */
bde05d1c 1312int page_swapcount(struct page *page)
1da177e4 1313{
c475a8ab
HD
1314 int count = 0;
1315 struct swap_info_struct *p;
235b6217 1316 struct swap_cluster_info *ci;
1da177e4 1317 swp_entry_t entry;
235b6217 1318 unsigned long offset;
1da177e4 1319
4c21e2f2 1320 entry.val = page_private(page);
235b6217 1321 p = _swap_info_get(entry);
1da177e4 1322 if (p) {
235b6217
HY
1323 offset = swp_offset(entry);
1324 ci = lock_cluster_or_swap_info(p, offset);
1325 count = swap_count(p->swap_map[offset]);
1326 unlock_cluster_or_swap_info(p, ci);
1da177e4 1327 }
c475a8ab 1328 return count;
1da177e4
LT
1329}
1330
322b8afe
HY
1331static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1332{
1333 int count = 0;
1334 pgoff_t offset = swp_offset(entry);
1335 struct swap_cluster_info *ci;
1336
1337 ci = lock_cluster_or_swap_info(si, offset);
1338 count = swap_count(si->swap_map[offset]);
1339 unlock_cluster_or_swap_info(si, ci);
1340 return count;
1341}
1342
e8c26ab6
TC
1343/*
1344 * How many references to @entry are currently swapped out?
1345 * This does not give an exact answer when swap count is continued,
1346 * but does include the high COUNT_CONTINUED flag to allow for that.
1347 */
1348int __swp_swapcount(swp_entry_t entry)
1349{
1350 int count = 0;
e8c26ab6 1351 struct swap_info_struct *si;
e8c26ab6
TC
1352
1353 si = __swap_info_get(entry);
322b8afe
HY
1354 if (si)
1355 count = swap_swapcount(si, entry);
e8c26ab6
TC
1356 return count;
1357}
1358
8334b962
MK
1359/*
1360 * How many references to @entry are currently swapped out?
1361 * This considers COUNT_CONTINUED so it returns exact answer.
1362 */
1363int swp_swapcount(swp_entry_t entry)
1364{
1365 int count, tmp_count, n;
1366 struct swap_info_struct *p;
235b6217 1367 struct swap_cluster_info *ci;
8334b962
MK
1368 struct page *page;
1369 pgoff_t offset;
1370 unsigned char *map;
1371
235b6217 1372 p = _swap_info_get(entry);
8334b962
MK
1373 if (!p)
1374 return 0;
1375
235b6217
HY
1376 offset = swp_offset(entry);
1377
1378 ci = lock_cluster_or_swap_info(p, offset);
1379
1380 count = swap_count(p->swap_map[offset]);
8334b962
MK
1381 if (!(count & COUNT_CONTINUED))
1382 goto out;
1383
1384 count &= ~COUNT_CONTINUED;
1385 n = SWAP_MAP_MAX + 1;
1386
8334b962
MK
1387 page = vmalloc_to_page(p->swap_map + offset);
1388 offset &= ~PAGE_MASK;
1389 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1390
1391 do {
a8ae4991 1392 page = list_next_entry(page, lru);
8334b962
MK
1393 map = kmap_atomic(page);
1394 tmp_count = map[offset];
1395 kunmap_atomic(map);
1396
1397 count += (tmp_count & ~COUNT_CONTINUED) * n;
1398 n *= (SWAP_CONT_MAX + 1);
1399 } while (tmp_count & COUNT_CONTINUED);
1400out:
235b6217 1401 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1402 return count;
1403}
1404
e0709829
HY
1405#ifdef CONFIG_THP_SWAP
1406static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1407 swp_entry_t entry)
1408{
1409 struct swap_cluster_info *ci;
1410 unsigned char *map = si->swap_map;
1411 unsigned long roffset = swp_offset(entry);
1412 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1413 int i;
1414 bool ret = false;
1415
1416 ci = lock_cluster_or_swap_info(si, offset);
1417 if (!ci || !cluster_is_huge(ci)) {
1418 if (map[roffset] != SWAP_HAS_CACHE)
1419 ret = true;
1420 goto unlock_out;
1421 }
1422 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1423 if (map[offset + i] != SWAP_HAS_CACHE) {
1424 ret = true;
1425 break;
1426 }
1427 }
1428unlock_out:
1429 unlock_cluster_or_swap_info(si, ci);
1430 return ret;
1431}
1432
1433static bool page_swapped(struct page *page)
1434{
1435 swp_entry_t entry;
1436 struct swap_info_struct *si;
1437
1438 if (likely(!PageTransCompound(page)))
1439 return page_swapcount(page) != 0;
1440
1441 page = compound_head(page);
1442 entry.val = page_private(page);
1443 si = _swap_info_get(entry);
1444 if (si)
1445 return swap_page_trans_huge_swapped(si, entry);
1446 return false;
1447}
ba3c4ce6
HY
1448
1449static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1450 int *total_swapcount)
1451{
1452 int i, map_swapcount, _total_mapcount, _total_swapcount;
1453 unsigned long offset = 0;
1454 struct swap_info_struct *si;
1455 struct swap_cluster_info *ci = NULL;
1456 unsigned char *map = NULL;
1457 int mapcount, swapcount = 0;
1458
1459 /* hugetlbfs shouldn't call it */
1460 VM_BUG_ON_PAGE(PageHuge(page), page);
1461
1462 if (likely(!PageTransCompound(page))) {
1463 mapcount = atomic_read(&page->_mapcount) + 1;
1464 if (total_mapcount)
1465 *total_mapcount = mapcount;
1466 if (PageSwapCache(page))
1467 swapcount = page_swapcount(page);
1468 if (total_swapcount)
1469 *total_swapcount = swapcount;
1470 return mapcount + swapcount;
1471 }
1472
1473 page = compound_head(page);
1474
1475 _total_mapcount = _total_swapcount = map_swapcount = 0;
1476 if (PageSwapCache(page)) {
1477 swp_entry_t entry;
1478
1479 entry.val = page_private(page);
1480 si = _swap_info_get(entry);
1481 if (si) {
1482 map = si->swap_map;
1483 offset = swp_offset(entry);
1484 }
1485 }
1486 if (map)
1487 ci = lock_cluster(si, offset);
1488 for (i = 0; i < HPAGE_PMD_NR; i++) {
1489 mapcount = atomic_read(&page[i]._mapcount) + 1;
1490 _total_mapcount += mapcount;
1491 if (map) {
1492 swapcount = swap_count(map[offset + i]);
1493 _total_swapcount += swapcount;
1494 }
1495 map_swapcount = max(map_swapcount, mapcount + swapcount);
1496 }
1497 unlock_cluster(ci);
1498 if (PageDoubleMap(page)) {
1499 map_swapcount -= 1;
1500 _total_mapcount -= HPAGE_PMD_NR;
1501 }
1502 mapcount = compound_mapcount(page);
1503 map_swapcount += mapcount;
1504 _total_mapcount += mapcount;
1505 if (total_mapcount)
1506 *total_mapcount = _total_mapcount;
1507 if (total_swapcount)
1508 *total_swapcount = _total_swapcount;
1509
1510 return map_swapcount;
1511}
e0709829
HY
1512#else
1513#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1514#define page_swapped(page) (page_swapcount(page) != 0)
ba3c4ce6
HY
1515
1516static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1517 int *total_swapcount)
1518{
1519 int mapcount, swapcount = 0;
1520
1521 /* hugetlbfs shouldn't call it */
1522 VM_BUG_ON_PAGE(PageHuge(page), page);
1523
1524 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1525 if (PageSwapCache(page))
1526 swapcount = page_swapcount(page);
1527 if (total_swapcount)
1528 *total_swapcount = swapcount;
1529 return mapcount + swapcount;
1530}
e0709829
HY
1531#endif
1532
1da177e4 1533/*
7b1fe597
HD
1534 * We can write to an anon page without COW if there are no other references
1535 * to it. And as a side-effect, free up its swap: because the old content
1536 * on disk will never be read, and seeking back there to write new content
1537 * later would only waste time away from clustering.
6d0a07ed 1538 *
ba3c4ce6 1539 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1540 * reuse_swap_page() returns false, but it may be always overwritten
1541 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1542 */
ba3c4ce6 1543bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1544{
ba3c4ce6 1545 int count, total_mapcount, total_swapcount;
c475a8ab 1546
309381fe 1547 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1548 if (unlikely(PageKsm(page)))
6d0a07ed 1549 return false;
ba3c4ce6
HY
1550 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1551 &total_swapcount);
1552 if (total_map_swapcount)
1553 *total_map_swapcount = total_mapcount + total_swapcount;
1554 if (count == 1 && PageSwapCache(page) &&
1555 (likely(!PageTransCompound(page)) ||
1556 /* The remaining swap count will be freed soon */
1557 total_swapcount == page_swapcount(page))) {
f0571429 1558 if (!PageWriteback(page)) {
ba3c4ce6 1559 page = compound_head(page);
7b1fe597
HD
1560 delete_from_swap_cache(page);
1561 SetPageDirty(page);
f0571429
MK
1562 } else {
1563 swp_entry_t entry;
1564 struct swap_info_struct *p;
1565
1566 entry.val = page_private(page);
1567 p = swap_info_get(entry);
1568 if (p->flags & SWP_STABLE_WRITES) {
1569 spin_unlock(&p->lock);
1570 return false;
1571 }
1572 spin_unlock(&p->lock);
7b1fe597
HD
1573 }
1574 }
ba3c4ce6 1575
5ad64688 1576 return count <= 1;
1da177e4
LT
1577}
1578
1579/*
a2c43eed
HD
1580 * If swap is getting full, or if there are no more mappings of this page,
1581 * then try_to_free_swap is called to free its swap space.
1da177e4 1582 */
a2c43eed 1583int try_to_free_swap(struct page *page)
1da177e4 1584{
309381fe 1585 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1586
1587 if (!PageSwapCache(page))
1588 return 0;
1589 if (PageWriteback(page))
1590 return 0;
e0709829 1591 if (page_swapped(page))
1da177e4
LT
1592 return 0;
1593
b73d7fce
HD
1594 /*
1595 * Once hibernation has begun to create its image of memory,
1596 * there's a danger that one of the calls to try_to_free_swap()
1597 * - most probably a call from __try_to_reclaim_swap() while
1598 * hibernation is allocating its own swap pages for the image,
1599 * but conceivably even a call from memory reclaim - will free
1600 * the swap from a page which has already been recorded in the
1601 * image as a clean swapcache page, and then reuse its swap for
1602 * another page of the image. On waking from hibernation, the
1603 * original page might be freed under memory pressure, then
1604 * later read back in from swap, now with the wrong data.
