x86/mm: Move LDT remap out of KASLR region on 5-level paging
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / xen / mmu_pv.c
CommitLineData
7e0563de
VK
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched/mm.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/export.h>
47#include <linux/init.h>
48#include <linux/gfp.h>
49#include <linux/memblock.h>
50#include <linux/seq_file.h>
51#include <linux/crash_dump.h>
29985b09
JG
52#ifdef CONFIG_KEXEC_CORE
53#include <linux/kexec.h>
54#endif
7e0563de
VK
55
56#include <trace/events/xen.h>
57
58#include <asm/pgtable.h>
59#include <asm/tlbflush.h>
60#include <asm/fixmap.h>
61#include <asm/mmu_context.h>
62#include <asm/setup.h>
63#include <asm/paravirt.h>
64#include <asm/e820/api.h>
65#include <asm/linkage.h>
66#include <asm/page.h>
67#include <asm/init.h>
68#include <asm/pat.h>
69#include <asm/smp.h>
70
71#include <asm/xen/hypercall.h>
72#include <asm/xen/hypervisor.h>
73
74#include <xen/xen.h>
75#include <xen/page.h>
76#include <xen/interface/xen.h>
77#include <xen/interface/hvm/hvm_op.h>
78#include <xen/interface/version.h>
79#include <xen/interface/memory.h>
80#include <xen/hvc-console.h>
81
82#include "multicalls.h"
83#include "mmu.h"
84#include "debugfs.h"
85
86#ifdef CONFIG_X86_32
87/*
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
91 */
92#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94#endif
95#ifdef CONFIG_X86_64
96/* l3 pud for userspace vsyscall mapping */
97static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98#endif /* CONFIG_X86_64 */
99
100/*
101 * Note about cr3 (pagetable base) values:
102 *
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
108 *
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
113 */
114DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
116
117static phys_addr_t xen_pt_base, xen_pt_size __initdata;
118
119/*
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
122 */
123#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124
125void make_lowmem_page_readonly(void *vaddr)
126{
127 pte_t *pte, ptev;
128 unsigned long address = (unsigned long)vaddr;
129 unsigned int level;
130
131 pte = lookup_address(address, &level);
132 if (pte == NULL)
133 return; /* vaddr missing */
134
135 ptev = pte_wrprotect(*pte);
136
137 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 BUG();
139}
140
141void make_lowmem_page_readwrite(void *vaddr)
142{
143 pte_t *pte, ptev;
144 unsigned long address = (unsigned long)vaddr;
145 unsigned int level;
146
147 pte = lookup_address(address, &level);
148 if (pte == NULL)
149 return; /* vaddr missing */
150
151 ptev = pte_mkwrite(*pte);
152
153 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 BUG();
155}
156
157
158static bool xen_page_pinned(void *ptr)
159{
160 struct page *page = virt_to_page(ptr);
161
162 return PagePinned(page);
163}
164
7e0563de
VK
165static void xen_extend_mmu_update(const struct mmu_update *update)
166{
167 struct multicall_space mcs;
168 struct mmu_update *u;
169
170 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
171
172 if (mcs.mc != NULL) {
173 mcs.mc->args[1]++;
174 } else {
175 mcs = __xen_mc_entry(sizeof(*u));
176 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
177 }
178
179 u = mcs.args;
180 *u = *update;
181}
182
183static void xen_extend_mmuext_op(const struct mmuext_op *op)
184{
185 struct multicall_space mcs;
186 struct mmuext_op *u;
187
188 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
189
190 if (mcs.mc != NULL) {
191 mcs.mc->args[1]++;
192 } else {
193 mcs = __xen_mc_entry(sizeof(*u));
194 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
195 }
196
197 u = mcs.args;
198 *u = *op;
199}
200
201static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
202{
203 struct mmu_update u;
204
205 preempt_disable();
206
207 xen_mc_batch();
208
209 /* ptr may be ioremapped for 64-bit pagetable setup */
210 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
211 u.val = pmd_val_ma(val);
212 xen_extend_mmu_update(&u);
213
214 xen_mc_issue(PARAVIRT_LAZY_MMU);
215
216 preempt_enable();
217}
218
219static void xen_set_pmd(pmd_t *ptr, pmd_t val)
220{
221 trace_xen_mmu_set_pmd(ptr, val);
222
223 /* If page is not pinned, we can just update the entry
224 directly */
225 if (!xen_page_pinned(ptr)) {
226 *ptr = val;
227 return;
228 }
229
230 xen_set_pmd_hyper(ptr, val);
231}
232
233/*
234 * Associate a virtual page frame with a given physical page frame
235 * and protection flags for that frame.