1605 *
2de1a7e4 1606 * Hibernation suspends storage while it is writing the image
f90ac398 1607 * to disk so check that here.
b73d7fce 1608 */
f90ac398 1609 if (pm_suspended_storage())
b73d7fce
HD
1610 return 0;
1611
e0709829 1612 page = compound_head(page);
a2c43eed
HD
1613 delete_from_swap_cache(page);
1614 SetPageDirty(page);
1615 return 1;
68a22394
RR
1616}
1617
1da177e4
LT
1618/*
1619 * Free the swap entry like above, but also try to
1620 * free the page cache entry if it is the last user.
1621 */
2509ef26 1622int free_swap_and_cache(swp_entry_t entry)
1da177e4 1623{
2509ef26 1624 struct swap_info_struct *p;
1da177e4 1625 struct page *page = NULL;
7c00bafe 1626 unsigned char count;
1da177e4 1627
a7420aa5 1628 if (non_swap_entry(entry))
2509ef26 1629 return 1;
0697212a 1630
7c00bafe 1631 p = _swap_info_get(entry);
1da177e4 1632 if (p) {
7c00bafe 1633 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1634 if (count == SWAP_HAS_CACHE &&
1635 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1636 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1637 swp_offset(entry));
8413ac9d 1638 if (page && !trylock_page(page)) {
09cbfeaf 1639 put_page(page);
93fac704
NP
1640 page = NULL;
1641 }
7c00bafe 1642 } else if (!count)
67afa38e 1643 free_swap_slot(entry);
1da177e4
LT
1644 }
1645 if (page) {
a2c43eed
HD
1646 /*
1647 * Not mapped elsewhere, or swap space full? Free it!
1648 * Also recheck PageSwapCache now page is locked (above).
1649 */
93fac704 1650 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1651 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1652 !swap_page_trans_huge_swapped(p, entry)) {
1653 page = compound_head(page);
1da177e4
LT
1654 delete_from_swap_cache(page);
1655 SetPageDirty(page);
1656 }
1657 unlock_page(page);
09cbfeaf 1658 put_page(page);
1da177e4 1659 }
2509ef26 1660 return p != NULL;
1da177e4
LT
1661}
1662
b0cb1a19 1663#ifdef CONFIG_HIBERNATION
f577eb30 1664/*
915bae9e 1665 * Find the swap type that corresponds to given device (if any).
f577eb30 1666 *
915bae9e
RW
1667 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1668 * from 0, in which the swap header is expected to be located.
1669 *
1670 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1671 */
7bf23687 1672int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1673{
915bae9e 1674 struct block_device *bdev = NULL;
efa90a98 1675 int type;
f577eb30 1676
915bae9e
RW
1677 if (device)
1678 bdev = bdget(device);
1679
f577eb30 1680 spin_lock(&swap_lock);
efa90a98
HD
1681 for (type = 0; type < nr_swapfiles; type++) {
1682 struct swap_info_struct *sis = swap_info[type];
f577eb30 1683
915bae9e 1684 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1685 continue;
b6b5bce3 1686
915bae9e 1687 if (!bdev) {
7bf23687 1688 if (bdev_p)
dddac6a7 1689 *bdev_p = bdgrab(sis->bdev);
7bf23687 1690
6e1819d6 1691 spin_unlock(&swap_lock);
efa90a98 1692 return type;
6e1819d6 1693 }
915bae9e 1694 if (bdev == sis->bdev) {
9625a5f2 1695 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1696
915bae9e 1697 if (se->start_block == offset) {
7bf23687 1698 if (bdev_p)
dddac6a7 1699 *bdev_p = bdgrab(sis->bdev);
7bf23687 1700
915bae9e
RW
1701 spin_unlock(&swap_lock);
1702 bdput(bdev);
efa90a98 1703 return type;
915bae9e 1704 }
f577eb30
RW
1705 }
1706 }
1707 spin_unlock(&swap_lock);
915bae9e
RW
1708 if (bdev)
1709 bdput(bdev);
1710
f577eb30
RW
1711 return -ENODEV;
1712}
1713
73c34b6a
HD
1714/*
1715 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1716 * corresponding to given index in swap_info (swap type).
1717 */
1718sector_t swapdev_block(int type, pgoff_t offset)
1719{
1720 struct block_device *bdev;
1721
1722 if ((unsigned int)type >= nr_swapfiles)
1723 return 0;
1724 if (!(swap_info[type]->flags & SWP_WRITEOK))
1725 return 0;
d4906e1a 1726 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1727}
1728
f577eb30
RW
1729/*
1730 * Return either the total number of swap pages of given type, or the number
1731 * of free pages of that type (depending on @free)
1732 *
1733 * This is needed for software suspend
1734 */
1735unsigned int count_swap_pages(int type, int free)
1736{
1737 unsigned int n = 0;
1738
efa90a98
HD
1739 spin_lock(&swap_lock);
1740 if ((unsigned int)type < nr_swapfiles) {
1741 struct swap_info_struct *sis = swap_info[type];
1742
ec8acf20 1743 spin_lock(&sis->lock);
efa90a98
HD
1744 if (sis->flags & SWP_WRITEOK) {
1745 n = sis->pages;
f577eb30 1746 if (free)
efa90a98 1747 n -= sis->inuse_pages;
f577eb30 1748 }
ec8acf20 1749 spin_unlock(&sis->lock);
f577eb30 1750 }
efa90a98 1751 spin_unlock(&swap_lock);
f577eb30
RW
1752 return n;
1753}
73c34b6a 1754#endif /* CONFIG_HIBERNATION */
f577eb30 1755
9f8bdb3f 1756static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1757{
9f8bdb3f 1758 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1759}
1760
1da177e4 1761/*
72866f6f
HD
1762 * No need to decide whether this PTE shares the swap entry with others,
1763 * just let do_wp_page work it out if a write is requested later - to
1764 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1765 */
044d66c1 1766static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1767 unsigned long addr, swp_entry_t entry, struct page *page)
1768{
9e16b7fb 1769 struct page *swapcache;
72835c86 1770 struct mem_cgroup *memcg;
044d66c1
HD
1771 spinlock_t *ptl;
1772 pte_t *pte;
1773 int ret = 1;
1774
9e16b7fb
HD
1775 swapcache = page;
1776 page = ksm_might_need_to_copy(page, vma, addr);
1777 if (unlikely(!page))
1778 return -ENOMEM;
1779
f627c2f5
KS
1780 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1781 &memcg, false)) {
044d66c1 1782 ret = -ENOMEM;
85d9fc89
KH
1783 goto out_nolock;
1784 }
044d66c1
HD
1785
1786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1787 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1788 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1789 ret = 0;
1790 goto out;
1791 }
8a9f3ccd 1792
b084d435 1793 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1794 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1795 get_page(page);
1796 set_pte_at(vma->vm_mm, addr, pte,
1797 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1798 if (page == swapcache) {
d281ee61 1799 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1800 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1801 } else { /* ksm created a completely new copy */
d281ee61 1802 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1803 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1804 lru_cache_add_active_or_unevictable(page, vma);
1805 }
1da177e4
LT
1806 swap_free(entry);
1807 /*
1808 * Move the page to the active list so it is not
1809 * immediately swapped out again after swapon.
1810 */
1811 activate_page(page);
044d66c1
HD
1812out:
1813 pte_unmap_unlock(pte, ptl);
85d9fc89 1814out_nolock:
9e16b7fb
HD
1815 if (page != swapcache) {
1816 unlock_page(page);
1817 put_page(page);
1818 }
044d66c1 1819 return ret;
1da177e4
LT
1820}
1821
1822static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1823 unsigned long addr, unsigned long end,
1824 swp_entry_t entry, struct page *page)
1825{
1da177e4 1826 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1827 pte_t *pte;
8a9f3ccd 1828 int ret = 0;
1da177e4 1829
044d66c1
HD
1830 /*
1831 * We don't actually need pte lock while scanning for swp_pte: since
1832 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1833 * page table while we're scanning; though it could get zapped, and on
1834 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1835 * of unmatched parts which look like swp_pte, so unuse_pte must
1836 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1837 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1838 */
1839 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1840 do {
1841 /*
1842 * swapoff spends a _lot_ of time in this loop!
1843 * Test inline before going to call unuse_pte.
1844 */
9f8bdb3f 1845 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1846 pte_unmap(pte);
1847 ret = unuse_pte(vma, pmd, addr, entry, page);
1848 if (ret)
1849 goto out;
1850 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1851 }
1852 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1853 pte_unmap(pte - 1);
1854out:
8a9f3ccd 1855 return ret;
1da177e4
LT
1856}
1857
1858static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1859 unsigned long addr, unsigned long end,
1860 swp_entry_t entry, struct page *page)
1861{
1862 pmd_t *pmd;
1863 unsigned long next;
8a9f3ccd 1864 int ret;
1da177e4
LT
1865
1866 pmd = pmd_offset(pud, addr);
1867 do {
dc644a07 1868 cond_resched();
1da177e4 1869 next = pmd_addr_end(addr, end);
1a5a9906 1870 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1871 continue;
8a9f3ccd
BS
1872 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1873 if (ret)
1874 return ret;
1da177e4
LT
1875 } while (pmd++, addr = next, addr != end);
1876 return 0;
1877}
1878
c2febafc 1879static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1880 unsigned long addr, unsigned long end,
1881 swp_entry_t entry, struct page *page)
1882{
1883 pud_t *pud;
1884 unsigned long next;
8a9f3ccd 1885 int ret;
1da177e4 1886
c2febafc 1887 pud = pud_offset(p4d, addr);
1da177e4
LT
1888 do {
1889 next = pud_addr_end(addr, end);
1890 if (pud_none_or_clear_bad(pud))
1891 continue;
8a9f3ccd
BS
1892 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1893 if (ret)
1894 return ret;
1da177e4
LT
1895 } while (pud++, addr = next, addr != end);
1896 return 0;
1897}
1898
c2febafc
KS
1899static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1900 unsigned long addr, unsigned long end,
1901 swp_entry_t entry, struct page *page)
1902{
1903 p4d_t *p4d;
1904 unsigned long next;
1905 int ret;
1906
1907 p4d = p4d_offset(pgd, addr);
1908 do {
1909 next = p4d_addr_end(addr, end);
1910 if (p4d_none_or_clear_bad(p4d))
1911 continue;
1912 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1913 if (ret)
1914 return ret;
1915 } while (p4d++, addr = next, addr != end);
1916 return 0;
1917}
1918
1da177e4
LT
1919static int unuse_vma(struct vm_area_struct *vma,
1920 swp_entry_t entry, struct page *page)
1921{
1922 pgd_t *pgd;
1923 unsigned long addr, end, next;
8a9f3ccd 1924 int ret;
1da177e4 1925
3ca7b3c5 1926 if (page_anon_vma(page)) {
1da177e4
LT
1927 addr = page_address_in_vma(page, vma);
1928 if (addr == -EFAULT)
1929 return 0;
1930 else
1931 end = addr + PAGE_SIZE;
1932 } else {
1933 addr = vma->vm_start;
1934 end = vma->vm_end;
1935 }
1936
1937 pgd = pgd_offset(vma->vm_mm, addr);
1938 do {
1939 next = pgd_addr_end(addr, end);
1940 if (pgd_none_or_clear_bad(pgd))
1941 continue;
c2febafc 1942 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1943 if (ret)
1944 return ret;
1da177e4
LT
1945 } while (pgd++, addr = next, addr != end);
1946 return 0;
1947}
1948
1949static int unuse_mm(struct mm_struct *mm,
1950 swp_entry_t entry, struct page *page)
1951{
1952 struct vm_area_struct *vma;
8a9f3ccd 1953 int ret = 0;
1da177e4
LT
1954
1955 if (!down_read_trylock(&mm->mmap_sem)) {
1956 /*
7d03431c
FLVC
1957 * Activate page so shrink_inactive_list is unlikely to unmap
1958 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1959 */
c475a8ab 1960 activate_page(page);
1da177e4
LT
1961 unlock_page(page);
1962 down_read(&mm->mmap_sem);
1963 lock_page(page);
1964 }
1da177e4 1965 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1966 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1967 break;
dc644a07 1968 cond_resched();
1da177e4 1969 }
1da177e4 1970 up_read(&mm->mmap_sem);
8a9f3ccd 1971 return (ret < 0)? ret: 0;
1da177e4
LT
1972}
1973
1974/*
38b5faf4
DM
1975 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1976 * from current position to next entry still in use.
1da177e4
LT
1977 * Recycle to start on reaching the end, returning 0 when empty.
1978 */
6eb396dc 1979static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1980 unsigned int prev, bool frontswap)
1da177e4 1981{
6eb396dc
HD
1982 unsigned int max = si->max;
1983 unsigned int i = prev;
8d69aaee 1984 unsigned char count;
1da177e4
LT
1985
1986 /*
5d337b91 1987 * No need for swap_lock here: we're just looking
1da177e4
LT
1988 * for whether an entry is in use, not modifying it; false
1989 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1990 * allocations from this area (while holding swap_lock).
1da177e4
LT
1991 */
1992 for (;;) {
1993 if (++i >= max) {
1994 if (!prev) {
1995 i = 0;
1996 break;
1997 }
1998 /*
1999 * No entries in use at top of swap_map,
2000 * loop back to start and recheck there.
2001 */
2002 max = prev + 1;
2003 prev = 0;
2004 i = 1;
2005 }
4db0c3c2 2006 count = READ_ONCE(si->swap_map[i]);
355cfa73 2007 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2008 if (!frontswap || frontswap_test(si, i))
2009 break;
2010 if ((i % LATENCY_LIMIT) == 0)
2011 cond_resched();
1da177e4
LT
2012 }
2013 return i;
2014}
2015
2016/*
2017 * We completely avoid races by reading each swap page in advance,
2018 * and then search for the process using it. All the necessary
2019 * page table adjustments can then be made atomically.
38b5faf4
DM
2020 *
2021 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2022 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2023 */
38b5faf4
DM
2024int try_to_unuse(unsigned int type, bool frontswap,
2025 unsigned long pages_to_unuse)
1da177e4 2026{
efa90a98 2027 struct swap_info_struct *si = swap_info[type];
1da177e4 2028 struct mm_struct *start_mm;
edfe23da
SL
2029 volatile unsigned char *swap_map; /* swap_map is accessed without
2030 * locking. Mark it as volatile
2031 * to prevent compiler doing
2032 * something odd.
2033 */
8d69aaee 2034 unsigned char swcount;
1da177e4
LT
2035 struct page *page;
2036 swp_entry_t entry;
6eb396dc 2037 unsigned int i = 0;
1da177e4 2038 int retval = 0;
1da177e4
LT
2039
2040 /*
2041 * When searching mms for an entry, a good strategy is to
2042 * start at the first mm we freed the previous entry from
2043 * (though actually we don't notice whether we or coincidence
2044 * freed the entry). Initialize this start_mm with a hold.
2045 *
2046 * A simpler strategy would be to start at the last mm we
2047 * freed the previous entry from; but that would take less
2048 * advantage of mmlist ordering, which clusters forked mms
2049 * together, child after parent. If we race with dup_mmap(), we
2050 * prefer to resolve parent before child, lest we miss entries
2051 * duplicated after we scanned child: using last mm would invert
570a335b 2052 * that.
1da177e4
LT
2053 */
2054 start_mm = &init_mm;
3fce371b 2055 mmget(&init_mm);
1da177e4
LT
2056
2057 /*
2058 * Keep on scanning until all entries have gone. Usually,
2059 * one pass through swap_map is enough, but not necessarily:
2060 * there are races when an instance of an entry might be missed.
2061 */
38b5faf4 2062 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2063 if (signal_pending(current)) {
2064 retval = -EINTR;
2065 break;
2066 }
2067
886bb7e9 2068 /*
1da177e4
LT
2069 * Get a page for the entry, using the existing swap
2070 * cache page if there is one. Otherwise, get a clean
886bb7e9 2071 * page and read the swap into it.
1da177e4
LT
2072 */
2073 swap_map = &si->swap_map[i];
2074 entry = swp_entry(type, i);
02098fea 2075 page = read_swap_cache_async(entry,
23955622 2076 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2077 if (!page) {
2078 /*
2079 * Either swap_duplicate() failed because entry
2080 * has been freed independently, and will not be
2081 * reused since sys_swapoff() already disabled
2082 * allocation from here, or alloc_page() failed.
2083 */
edfe23da
SL
2084 swcount = *swap_map;
2085 /*
2086 * We don't hold lock here, so the swap entry could be
2087 * SWAP_MAP_BAD (when the cluster is discarding).
2088 * Instead of fail out, We can just skip the swap
2089 * entry because swapoff will wait for discarding
2090 * finish anyway.
2091 */
2092 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2093 continue;
2094 retval = -ENOMEM;
2095 break;
2096 }
2097
2098 /*
2099 * Don't hold on to start_mm if it looks like exiting.
2100 */
2101 if (atomic_read(&start_mm->mm_users) == 1) {
2102 mmput(start_mm);
2103 start_mm = &init_mm;
3fce371b 2104 mmget(&init_mm);
1da177e4
LT
2105 }
2106
2107 /*
2108 * Wait for and lock page. When do_swap_page races with
2109 * try_to_unuse, do_swap_page can handle the fault much
2110 * faster than try_to_unuse can locate the entry. This
2111 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2112 * defer to do_swap_page in such a case - in some tests,
2113 * do_swap_page and try_to_unuse repeatedly compete.
2114 */
2115 wait_on_page_locked(page);
2116 wait_on_page_writeback(page);
2117 lock_page(page);
2118 wait_on_page_writeback(page);
2119
2120 /*
2121 * Remove all references to entry.
1da177e4 2122 */
1da177e4 2123 swcount = *swap_map;
aaa46865
HD
2124 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2125 retval = shmem_unuse(entry, page);
2126 /* page has already been unlocked and released */
2127 if (retval < 0)
2128 break;
2129 continue;
1da177e4 2130 }
aaa46865
HD
2131 if (swap_count(swcount) && start_mm != &init_mm)
2132 retval = unuse_mm(start_mm, entry, page);
2133
355cfa73 2134 if (swap_count(*swap_map)) {
1da177e4
LT
2135 int set_start_mm = (*swap_map >= swcount);
2136 struct list_head *p = &start_mm->mmlist;
2137 struct mm_struct *new_start_mm = start_mm;
2138 struct mm_struct *prev_mm = start_mm;
2139 struct mm_struct *mm;
2140
3fce371b
VN
2141 mmget(new_start_mm);
2142 mmget(prev_mm);
1da177e4 2143 spin_lock(&mmlist_lock);
aaa46865 2144 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2145 (p = p->next) != &start_mm->mmlist) {
2146 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2147 if (!mmget_not_zero(mm))
1da177e4 2148 continue;
1da177e4
LT
2149 spin_unlock(&mmlist_lock);
2150 mmput(prev_mm);
2151 prev_mm = mm;
2152
2153 cond_resched();
2154
2155 swcount = *swap_map;
355cfa73 2156 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2157 ;
aaa46865 2158 else if (mm == &init_mm)
1da177e4 2159 set_start_mm = 1;
aaa46865 2160 else
1da177e4 2161 retval = unuse_mm(mm, entry, page);
355cfa73 2162
32c5fc10 2163 if (set_start_mm && *swap_map < swcount) {
1da177e4 2164 mmput(new_start_mm);
3fce371b 2165 mmget(mm);
1da177e4
LT
2166 new_start_mm = mm;
2167 set_start_mm = 0;
2168 }
2169 spin_lock(&mmlist_lock);
2170 }
2171 spin_unlock(&mmlist_lock);
2172 mmput(prev_mm);
2173 mmput(start_mm);
2174 start_mm = new_start_mm;
2175 }
2176 if (retval) {
2177 unlock_page(page);
09cbfeaf 2178 put_page(page);
1da177e4
LT
2179 break;
2180 }
2181
1da177e4
LT
2182 /*
2183 * If a reference remains (rare), we would like to leave
2184 * the page in the swap cache; but try_to_unmap could
2185 * then re-duplicate the entry once we drop page lock,
2186 * so we might loop indefinitely; also, that page could
2187 * not be swapped out to other storage meanwhile. So:
2188 * delete from cache even if there's another reference,
2189 * after ensuring that the data has been saved to disk -
2190 * since if the reference remains (rarer), it will be
2191 * read from disk into another page. Splitting into two
2192 * pages would be incorrect if swap supported "shared
2193 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2194 *
2195 * Given how unuse_vma() targets one particular offset
2196 * in an anon_vma, once the anon_vma has been determined,
2197 * this splitting happens to be just what is needed to
2198 * handle where KSM pages have been swapped out: re-reading
2199 * is unnecessarily slow, but we can fix that later on.
1da177e4 2200 */
355cfa73
KH
2201 if (swap_count(*swap_map) &&
2202 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2203 struct writeback_control wbc = {
2204 .sync_mode = WB_SYNC_NONE,
2205 };
2206
e0709829 2207 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2208 lock_page(page);
2209 wait_on_page_writeback(page);
2210 }
68bdc8d6
HD
2211
2212 /*
2213 * It is conceivable that a racing task removed this page from
2214 * swap cache just before we acquired the page lock at the top,
2215 * or while we dropped it in unuse_mm(). The page might even
2216 * be back in swap cache on another swap area: that we must not
2217 * delete, since it may not have been written out to swap yet.