236 */
237void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
238{
239 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
240}
241
242static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
243{
244 struct mmu_update u;
245
246 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
247 return false;
248
249 xen_mc_batch();
250
251 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
252 u.val = pte_val_ma(pteval);
253 xen_extend_mmu_update(&u);
254
255 xen_mc_issue(PARAVIRT_LAZY_MMU);
256
257 return true;
258}
259
260static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
261{
262 if (!xen_batched_set_pte(ptep, pteval)) {
263 /*
264 * Could call native_set_pte() here and trap and
265 * emulate the PTE write but with 32-bit guests this
266 * needs two traps (one for each of the two 32-bit
267 * words in the PTE) so do one hypercall directly
268 * instead.
269 */
270 struct mmu_update u;
271
272 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
273 u.val = pte_val_ma(pteval);
274 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
275 }
276}
277
278static void xen_set_pte(pte_t *ptep, pte_t pteval)
279{
280 trace_xen_mmu_set_pte(ptep, pteval);
281 __xen_set_pte(ptep, pteval);
282}
283
284static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
285 pte_t *ptep, pte_t pteval)
286{
287 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
288 __xen_set_pte(ptep, pteval);
289}
290
291pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
292 unsigned long addr, pte_t *ptep)
293{
294 /* Just return the pte as-is. We preserve the bits on commit */
295 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
296 return *ptep;
297}
298
299void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
300 pte_t *ptep, pte_t pte)
301{
302 struct mmu_update u;
303
304 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
305 xen_mc_batch();
306
307 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
308 u.val = pte_val_ma(pte);
309 xen_extend_mmu_update(&u);
310
311 xen_mc_issue(PARAVIRT_LAZY_MMU);
312}
313
314/* Assume pteval_t is equivalent to all the other *val_t types. */
315static pteval_t pte_mfn_to_pfn(pteval_t val)
316{
317 if (val & _PAGE_PRESENT) {
318 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
319 unsigned long pfn = mfn_to_pfn(mfn);
320
321 pteval_t flags = val & PTE_FLAGS_MASK;
322 if (unlikely(pfn == ~0))
323 val = flags & ~_PAGE_PRESENT;
324 else
325 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
326 }
327
328 return val;
329}
330
331static pteval_t pte_pfn_to_mfn(pteval_t val)
332{
333 if (val & _PAGE_PRESENT) {
334 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
335 pteval_t flags = val & PTE_FLAGS_MASK;
336 unsigned long mfn;
337
989513a7
JG
338 mfn = __pfn_to_mfn(pfn);
339
7e0563de
VK
340 /*
341 * If there's no mfn for the pfn, then just create an
342 * empty non-present pte. Unfortunately this loses
343 * information about the original pfn, so
344 * pte_mfn_to_pfn is asymmetric.