2218 */
2219 if (PageSwapCache(page) &&
e0709829 2220 likely(page_private(page) == entry.val) &&
89b03877
HY
2221 (!PageTransCompound(page) ||
2222 !swap_page_trans_huge_swapped(si, entry)))
e0709829 2223 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2224
2225 /*
2226 * So we could skip searching mms once swap count went
2227 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2228 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2229 */
2230 SetPageDirty(page);
2231 unlock_page(page);
09cbfeaf 2232 put_page(page);
1da177e4
LT
2233
2234 /*
2235 * Make sure that we aren't completely killing
2236 * interactive performance.
2237 */
2238 cond_resched();
38b5faf4
DM
2239 if (frontswap && pages_to_unuse > 0) {
2240 if (!--pages_to_unuse)
2241 break;
2242 }
1da177e4
LT
2243 }
2244
2245 mmput(start_mm);
1da177e4
LT
2246 return retval;
2247}
2248
2249/*
5d337b91
HD
2250 * After a successful try_to_unuse, if no swap is now in use, we know
2251 * we can empty the mmlist. swap_lock must be held on entry and exit.
2252 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2253 * added to the mmlist just after page_duplicate - before would be racy.
2254 */
2255static void drain_mmlist(void)
2256{
2257 struct list_head *p, *next;
efa90a98 2258 unsigned int type;
1da177e4 2259
efa90a98
HD
2260 for (type = 0; type < nr_swapfiles; type++)
2261 if (swap_info[type]->inuse_pages)
1da177e4
LT
2262 return;
2263 spin_lock(&mmlist_lock);
2264 list_for_each_safe(p, next, &init_mm.mmlist)
2265 list_del_init(p);
2266 spin_unlock(&mmlist_lock);
2267}
2268
2269/*
2270 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2271 * corresponds to page offset for the specified swap entry.
2272 * Note that the type of this function is sector_t, but it returns page offset
2273 * into the bdev, not sector offset.
1da177e4 2274 */
d4906e1a 2275static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2276{
f29ad6a9
HD
2277 struct swap_info_struct *sis;
2278 struct swap_extent *start_se;
2279 struct swap_extent *se;
2280 pgoff_t offset;
2281
efa90a98 2282 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2283 *bdev = sis->bdev;
2284
2285 offset = swp_offset(entry);
2286 start_se = sis->curr_swap_extent;
2287 se = start_se;
1da177e4
LT
2288
2289 for ( ; ; ) {
1da177e4
LT
2290 if (se->start_page <= offset &&
2291 offset < (se->start_page + se->nr_pages)) {
2292 return se->start_block + (offset - se->start_page);
2293 }
a8ae4991 2294 se = list_next_entry(se, list);
1da177e4
LT
2295 sis->curr_swap_extent = se;
2296 BUG_ON(se == start_se); /* It *must* be present */
2297 }
2298}
2299
d4906e1a
LS
2300/*
2301 * Returns the page offset into bdev for the specified page's swap entry.
2302 */
2303sector_t map_swap_page(struct page *page, struct block_device **bdev)
2304{
2305 swp_entry_t entry;
2306 entry.val = page_private(page);
2307 return map_swap_entry(entry, bdev);
2308}
2309
1da177e4
LT
2310/*
2311 * Free all of a swapdev's extent information
2312 */
2313static void destroy_swap_extents(struct swap_info_struct *sis)
2314{
9625a5f2 2315 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2316 struct swap_extent *se;
2317
a8ae4991 2318 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2319 struct swap_extent, list);
2320 list_del(&se->list);
2321 kfree(se);
2322 }
62c230bc
MG
2323
2324 if (sis->flags & SWP_FILE) {
2325 struct file *swap_file = sis->swap_file;
2326 struct address_space *mapping = swap_file->f_mapping;
2327
2328 sis->flags &= ~SWP_FILE;
2329 mapping->a_ops->swap_deactivate(swap_file);
2330 }
1da177e4
LT
2331}
2332
2333/*
2334 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2335 * extent list. The extent list is kept sorted in page order.
1da177e4 2336 *
11d31886 2337 * This function rather assumes that it is called in ascending page order.
1da177e4 2338 */
a509bc1a 2339int
1da177e4
LT
2340add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2341 unsigned long nr_pages, sector_t start_block)
2342{
2343 struct swap_extent *se;
2344 struct swap_extent *new_se;
2345 struct list_head *lh;
2346
9625a5f2
HD
2347 if (start_page == 0) {
2348 se = &sis->first_swap_extent;
2349 sis->curr_swap_extent = se;
2350 se->start_page = 0;
2351 se->nr_pages = nr_pages;
2352 se->start_block = start_block;
2353 return 1;
2354 } else {
2355 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2356 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2357 BUG_ON(se->start_page + se->nr_pages != start_page);
2358 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2359 /* Merge it */
2360 se->nr_pages += nr_pages;
2361 return 0;
2362 }
1da177e4
LT
2363 }
2364
2365 /*
2366 * No merge. Insert a new extent, preserving ordering.
2367 */
2368 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2369 if (new_se == NULL)
2370 return -ENOMEM;
2371 new_se->start_page = start_page;
2372 new_se->nr_pages = nr_pages;
2373 new_se->start_block = start_block;
2374
9625a5f2 2375 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2376 return 1;
1da177e4
LT
2377}
2378
2379/*
2380 * A `swap extent' is a simple thing which maps a contiguous range of pages
2381 * onto a contiguous range of disk blocks. An ordered list of swap extents
2382 * is built at swapon time and is then used at swap_writepage/swap_readpage
2383 * time for locating where on disk a page belongs.
2384 *
2385 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2387 * swap files identically.
2388 *
2389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2391 * swapfiles are handled *identically* after swapon time.
2392 *
2393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2396 * requirements, they are simply tossed out - we will never use those blocks
2397 * for swapping.
2398 *
b0d9bcd4 2399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2400 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2401 * which will scribble on the fs.
2402 *
2403 * The amount of disk space which a single swap extent represents varies.
2404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2405 * extents in the list. To avoid much list walking, we cache the previous
2406 * search location in `curr_swap_extent', and start new searches from there.
2407 * This is extremely effective. The average number of iterations in
2408 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2409 */
53092a74 2410static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2411{
62c230bc
MG
2412 struct file *swap_file = sis->swap_file;
2413 struct address_space *mapping = swap_file->f_mapping;
2414 struct inode *inode = mapping->host;
1da177e4
LT
2415 int ret;
2416
1da177e4
LT
2417 if (S_ISBLK(inode->i_mode)) {
2418 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2419 *span = sis->pages;
a509bc1a 2420 return ret;
1da177e4
LT
2421 }
2422
62c230bc 2423 if (mapping->a_ops->swap_activate) {
a509bc1a 2424 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2425 if (!ret) {
2426 sis->flags |= SWP_FILE;
2427 ret = add_swap_extent(sis, 0, sis->max, 0);
2428 *span = sis->pages;
2429 }
a509bc1a 2430 return ret;
62c230bc
MG
2431 }
2432
a509bc1a 2433 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2434}
2435
a2468cc9
AL
2436static int swap_node(struct swap_info_struct *p)
2437{
2438 struct block_device *bdev;
2439
2440 if (p->bdev)
2441 bdev = p->bdev;
2442 else
2443 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2444
2445 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2446}
2447
cf0cac0a 2448static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2449 unsigned char *swap_map,
2450 struct swap_cluster_info *cluster_info)
40531542 2451{
a2468cc9
AL
2452 int i;
2453
40531542
CEB
2454 if (prio >= 0)
2455 p->prio = prio;
2456 else
2457 p->prio = --least_priority;
18ab4d4c
DS
2458 /*
2459 * the plist prio is negated because plist ordering is
2460 * low-to-high, while swap ordering is high-to-low
2461 */
2462 p->list.prio = -p->prio;
a2468cc9
AL
2463 for_each_node(i) {
2464 if (p->prio >= 0)
2465 p->avail_lists[i].prio = -p->prio;
2466 else {
2467 if (swap_node(p) == i)
2468 p->avail_lists[i].prio = 1;
2469 else
2470 p->avail_lists[i].prio = -p->prio;
2471 }
2472 }
40531542 2473 p->swap_map = swap_map;
2a8f9449 2474 p->cluster_info = cluster_info;
40531542 2475 p->flags |= SWP_WRITEOK;
ec8acf20 2476 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2477 total_swap_pages += p->pages;
2478
adfab836 2479 assert_spin_locked(&swap_lock);
adfab836 2480 /*
18ab4d4c
DS
2481 * both lists are plists, and thus priority ordered.
2482 * swap_active_head needs to be priority ordered for swapoff(),
2483 * which on removal of any swap_info_struct with an auto-assigned
2484 * (i.e. negative) priority increments the auto-assigned priority
2485 * of any lower-priority swap_info_structs.
2486 * swap_avail_head needs to be priority ordered for get_swap_page(),
2487 * which allocates swap pages from the highest available priority
2488 * swap_info_struct.