345 */
346 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
347 mfn = 0;
348 flags = 0;
349 } else
350 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
351 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
352 }
353
354 return val;
355}
356
357__visible pteval_t xen_pte_val(pte_t pte)
358{
359 pteval_t pteval = pte.pte;
360
361 return pte_mfn_to_pfn(pteval);
362}
363PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
364
365__visible pgdval_t xen_pgd_val(pgd_t pgd)
366{
367 return pte_mfn_to_pfn(pgd.pgd);
368}
369PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
370
371__visible pte_t xen_make_pte(pteval_t pte)
372{
373 pte = pte_pfn_to_mfn(pte);
374
375 return native_make_pte(pte);
376}
377PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
378
379__visible pgd_t xen_make_pgd(pgdval_t pgd)
380{
381 pgd = pte_pfn_to_mfn(pgd);
382 return native_make_pgd(pgd);
383}
384PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
385
386__visible pmdval_t xen_pmd_val(pmd_t pmd)
387{
388 return pte_mfn_to_pfn(pmd.pmd);
389}
390PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
391
392static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
393{
394 struct mmu_update u;
395
396 preempt_disable();
397
398 xen_mc_batch();
399
400 /* ptr may be ioremapped for 64-bit pagetable setup */
401 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
402 u.val = pud_val_ma(val);
403 xen_extend_mmu_update(&u);
404
405 xen_mc_issue(PARAVIRT_LAZY_MMU);
406
407 preempt_enable();
408}
409
410static void xen_set_pud(pud_t *ptr, pud_t val)
411{
412 trace_xen_mmu_set_pud(ptr, val);
413
414 /* If page is not pinned, we can just update the entry
415 directly */
416 if (!xen_page_pinned(ptr)) {
417 *ptr = val;
418 return;
419 }
420
421 xen_set_pud_hyper(ptr, val);
422}
423
424#ifdef CONFIG_X86_PAE
425static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
426{
427 trace_xen_mmu_set_pte_atomic(ptep, pte);
13b23ccf 428 __xen_set_pte(ptep, pte);
7e0563de
VK
429}
430
431static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
432{
433 trace_xen_mmu_pte_clear(mm, addr, ptep);
13b23ccf 434 __xen_set_pte(ptep, native_make_pte(0));
7e0563de
VK
435}
436
437static void xen_pmd_clear(pmd_t *pmdp)
438{
439 trace_xen_mmu_pmd_clear(pmdp);
440 set_pmd(pmdp, __pmd(0));
441}
442#endif /* CONFIG_X86_PAE */
443
444__visible pmd_t xen_make_pmd(pmdval_t pmd)
445{
446 pmd = pte_pfn_to_mfn(pmd);
447 return native_make_pmd(pmd);
448}
449PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
450
af02cd97 451#ifdef CONFIG_X86_64
7e0563de
VK
452__visible pudval_t xen_pud_val(pud_t pud)
453{
454 return pte_mfn_to_pfn(pud.pud);
455}
456PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
457
458__visible pud_t xen_make_pud(pudval_t pud)
459{
460 pud = pte_pfn_to_mfn(pud);
461
462 return native_make_pud(pud);
463}
464PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
465
466static pgd_t *xen_get_user_pgd(pgd_t *pgd)
467{
468 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
469 unsigned offset = pgd - pgd_page;
470 pgd_t *user_ptr = NULL;
471
472 if (offset < pgd_index(USER_LIMIT)) {
473 struct page *page = virt_to_page(pgd_page);
474 user_ptr = (pgd_t *)page->private;
475 if (user_ptr)
476 user_ptr += offset;
477 }
478
479 return user_ptr;
480}
481
482static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
483{
484 struct mmu_update u;
485
486 u.ptr = virt_to_machine(ptr).maddr;
487 u.val = p4d_val_ma(val);
488 xen_extend_mmu_update(&u);
489}
490
491/*
492 * Raw hypercall-based set_p4d, intended for in early boot before
493 * there's a page structure. This implies:
494 * 1. The only existing pagetable is the kernel's
495 * 2. It is always pinned
496 * 3. It has no user pagetable attached to it
497 */
498static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
499{
500 preempt_disable();
501
502 xen_mc_batch();
503
504 __xen_set_p4d_hyper(ptr, val);
505
506 xen_mc_issue(PARAVIRT_LAZY_MMU);
507
508 preempt_enable();
509}
510
511static void xen_set_p4d(p4d_t *ptr, p4d_t val)
512{
513 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
514 pgd_t pgd_val;
515
516 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
517
518 /* If page is not pinned, we can just update the entry
519 directly */
520 if (!xen_page_pinned(ptr)) {
521 *ptr = val;
522 if (user_ptr) {
523 WARN_ON(xen_page_pinned(user_ptr));
524 pgd_val.pgd = p4d_val_ma(val);
525 *user_ptr = pgd_val;
526 }
527 return;
528 }
529
530 /* If it's pinned, then we can at least batch the kernel and
531 user updates together. */
532 xen_mc_batch();
533
534 __xen_set_p4d_hyper(ptr, val);
535 if (user_ptr)
536 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
537
538 xen_mc_issue(PARAVIRT_LAZY_MMU);
539}
af02cd97 540#endif /* CONFIG_X86_64 */
7e0563de
VK
541
542static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
543 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
544 bool last, unsigned long limit)
545{
546 int i, nr, flush = 0;
547
548 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
549 for (i = 0; i < nr; i++) {
550 if (!pmd_none(pmd[i]))
551 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
552 }
553 return flush;
554}
555
556static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
557 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
558 bool last, unsigned long limit)
559{
560 int i, nr, flush = 0;
561
562 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
563 for (i = 0; i < nr; i++) {
564 pmd_t *pmd;
565
566 if (pud_none(pud[i]))
567 continue;
568
569 pmd = pmd_offset(&pud[i], 0);
570 if (PTRS_PER_PMD > 1)
571 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
572 flush |= xen_pmd_walk(mm, pmd, func,
573 last && i == nr - 1, limit);
574 }
575 return flush;
576}
577
578static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
579 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
580 bool last, unsigned long limit)
581{
af02cd97
KS
582 int flush = 0;
583 pud_t *pud;
7e0563de 584
7e0563de 585
af02cd97
KS
586 if (p4d_none(*p4d))
587 return flush;
7e0563de 588
af02cd97
KS
589 pud = pud_offset(p4d, 0);
590 if (PTRS_PER_PUD > 1)
591 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
592 flush |= xen_pud_walk(mm, pud, func, last, limit);
7e0563de
VK
593 return flush;
594}
595
596/*
597 * (Yet another) pagetable walker. This one is intended for pinning a
598 * pagetable. This means that it walks a pagetable and calls the
599 * callback function on each page it finds making up the page table,
600 * at every level. It walks the entire pagetable, but it only bothers
601 * pinning pte pages which are below limit. In the normal case this
602 * will be STACK_TOP_MAX, but at boot we need to pin up to
603 * FIXADDR_TOP.
604 *
605 * For 32-bit the important bit is that we don't pin beyond there,
606 * because then we start getting into Xen's ptes.
607 *
608 * For 64-bit, we must skip the Xen hole in the middle of the address
609 * space, just after the big x86-64 virtual hole.
610 */
611static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
612 int (*func)(struct mm_struct *mm, struct page *,
613 enum pt_level),
614 unsigned long limit)
615{
616 int i, nr, flush = 0;
617 unsigned hole_low, hole_high;
618
619 /* The limit is the last byte to be touched */
620 limit--;
621 BUG_ON(limit >= FIXADDR_TOP);
622
7e0563de
VK
623 /*
624 * 64-bit has a great big hole in the middle of the address
625 * space, which contains the Xen mappings. On 32-bit these
626 * will end up making a zero-sized hole and so is a no-op.