adfab836 2489 */
18ab4d4c 2490 plist_add(&p->list, &swap_active_head);
a2468cc9 2491 add_to_avail_list(p);
cf0cac0a
CEB
2492}
2493
2494static void enable_swap_info(struct swap_info_struct *p, int prio,
2495 unsigned char *swap_map,
2a8f9449 2496 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2497 unsigned long *frontswap_map)
2498{
4f89849d 2499 frontswap_init(p->type, frontswap_map);
cf0cac0a 2500 spin_lock(&swap_lock);
ec8acf20 2501 spin_lock(&p->lock);
2a8f9449 2502 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2503 spin_unlock(&p->lock);
cf0cac0a
CEB
2504 spin_unlock(&swap_lock);
2505}
2506
2507static void reinsert_swap_info(struct swap_info_struct *p)
2508{
2509 spin_lock(&swap_lock);
ec8acf20 2510 spin_lock(&p->lock);
2a8f9449 2511 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2512 spin_unlock(&p->lock);
40531542
CEB
2513 spin_unlock(&swap_lock);
2514}
2515
67afa38e
TC
2516bool has_usable_swap(void)
2517{
2518 bool ret = true;
2519
2520 spin_lock(&swap_lock);
2521 if (plist_head_empty(&swap_active_head))
2522 ret = false;
2523 spin_unlock(&swap_lock);
2524 return ret;
2525}
2526
c4ea37c2 2527SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2528{
73c34b6a 2529 struct swap_info_struct *p = NULL;
8d69aaee 2530 unsigned char *swap_map;
2a8f9449 2531 struct swap_cluster_info *cluster_info;
4f89849d 2532 unsigned long *frontswap_map;
1da177e4
LT
2533 struct file *swap_file, *victim;
2534 struct address_space *mapping;
2535 struct inode *inode;
91a27b2a 2536 struct filename *pathname;
adfab836 2537 int err, found = 0;
5b808a23 2538 unsigned int old_block_size;
886bb7e9 2539
1da177e4
LT
2540 if (!capable(CAP_SYS_ADMIN))
2541 return -EPERM;
2542
191c5424
AV
2543 BUG_ON(!current->mm);
2544
1da177e4 2545 pathname = getname(specialfile);
1da177e4 2546 if (IS_ERR(pathname))
f58b59c1 2547 return PTR_ERR(pathname);
1da177e4 2548
669abf4e 2549 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2550 err = PTR_ERR(victim);
2551 if (IS_ERR(victim))
2552 goto out;
2553
2554 mapping = victim->f_mapping;
5d337b91 2555 spin_lock(&swap_lock);
18ab4d4c 2556 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2557 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2558 if (p->swap_file->f_mapping == mapping) {
2559 found = 1;
1da177e4 2560 break;
adfab836 2561 }
1da177e4 2562 }
1da177e4 2563 }
adfab836 2564 if (!found) {
1da177e4 2565 err = -EINVAL;
5d337b91 2566 spin_unlock(&swap_lock);
1da177e4
LT
2567 goto out_dput;
2568 }
191c5424 2569 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2570 vm_unacct_memory(p->pages);
2571 else {
2572 err = -ENOMEM;
5d337b91 2573 spin_unlock(&swap_lock);
1da177e4
LT
2574 goto out_dput;
2575 }
a2468cc9 2576 del_from_avail_list(p);
ec8acf20 2577 spin_lock(&p->lock);
78ecba08 2578 if (p->prio < 0) {
adfab836 2579 struct swap_info_struct *si = p;
a2468cc9 2580 int nid;
adfab836 2581
18ab4d4c 2582 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2583 si->prio++;
18ab4d4c 2584 si->list.prio--;
a2468cc9
AL
2585 for_each_node(nid) {
2586 if (si->avail_lists[nid].prio != 1)
2587 si->avail_lists[nid].prio--;
2588 }
adfab836 2589 }
78ecba08
HD
2590 least_priority++;
2591 }
18ab4d4c 2592 plist_del(&p->list, &swap_active_head);
ec8acf20 2593 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2594 total_swap_pages -= p->pages;
2595 p->flags &= ~SWP_WRITEOK;
ec8acf20 2596 spin_unlock(&p->lock);
5d337b91 2597 spin_unlock(&swap_lock);
fb4f88dc 2598
039939a6
TC
2599 disable_swap_slots_cache_lock();
2600
e1e12d2f 2601 set_current_oom_origin();
adfab836 2602 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2603 clear_current_oom_origin();
1da177e4 2604
1da177e4
LT
2605 if (err) {
2606 /* re-insert swap space back into swap_list */
cf0cac0a 2607 reinsert_swap_info(p);
039939a6 2608 reenable_swap_slots_cache_unlock();
1da177e4
LT
2609 goto out_dput;
2610 }
52b7efdb 2611
039939a6
TC
2612 reenable_swap_slots_cache_unlock();
2613
815c2c54
SL
2614 flush_work(&p->discard_work);
2615
5d337b91 2616 destroy_swap_extents(p);
570a335b
HD
2617 if (p->flags & SWP_CONTINUED)
2618 free_swap_count_continuations(p);
2619
81a0298b
HY
2620 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2621 atomic_dec(&nr_rotate_swap);
2622
fc0abb14 2623 mutex_lock(&swapon_mutex);
5d337b91 2624 spin_lock(&swap_lock);
ec8acf20 2625 spin_lock(&p->lock);
5d337b91
HD
2626 drain_mmlist();
2627
52b7efdb 2628 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2629 p->highest_bit = 0; /* cuts scans short */
2630 while (p->flags >= SWP_SCANNING) {
ec8acf20 2631 spin_unlock(&p->lock);
5d337b91 2632 spin_unlock(&swap_lock);
13e4b57f 2633 schedule_timeout_uninterruptible(1);
5d337b91 2634 spin_lock(&swap_lock);
ec8acf20 2635 spin_lock(&p->lock);
52b7efdb 2636 }
52b7efdb 2637
1da177e4 2638 swap_file = p->swap_file;
5b808a23 2639 old_block_size = p->old_block_size;
1da177e4
LT
2640 p->swap_file = NULL;
2641 p->max = 0;
2642 swap_map = p->swap_map;
2643 p->swap_map = NULL;
2a8f9449
SL
2644 cluster_info = p->cluster_info;
2645 p->cluster_info = NULL;
4f89849d 2646 frontswap_map = frontswap_map_get(p);
ec8acf20 2647 spin_unlock(&p->lock);
5d337b91 2648 spin_unlock(&swap_lock);
adfab836 2649 frontswap_invalidate_area(p->type);
58e97ba6 2650 frontswap_map_set(p, NULL);
fc0abb14 2651 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2652 free_percpu(p->percpu_cluster);
2653 p->percpu_cluster = NULL;
1da177e4 2654 vfree(swap_map);
54f180d3
HY
2655 kvfree(cluster_info);
2656 kvfree(frontswap_map);
2de1a7e4 2657 /* Destroy swap account information */
adfab836 2658 swap_cgroup_swapoff(p->type);
4b3ef9da 2659 exit_swap_address_space(p->type);
27a7faa0 2660
1da177e4
LT
2661 inode = mapping->host;
2662 if (S_ISBLK(inode->i_mode)) {
2663 struct block_device *bdev = I_BDEV(inode);
5b808a23 2664 set_blocksize(bdev, old_block_size);
e525fd89 2665 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2666 } else {
5955102c 2667 inode_lock(inode);
1da177e4 2668 inode->i_flags &= ~S_SWAPFILE;
5955102c 2669 inode_unlock(inode);
1da177e4
LT
2670 }
2671 filp_close(swap_file, NULL);
f893ab41
WY
2672
2673 /*
2674 * Clear the SWP_USED flag after all resources are freed so that swapon
2675 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2676 * not hold p->lock after we cleared its SWP_WRITEOK.
2677 */
2678 spin_lock(&swap_lock);
2679 p->flags = 0;
2680 spin_unlock(&swap_lock);
2681
1da177e4 2682 err = 0;
66d7dd51
KS
2683 atomic_inc(&proc_poll_event);
2684 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2685
2686out_dput:
2687 filp_close(victim, NULL);
2688out:
f58b59c1 2689 putname(pathname);
1da177e4
LT
2690 return err;
2691}
2692
2693#ifdef CONFIG_PROC_FS
66d7dd51
KS
2694static unsigned swaps_poll(struct file *file, poll_table *wait)
2695{
f1514638 2696 struct seq_file *seq = file->private_data;
66d7dd51
KS
2697
2698 poll_wait(file, &proc_poll_wait, wait);
2699
f1514638
KS
2700 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2701 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2702 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2703 }
2704
2705 return POLLIN | POLLRDNORM;
2706}
2707
1da177e4
LT
2708/* iterator */
2709static void *swap_start(struct seq_file *swap, loff_t *pos)
2710{
efa90a98
HD
2711 struct swap_info_struct *si;
2712 int type;
1da177e4
LT
2713 loff_t l = *pos;
2714
fc0abb14 2715 mutex_lock(&swapon_mutex);
1da177e4 2716
881e4aab
SS
2717 if (!l)
2718 return SEQ_START_TOKEN;
2719
efa90a98
HD
2720 for (type = 0; type < nr_swapfiles; type++) {
2721 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2722 si = swap_info[type];
2723 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2724 continue;
881e4aab 2725 if (!--l)
efa90a98 2726 return si;
1da177e4
LT
2727 }
2728
2729 return NULL;
2730}
2731
2732static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2733{
efa90a98
HD
2734 struct swap_info_struct *si = v;
2735 int type;
1da177e4 2736
881e4aab 2737 if (v == SEQ_START_TOKEN)
efa90a98
HD
2738 type = 0;
2739 else
2740 type = si->type + 1;
881e4aab 2741
efa90a98
HD
2742 for (; type < nr_swapfiles; type++) {
2743 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2744 si = swap_info[type];
2745 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2746 continue;
2747 ++*pos;
efa90a98 2748 return si;
1da177e4
LT
2749 }
2750
2751 return NULL;
2752}
2753
2754static void swap_stop(struct seq_file *swap, void *v)
2755{
fc0abb14 2756 mutex_unlock(&swapon_mutex);
1da177e4
LT
2757}
2758
2759static int swap_show(struct seq_file *swap, void *v)
2760{
efa90a98 2761 struct swap_info_struct *si = v;
1da177e4
LT
2762 struct file *file;
2763 int len;
2764
efa90a98 2765 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2766 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2767 return 0;
2768 }
1da177e4 2769
efa90a98 2770 file = si->swap_file;
2726d566 2771 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2772 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2773 len < 40 ? 40 - len : 1, " ",
496ad9aa 2774 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2775 "partition" : "file\t",
efa90a98
HD
2776 si->pages << (PAGE_SHIFT - 10),
2777 si->inuse_pages << (PAGE_SHIFT - 10),
2778 si->prio);
1da177e4
LT
2779 return 0;
2780}
2781
15ad7cdc 2782static const struct seq_operations swaps_op = {
1da177e4
LT
2783 .start = swap_start,
2784 .next = swap_next,
2785 .stop = swap_stop,
2786 .show = swap_show
2787};
2788
2789static int swaps_open(struct inode *inode, struct file *file)
2790{
f1514638 2791 struct seq_file *seq;
66d7dd51
KS
2792 int ret;
2793
66d7dd51 2794 ret = seq_open(file, &swaps_op);
f1514638 2795 if (ret)
66d7dd51 2796 return ret;
66d7dd51 2797
f1514638
KS
2798 seq = file->private_data;
2799 seq->poll_event = atomic_read(&proc_poll_event);
2800 return 0;
1da177e4
LT
2801}
2802
15ad7cdc 2803static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2804 .open = swaps_open,
2805 .read = seq_read,
2806 .llseek = seq_lseek,
2807 .release = seq_release,
66d7dd51 2808 .poll = swaps_poll,
1da177e4
LT
2809};
2810
2811static int __init procswaps_init(void)
2812{
3d71f86f 2813 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2814 return 0;
2815}
2816__initcall(procswaps_init);
2817#endif /* CONFIG_PROC_FS */
2818
1796316a
JB
2819#ifdef MAX_SWAPFILES_CHECK
2820static int __init max_swapfiles_check(void)
2821{
2822 MAX_SWAPFILES_CHECK();
2823 return 0;
2824}
2825late_initcall(max_swapfiles_check);
2826#endif
2827
53cbb243 2828static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2829{
73c34b6a 2830 struct swap_info_struct *p;
1da177e4 2831 unsigned int type;
a2468cc9 2832 int i;
efa90a98 2833
d8569925 2834 p = kvzalloc(sizeof(*p), GFP_KERNEL);
efa90a98 2835 if (!p)
53cbb243 2836 return ERR_PTR(-ENOMEM);
efa90a98 2837
5d337b91 2838 spin_lock(&swap_lock);
efa90a98
HD
2839 for (type = 0; type < nr_swapfiles; type++) {
2840 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2841 break;
efa90a98 2842 }
0697212a 2843 if (type >= MAX_SWAPFILES) {
5d337b91 2844 spin_unlock(&swap_lock);
d8569925 2845 kvfree(p);
730c0581 2846 return ERR_PTR(-EPERM);
1da177e4 2847 }
efa90a98
HD
2848 if (type >= nr_swapfiles) {
2849 p->type = type;
2850 swap_info[type] = p;
2851 /*
2852 * Write swap_info[type] before nr_swapfiles, in case a
2853 * racing procfs swap_start() or swap_next() is reading them.
2854 * (We never shrink nr_swapfiles, we never free this entry.)
2855 */
2856 smp_wmb();
2857 nr_swapfiles++;
2858 } else {
d8569925 2859 kvfree(p);
efa90a98
HD
2860 p = swap_info[type];
2861 /*
2862 * Do not memset this entry: a racing procfs swap_next()
2863 * would be relying on p->type to remain valid.
2864 */
2865 }
9625a5f2 2866 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c 2867 plist_node_init(&p->list, 0);
a2468cc9
AL
2868 for_each_node(i)
2869 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2870 p->flags = SWP_USED;
5d337b91 2871 spin_unlock(&swap_lock);
ec8acf20 2872 spin_lock_init(&p->lock);
2628bd6f 2873 spin_lock_init(&p->cont_lock);
efa90a98 2874
53cbb243 2875 return p;
53cbb243
CEB
2876}
2877
4d0e1e10
CEB
2878static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2879{
2880 int error;
2881
2882 if (S_ISBLK(inode->i_mode)) {
2883 p->bdev = bdgrab(I_BDEV(inode));
2884 error = blkdev_get(p->bdev,
6f179af8 2885 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2886 if (error < 0) {
2887 p->bdev = NULL;
6f179af8 2888 return error;
4d0e1e10
CEB
2889 }
2890 p->old_block_size = block_size(p->bdev);
2891 error = set_blocksize(p->bdev, PAGE_SIZE);
2892 if (error < 0)
87ade72a 2893 return error;
4d0e1e10
CEB
2894 p->flags |= SWP_BLKDEV;
2895 } else if (S_ISREG(inode->i_mode)) {
2896 p->bdev = inode->i_sb->s_bdev;
5955102c 2897 inode_lock(inode);
87ade72a
CEB
2898 if (IS_SWAPFILE(inode))
2899 return -EBUSY;
2900 } else
2901 return -EINVAL;
4d0e1e10
CEB
2902
2903 return 0;
4d0e1e10
CEB
2904}
2905
4bb1a8d8
AK
2906
2907/*
2908 * Find out how many pages are allowed for a single swap device. There
2909 * are two limiting factors:
2910 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2911 * 2) the number of bits in the swap pte, as defined by the different
2912 * architectures.
2913 *
2914 * In order to find the largest possible bit mask, a swap entry with
2915 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2916 * decoded to a swp_entry_t again, and finally the swap offset is
2917 * extracted.
2918 *
2919 * This will mask all the bits from the initial ~0UL mask that can't
2920 * be encoded in either the swp_entry_t or the architecture definition
2921 * of a swap pte.
2922 */
2923unsigned long generic_max_swapfile_size(void)
2924{
2925 return swp_offset(pte_to_swp_entry(
2926 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2927}
2928
2929/* Can be overridden by an architecture for additional checks. */
2930__weak unsigned long max_swapfile_size(void)
2931{
2932 return generic_max_swapfile_size();
2933}
2934
ca8bd38b
CEB
2935static unsigned long read_swap_header(struct swap_info_struct *p,
2936 union swap_header *swap_header,
2937 struct inode *inode)
2938{
2939 int i;
2940 unsigned long maxpages;
2941 unsigned long swapfilepages;
d6bbbd29 2942 unsigned long last_page;
ca8bd38b
CEB
2943
2944 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2945 pr_err("Unable to find swap-space signature\n");
38719025 2946 return 0;
ca8bd38b
CEB
2947 }
2948
2949 /* swap partition endianess hack... */
2950 if (swab32(swap_header->info.version) == 1) {
2951 swab32s(&swap_header->info.version);
2952 swab32s(&swap_header->info.last_page);
2953 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2954 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2955 return 0;
ca8bd38b
CEB
2956 for (i = 0; i < swap_header->info.nr_badpages; i++)
2957 swab32s(&swap_header->info.badpages[i]);
2958 }
2959 /* Check the swap header's sub-version */
2960 if (swap_header->info.version != 1) {
465c47fd
AM
2961 pr_warn("Unable to handle swap header version %d\n",
2962 swap_header->info.version);
38719025 2963 return 0;
ca8bd38b
CEB
2964 }
2965
2966 p->lowest_bit = 1;
2967 p->cluster_next = 1;
2968 p->cluster_nr = 0;
2969
4bb1a8d8 2970 maxpages = max_swapfile_size();
d6bbbd29 2971 last_page = swap_header->info.last_page;
2ab77381
TA
2972 if (!last_page) {
2973 pr_warn("Empty swap-file\n");
2974 return 0;
2975 }
d6bbbd29 2976 if (last_page > maxpages) {
465c47fd 2977 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2978 maxpages << (PAGE_SHIFT - 10),
2979 last_page << (PAGE_SHIFT - 10));
2980 }
2981 if (maxpages > last_page) {
2982 maxpages = last_page + 1;
ca8bd38b
CEB
2983 /* p->max is an unsigned int: don't overflow it */
2984 if ((unsigned int)maxpages == 0)
2985 maxpages = UINT_MAX;
2986 }
2987 p->highest_bit = maxpages - 1;
2988
2989 if (!maxpages)
38719025 2990 return 0;
ca8bd38b
CEB
2991 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2992 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2993 pr_warn("Swap area shorter than signature indicates\n");
38719025 2994 return 0;
ca8bd38b
CEB
2995 }
2996 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2997 return 0;
ca8bd38b 2998 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2999 return 0;
ca8bd38b
CEB
3000
3001 return maxpages;
ca8bd38b
CEB
3002}
3003
4b3ef9da 3004#define SWAP_CLUSTER_INFO_COLS \
235b6217 3005 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3006#define SWAP_CLUSTER_SPACE_COLS \
3007 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3008#define SWAP_CLUSTER_COLS \
3009 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3010
915d4d7b
CEB
3011static int setup_swap_map_and_extents(struct swap_info_struct *p,
3012 union swap_header *swap_header,
3013 unsigned char *swap_map,
2a8f9449 3014 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3015 unsigned long maxpages,
3016 sector_t *span)
3017{
235b6217 3018 unsigned int j, k;
915d4d7b
CEB
3019 unsigned int nr_good_pages;
3020 int nr_extents;
2a8f9449 3021 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3022 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3023 unsigned long i, idx;
915d4d7b
CEB
3024
3025 nr_good_pages = maxpages - 1; /* omit header page */
3026
6b534915
HY
3027 cluster_list_init(&p->free_clusters);
3028 cluster_list_init(&p->discard_clusters);
2a8f9449 3029
915d4d7b
CEB
3030 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3031 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3032 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3033 return -EINVAL;
915d4d7b
CEB
3034 if (page_nr < maxpages) {
3035 swap_map[page_nr] = SWAP_MAP_BAD;
3036 nr_good_pages--;
2a8f9449
SL
3037 /*
3038 * Haven't marked the cluster free yet, no list
3039 * operation involved
3040 */
3041 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3042 }
3043 }
3044
2a8f9449
SL
3045 /* Haven't marked the cluster free yet, no list operation involved */
3046 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3047 inc_cluster_info_page(p, cluster_info, i);
3048
915d4d7b
CEB
3049 if (nr_good_pages) {
3050 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3051 /*
3052 * Not mark the cluster free yet, no list
3053 * operation involved
3054 */
3055 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3056 p->max = maxpages;
3057 p->pages = nr_good_pages;
3058 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3059 if (nr_extents < 0)
3060 return nr_extents;
915d4d7b
CEB
3061 nr_good_pages = p->pages;
3062 }
3063 if (!nr_good_pages) {
465c47fd 3064 pr_warn("Empty swap-file\n");
bdb8e3f6 3065 return -EINVAL;
915d4d7b
CEB
3066 }
3067
2a8f9449
SL
3068 if (!cluster_info)
3069 return nr_extents;
3070
235b6217 3071
4b3ef9da
HY
3072 /*
3073 * Reduce false cache line sharing between cluster_info and
3074 * sharing same address space.
3075 */
235b6217
HY
3076 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3077 j = (k + col) % SWAP_CLUSTER_COLS;
3078 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3079 idx = i * SWAP_CLUSTER_COLS + j;
3080 if (idx >= nr_clusters)
3081 continue;
3082 if (cluster_count(&cluster_info[idx]))
3083 continue;
2a8f9449 3084 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3085 cluster_list_add_tail(&p->free_clusters, cluster_info,
3086 idx);
2a8f9449 3087 }
2a8f9449 3088 }
915d4d7b 3089 return nr_extents;
915d4d7b
CEB
3090}
3091
dcf6b7dd
RA
3092/*
3093 * Helper to sys_swapon determining if a given swap
3094 * backing device queue supports DISCARD operations.
3095 */
3096static bool swap_discardable(struct swap_info_struct *si)
3097{
3098 struct request_queue *q = bdev_get_queue(si->bdev);
3099
3100 if (!q || !blk_queue_discard(q))
3101 return false;
3102
3103 return true;
3104}
3105
53cbb243
CEB
3106SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3107{
3108 struct swap_info_struct *p;
91a27b2a 3109 struct filename *name;
53cbb243
CEB
3110 struct file *swap_file = NULL;
3111 struct address_space *mapping;
40531542 3112 int prio;
53cbb243
CEB
3113 int error;
3114 union swap_header *swap_header;
915d4d7b 3115 int nr_extents;
53cbb243
CEB
3116 sector_t span;
3117 unsigned long maxpages;
53cbb243 3118 unsigned char *swap_map = NULL;
2a8f9449 3119 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3120 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3121 struct page *page = NULL;
3122 struct inode *inode = NULL;
53cbb243 3123
d15cab97
HD
3124 if (swap_flags & ~SWAP_FLAGS_VALID)
3125 return -EINVAL;
3126
53cbb243
CEB
3127 if (!capable(CAP_SYS_ADMIN))
3128 return -EPERM;
3129
a2468cc9
AL
3130 if (!swap_avail_heads)
3131 return -ENOMEM;
3132
53cbb243 3133 p = alloc_swap_info();
2542e513
CEB
3134 if (IS_ERR(p))
3135 return PTR_ERR(p);
53cbb243 3136
815c2c54
SL
3137 INIT_WORK(&p->discard_work, swap_discard_work);
3138
1da177e4 3139 name = getname(specialfile);
1da177e4 3140 if (IS_ERR(name)) {
7de7fb6b 3141 error = PTR_ERR(name);
1da177e4 3142 name = NULL;
bd69010b 3143 goto bad_swap;
1da177e4 3144 }
669abf4e 3145 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3146 if (IS_ERR(swap_file)) {
7de7fb6b 3147 error = PTR_ERR(swap_file);
1da177e4 3148 swap_file = NULL;
bd69010b 3149 goto bad_swap;
1da177e4
LT
3150 }
3151
3152 p->swap_file = swap_file;
3153 mapping = swap_file->f_mapping;
2130781e 3154 inode = mapping->host;
6f179af8 3155
5955102c 3156 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3157 error = claim_swapfile(p, inode);
3158 if (unlikely(error))
1da177e4 3159 goto bad_swap;
1da177e4 3160
1da177e4
LT
3161 /*
3162 * Read the swap header.
3163 */
3164 if (!mapping->a_ops->readpage) {
3165 error = -EINVAL;
3166 goto bad_swap;
3167 }
090d2b18 3168 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3169 if (IS_ERR(page)) {
3170 error = PTR_ERR(page);
3171 goto bad_swap;
3172 }
81e33971 3173 swap_header = kmap(page);
1da177e4 3174
ca8bd38b
CEB
3175 maxpages = read_swap_header(p, swap_header, inode);
3176 if (unlikely(!maxpages)) {
1da177e4
LT
3177 error = -EINVAL;
3178 goto bad_swap;
3179 }
886bb7e9 3180
81e33971 3181 /* OK, set up the swap map and apply the bad block list */
803d0c83 3182 swap_map = vzalloc(maxpages);
81e33971
HD
3183 if (!swap_map) {
3184 error = -ENOMEM;
3185 goto bad_swap;
3186 }
f0571429
MK
3187
3188 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3189 p->flags |= SWP_STABLE_WRITES;
3190
2a8f9449 3191 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3192 int cpu;
235b6217 3193 unsigned long ci, nr_cluster;
6f179af8 3194
2a8f9449
SL
3195 p->flags |= SWP_SOLIDSTATE;
3196 /*
3197 * select a random position to start with to help wear leveling
3198 * SSD
3199 */
3200 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3201 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3202
54f180d3
HY
3203 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3204 GFP_KERNEL);
2a8f9449
SL
3205 if (!cluster_info) {
3206 error = -ENOMEM;
3207 goto bad_swap;
3208 }
235b6217
HY
3209
3210 for (ci = 0; ci < nr_cluster; ci++)
3211 spin_lock_init(&((cluster_info + ci)->lock));
3212
ebc2a1a6
SL
3213 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3214 if (!p->percpu_cluster) {
3215 error = -ENOMEM;
3216 goto bad_swap;
3217 }
6f179af8 3218 for_each_possible_cpu(cpu) {
ebc2a1a6 3219 struct percpu_cluster *cluster;
6f179af8 3220 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3221 cluster_set_null(&cluster->index);
3222 }
81a0298b
HY
3223 } else
3224 atomic_inc(&nr_rotate_swap);
1da177e4 3225
1421ef3c
CEB
3226 error = swap_cgroup_swapon(p->type, maxpages);
3227 if (error)
3228 goto bad_swap;
3229
915d4d7b 3230 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3231 cluster_info, maxpages, &span);
915d4d7b
CEB
3232 if (unlikely(nr_extents < 0)) {
3233 error = nr_extents;
1da177e4
LT
3234 goto bad_swap;
3235 }
38b5faf4 3236 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3237 if (IS_ENABLED(CONFIG_FRONTSWAP))
54f180d3
HY
3238 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3239 GFP_KERNEL);
1da177e4 3240
2a8f9449
SL
3241 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3242 /*
3243 * When discard is enabled for swap with no particular
3244 * policy flagged, we set all swap discard flags here in
3245 * order to sustain backward compatibility with older
3246 * swapon(8) releases.
3247 */
3248 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3249 SWP_PAGE_DISCARD);
dcf6b7dd 3250
2a8f9449
SL
3251 /*
3252 * By flagging sys_swapon, a sysadmin can tell us to
3253 * either do single-time area discards only, or to just
3254 * perform discards for released swap page-clusters.
3255 * Now it's time to adjust the p->flags accordingly.
3256 */
3257 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3258 p->flags &= ~SWP_PAGE_DISCARD;
3259 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3260 p->flags &= ~SWP_AREA_DISCARD;
3261
3262 /* issue a swapon-time discard if it's still required */
3263 if (p->flags & SWP_AREA_DISCARD) {
3264 int err = discard_swap(p);
3265 if (unlikely(err))
3266 pr_err("swapon: discard_swap(%p): %d\n",
3267 p, err);
dcf6b7dd 3268 }
20137a49 3269 }
6a6ba831 3270
4b3ef9da
HY
3271 error = init_swap_address_space(p->type, maxpages);
3272 if (error)
3273 goto bad_swap;
3274
fc0abb14 3275 mutex_lock(&swapon_mutex);
40531542 3276 prio = -1;
78ecba08 3277 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3278 prio =
78ecba08 3279 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3280 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3281
756a025f 3282 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3283 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3284 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3285 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3286 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3287 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3288 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3289 (frontswap_map) ? "FS" : "");
c69dbfb8 3290
fc0abb14 3291 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3292 atomic_inc(&proc_poll_event);
3293 wake_up_interruptible(&proc_poll_wait);
3294
9b01c350
CEB
3295 if (S_ISREG(inode->i_mode))
3296 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3297 error = 0;
3298 goto out;
3299bad_swap:
ebc2a1a6
SL
3300 free_percpu(p->percpu_cluster);
3301 p->percpu_cluster = NULL;
bd69010b 3302 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3303 set_blocksize(p->bdev, p->old_block_size);
3304 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3305 }
4cd3bb10 3306 destroy_swap_extents(p);
e8e6c2ec 3307 swap_cgroup_swapoff(p->type);
5d337b91 3308 spin_lock(&swap_lock);
1da177e4 3309 p->swap_file = NULL;
1da177e4 3310 p->flags = 0;
5d337b91 3311 spin_unlock(&swap_lock);
1da177e4 3312 vfree(swap_map);
8606a1a9 3313 kvfree(cluster_info);
b6b1fd2a 3314 kvfree(frontswap_map);
52c50567 3315 if (swap_file) {
2130781e 3316 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3317 inode_unlock(inode);
2130781e
CEB
3318 inode = NULL;
3319 }
1da177e4 3320 filp_close(swap_file, NULL);
52c50567 3321 }
1da177e4
LT
3322out:
3323 if (page && !IS_ERR(page)) {
3324 kunmap(page);
09cbfeaf 3325 put_page(page);
1da177e4
LT
3326 }
3327 if (name)
3328 putname(name);
9b01c350 3329 if (inode && S_ISREG(inode->i_mode))
5955102c 3330 inode_unlock(inode);
039939a6
TC
3331 if (!error)
3332 enable_swap_slots_cache();
1da177e4
LT
3333 return error;
3334}
3335
3336void si_swapinfo(struct sysinfo *val)
3337{
efa90a98 3338 unsigned int type;
1da177e4
LT
3339 unsigned long nr_to_be_unused = 0;
3340
5d337b91 3341 spin_lock(&swap_lock);
efa90a98
HD
3342 for (type = 0; type < nr_swapfiles; type++) {
3343 struct swap_info_struct *si = swap_info[type];
3344
3345 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3346 nr_to_be_unused += si->inuse_pages;
1da177e4 3347 }
ec8acf20 3348 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3349 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3350 spin_unlock(&swap_lock);
1da177e4
LT
3351}
3352
3353/*
3354 * Verify that a swap entry is valid and increment its swap map count.
3355 *
355cfa73
KH
3356 * Returns error code in following case.
3357 * - success -> 0
3358 * - swp_entry is invalid -> EINVAL
3359 * - swp_entry is migration entry -> EINVAL
3360 * - swap-cache reference is requested but there is already one. -> EEXIST
3361 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3362 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3363 */
8d69aaee 3364static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3365{
73c34b6a 3366 struct swap_info_struct *p;
235b6217 3367 struct swap_cluster_info *ci;
1da177e4 3368 unsigned long offset, type;
8d69aaee
HD
3369 unsigned char count;
3370 unsigned char has_cache;
253d553b 3371 int err = -EINVAL;
1da177e4 3372
a7420aa5 3373 if (non_swap_entry(entry))
253d553b 3374 goto out;
0697212a 3375
1da177e4
LT
3376 type = swp_type(entry);
3377 if (type >= nr_swapfiles)
3378 goto bad_file;
efa90a98 3379 p = swap_info[type];
1da177e4 3380 offset = swp_offset(entry);
355cfa73 3381 if (unlikely(offset >= p->max))
235b6217
HY
3382 goto out;
3383
3384 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3385
253d553b 3386 count = p->swap_map[offset];
edfe23da
SL
3387
3388 /*
3389 * swapin_readahead() doesn't check if a swap entry is valid, so the
3390 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3391 */
3392 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3393 err = -ENOENT;
3394 goto unlock_out;
3395 }
3396
253d553b
HD
3397 has_cache = count & SWAP_HAS_CACHE;
3398 count &= ~SWAP_HAS_CACHE;
3399 err = 0;
355cfa73 3400
253d553b 3401 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3402
3403 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3404 if (!has_cache && count)
3405 has_cache = SWAP_HAS_CACHE;
3406 else if (has_cache) /* someone else added cache */
3407 err = -EEXIST;
3408 else /* no users remaining */
3409 err = -ENOENT;
355cfa73
KH
3410
3411 } else if (count || has_cache) {
253d553b 3412
570a335b
HD
3413 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3414 count += usage;
3415 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3416 err = -EINVAL;
570a335b
HD
3417 else if (swap_count_continued(p, offset, count))
3418 count = COUNT_CONTINUED;
3419 else
3420 err = -ENOMEM;
355cfa73 3421 } else
253d553b
HD
3422 err = -ENOENT; /* unused swap entry */
3423
3424 p->swap_map[offset] = count | has_cache;
3425
355cfa73 3426unlock_out:
235b6217 3427 unlock_cluster_or_swap_info(p, ci);
1da177e4 3428out:
253d553b 3429 return err;
1da177e4
LT
3430
3431bad_file:
465c47fd 3432 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3433 goto out;
3434}
253d553b 3435
aaa46865
HD
3436/*
3437 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3438 * (in which case its reference count is never incremented).
3439 */
3440void swap_shmem_alloc(swp_entry_t entry)
3441{
3442 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3443}
3444
355cfa73 3445/*
08259d58
HD
3446 * Increase reference count of swap entry by 1.
3447 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3448 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3449 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3450 * might occur if a page table entry has got corrupted.
355cfa73 3451 */
570a335b 3452int swap_duplicate(swp_entry_t entry)
355cfa73 3453{
570a335b
HD
3454 int err = 0;
3455
3456 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3457 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3458 return err;
355cfa73 3459}
1da177e4 3460
cb4b86ba 3461/*
355cfa73
KH
3462 * @entry: swap entry for which we allocate swap cache.
3463 *
73c34b6a 3464 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3465 * This can return error codes. Returns 0 at success.
3466 * -EBUSY means there is a swap cache.
3467 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3468 */
3469int swapcache_prepare(swp_entry_t entry)
3470{
253d553b 3471 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3472}
3473
f981c595
MG
3474struct swap_info_struct *page_swap_info(struct page *page)
3475{
3476 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3477 return swap_info[swp_type(swap)];
3478}
3479
3480/*
3481 * out-of-line __page_file_ methods to avoid include hell.
3482 */
3483struct address_space *__page_file_mapping(struct page *page)
3484{
309381fe 3485 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3486 return page_swap_info(page)->swap_file->f_mapping;
3487}
3488EXPORT_SYMBOL_GPL(__page_file_mapping);
3489
3490pgoff_t __page_file_index(struct page *page)
3491{
3492 swp_entry_t swap = { .val = page_private(page) };
309381fe 3493 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3494 return swp_offset(swap);
3495}
3496EXPORT_SYMBOL_GPL(__page_file_index);
3497
570a335b
HD
3498/*
3499 * add_swap_count_continuation - called when a swap count is duplicated
3500 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3501 * page of the original vmalloc'ed swap_map, to hold the continuation count
3502 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3503 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3504 *
3505 * These continuation pages are seldom referenced: the common paths all work
3506 * on the original swap_map, only referring to a continuation page when the
3507 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3508 *
3509 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3510 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3511 * can be called after dropping locks.
3512 */
3513int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3514{
3515 struct swap_info_struct *si;
235b6217 3516 struct swap_cluster_info *ci;
570a335b
HD
3517 struct page *head;
3518 struct page *page;
3519 struct page *list_page;
3520 pgoff_t offset;
3521 unsigned char count;
3522
3523 /*
3524 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3525 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3526 */
3527 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3528
3529 si = swap_info_get(entry);
3530 if (!si) {
3531 /*
3532 * An acceptable race has occurred since the failing
3533 * __swap_duplicate(): the swap entry has been freed,
3534 * perhaps even the whole swap_map cleared for swapoff.
3535 */
3536 goto outer;
3537 }
3538
3539 offset = swp_offset(entry);
235b6217
HY
3540
3541 ci = lock_cluster(si, offset);
3542
570a335b
HD
3543 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3544
3545 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3546 /*
3547 * The higher the swap count, the more likely it is that tasks
3548 * will race to add swap count continuation: we need to avoid
3549 * over-provisioning.
3550 */
3551 goto out;
3552 }
3553
3554 if (!page) {
235b6217 3555 unlock_cluster(ci);
ec8acf20 3556 spin_unlock(&si->lock);
570a335b
HD
3557 return -ENOMEM;
3558 }
3559
3560 /*
3561 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3562 * no architecture is using highmem pages for kernel page tables: so it
3563 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3564 */
3565 head = vmalloc_to_page(si->swap_map + offset);
3566 offset &= ~PAGE_MASK;
3567
2628bd6f 3568 spin_lock(&si->cont_lock);
570a335b
HD
3569 /*
3570 * Page allocation does not initialize the page's lru field,
3571 * but it does always reset its private field.
3572 */
3573 if (!page_private(head)) {
3574 BUG_ON(count & COUNT_CONTINUED);
3575 INIT_LIST_HEAD(&head->lru);
3576 set_page_private(head, SWP_CONTINUED);
3577 si->flags |= SWP_CONTINUED;
3578 }
3579
3580 list_for_each_entry(list_page, &head->lru, lru) {
3581 unsigned char *map;
3582
3583 /*
3584 * If the previous map said no continuation, but we've found
3585 * a continuation page, free our allocation and use this one.
3586 */
3587 if (!(count & COUNT_CONTINUED))
2628bd6f 3588 goto out_unlock_cont;
570a335b 3589
9b04c5fe 3590 map = kmap_atomic(list_page) + offset;
570a335b 3591 count = *map;
9b04c5fe 3592 kunmap_atomic(map);
570a335b
HD
3593
3594 /*
3595 * If this continuation count now has some space in it,
3596 * free our allocation and use this one.
3597 */
3598 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3599 goto out_unlock_cont;
570a335b
HD
3600 }
3601
3602 list_add_tail(&page->lru, &head->lru);
3603 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3604out_unlock_cont:
3605 spin_unlock(&si->cont_lock);
570a335b 3606out:
235b6217 3607 unlock_cluster(ci);
ec8acf20 3608 spin_unlock(&si->lock);
570a335b
HD
3609outer:
3610 if (page)
3611 __free_page(page);
3612 return 0;
3613}
3614
3615/*
3616 * swap_count_continued - when the original swap_map count is incremented
3617 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3618 * into, carry if so, or else fail until a new continuation page is allocated;
3619 * when the original swap_map count is decremented from 0 with continuation,
3620 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3621 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3622 * lock.
570a335b
HD
3623 */
3624static bool swap_count_continued(struct swap_info_struct *si,
3625 pgoff_t offset, unsigned char count)
3626{
3627 struct page *head;
3628 struct page *page;
3629 unsigned char *map;
2628bd6f 3630 bool ret;
570a335b
HD
3631
3632 head = vmalloc_to_page(si->swap_map + offset);
3633 if (page_private(head) != SWP_CONTINUED) {
3634 BUG_ON(count & COUNT_CONTINUED);
3635 return false; /* need to add count continuation */
3636 }
3637
2628bd6f 3638 spin_lock(&si->cont_lock);
570a335b
HD
3639 offset &= ~PAGE_MASK;
3640 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3641 map = kmap_atomic(page) + offset;
570a335b
HD
3642
3643 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3644 goto init_map; /* jump over SWAP_CONT_MAX checks */
3645
3646 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3647 /*
3648 * Think of how you add 1 to 999
3649 */
3650 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3651 kunmap_atomic(map);
570a335b
HD
3652 page = list_entry(page->lru.next, struct page, lru);
3653 BUG_ON(page == head);
9b04c5fe 3654 map = kmap_atomic(page) + offset;
570a335b
HD
3655 }
3656 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3657 kunmap_atomic(map);
570a335b 3658 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3659 if (page == head) {
3660 ret = false; /* add count continuation */
3661 goto out;
3662 }
9b04c5fe 3663 map = kmap_atomic(page) + offset;
570a335b
HD
3664init_map: *map = 0; /* we didn't zero the page */
3665 }
3666 *map += 1;
9b04c5fe 3667 kunmap_atomic(map);
570a335b
HD
3668 page = list_entry(page->lru.prev, struct page, lru);
3669 while (page != head) {
9b04c5fe 3670 map = kmap_atomic(page) + offset;
570a335b 3671 *map = COUNT_CONTINUED;
9b04c5fe 3672 kunmap_atomic(map);
570a335b
HD
3673 page = list_entry(page->lru.prev, struct page, lru);
3674 }
2628bd6f 3675 ret = true; /* incremented */
570a335b
HD
3676
3677 } else { /* decrementing */
3678 /*
3679 * Think of how you subtract 1 from 1000
3680 */
3681 BUG_ON(count != COUNT_CONTINUED);
3682 while (*map == COUNT_CONTINUED) {
9b04c5fe 3683 kunmap_atomic(map);
570a335b
HD
3684 page = list_entry(page->lru.next, struct page, lru);
3685 BUG_ON(page == head);
9b04c5fe 3686 map = kmap_atomic(page) + offset;
570a335b
HD
3687 }
3688 BUG_ON(*map == 0);
3689 *map -= 1;
3690 if (*map == 0)
3691 count = 0;
9b04c5fe 3692 kunmap_atomic(map);
570a335b
HD
3693 page = list_entry(page->lru.prev, struct page, lru);
3694 while (page != head) {
9b04c5fe 3695 map = kmap_atomic(page) + offset;
570a335b
HD
3696 *map = SWAP_CONT_MAX | count;
3697 count = COUNT_CONTINUED;
9b04c5fe 3698 kunmap_atomic(map);
570a335b
HD
3699 page = list_entry(page->lru.prev, struct page, lru);
3700 }
2628bd6f 3701 ret = count == COUNT_CONTINUED;
570a335b 3702 }
2628bd6f
HY
3703out:
3704 spin_unlock(&si->cont_lock);
3705 return ret;
570a335b
HD
3706}
3707
3708/*
3709 * free_swap_count_continuations - swapoff free all the continuation pages
3710 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3711 */
3712static void free_swap_count_continuations(struct swap_info_struct *si)
3713{
3714 pgoff_t offset;
3715
3716 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3717 struct page *head;
3718 head = vmalloc_to_page(si->swap_map + offset);
3719 if (page_private(head)) {
0d576d20
GT
3720 struct page *page, *next;
3721
3722 list_for_each_entry_safe(page, next, &head->lru, lru) {
3723 list_del(&page->lru);
570a335b
HD
3724 __free_page(page);
3725 }
3726 }
3727 }
3728}
a2468cc9
AL
3729
3730static int __init swapfile_init(void)
3731{
3732 int nid;
3733
3734 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3735 GFP_KERNEL);
3736 if (!swap_avail_heads) {
3737 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3738 return -ENOMEM;
3739 }
3740
3741 for_each_node(nid)
3742 plist_head_init(&swap_avail_heads[nid]);
3743
3744 return 0;
3745}
3746subsys_initcall(swapfile_init);