627 */
628 hole_low = pgd_index(USER_LIMIT);
629 hole_high = pgd_index(PAGE_OFFSET);
630
631 nr = pgd_index(limit) + 1;
632 for (i = 0; i < nr; i++) {
633 p4d_t *p4d;
634
635 if (i >= hole_low && i < hole_high)
636 continue;
637
638 if (pgd_none(pgd[i]))
639 continue;
640
641 p4d = p4d_offset(&pgd[i], 0);
7e0563de
VK
642 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
643 }
644
645 /* Do the top level last, so that the callbacks can use it as
646 a cue to do final things like tlb flushes. */
647 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
648
649 return flush;
650}
651
652static int xen_pgd_walk(struct mm_struct *mm,
653 int (*func)(struct mm_struct *mm, struct page *,
654 enum pt_level),
655 unsigned long limit)
656{
657 return __xen_pgd_walk(mm, mm->pgd, func, limit);
658}
659
660/* If we're using split pte locks, then take the page's lock and
661 return a pointer to it. Otherwise return NULL. */
662static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
663{
664 spinlock_t *ptl = NULL;
665
666#if USE_SPLIT_PTE_PTLOCKS
667 ptl = ptlock_ptr(page);
668 spin_lock_nest_lock(ptl, &mm->page_table_lock);
669#endif
670
671 return ptl;
672}
673
674static void xen_pte_unlock(void *v)
675{
676 spinlock_t *ptl = v;
677 spin_unlock(ptl);
678}
679
680static void xen_do_pin(unsigned level, unsigned long pfn)
681{
682 struct mmuext_op op;
683
684 op.cmd = level;
685 op.arg1.mfn = pfn_to_mfn(pfn);
686
687 xen_extend_mmuext_op(&op);
688}
689
690static int xen_pin_page(struct mm_struct *mm, struct page *page,
691 enum pt_level level)
692{
693 unsigned pgfl = TestSetPagePinned(page);
694 int flush;
695
696 if (pgfl)
697 flush = 0; /* already pinned */
698 else if (PageHighMem(page))
699 /* kmaps need flushing if we found an unpinned
700 highpage */
701 flush = 1;
702 else {
703 void *pt = lowmem_page_address(page);
704 unsigned long pfn = page_to_pfn(page);
705 struct multicall_space mcs = __xen_mc_entry(0);
706 spinlock_t *ptl;
707
708 flush = 0;
709
710 /*
711 * We need to hold the pagetable lock between the time
712 * we make the pagetable RO and when we actually pin
713 * it. If we don't, then other users may come in and
714 * attempt to update the pagetable by writing it,
715 * which will fail because the memory is RO but not
716 * pinned, so Xen won't do the trap'n'emulate.
717 *
718 * If we're using split pte locks, we can't hold the
719 * entire pagetable's worth of locks during the
720 * traverse, because we may wrap the preempt count (8
721 * bits). The solution is to mark RO and pin each PTE
722 * page while holding the lock. This means the number
723 * of locks we end up holding is never more than a
724 * batch size (~32 entries, at present).
725 *
726 * If we're not using split pte locks, we needn't pin
727 * the PTE pages independently, because we're
728 * protected by the overall pagetable lock.
729 */
730 ptl = NULL;
731 if (level == PT_PTE)
732 ptl = xen_pte_lock(page, mm);
733
734 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
735 pfn_pte(pfn, PAGE_KERNEL_RO),
736 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
737
738 if (ptl) {
739 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
740
741 /* Queue a deferred unlock for when this batch
742 is completed. */
743 xen_mc_callback(xen_pte_unlock, ptl);
744 }
745 }
746
747 return flush;
748}
749
750/* This is called just after a mm has been created, but it has not
751 been used yet. We need to make sure that its pagetable is all
752 read-only, and can be pinned. */
753static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
754{
755 trace_xen_mmu_pgd_pin(mm, pgd);
756
757 xen_mc_batch();
758
759 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
760 /* re-enable interrupts for flushing */
761 xen_mc_issue(0);
762
763 kmap_flush_unused();
764
765 xen_mc_batch();
766 }
767
768#ifdef CONFIG_X86_64
769 {
770 pgd_t *user_pgd = xen_get_user_pgd(pgd);
771
772 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
773
774 if (user_pgd) {
775 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
776 xen_do_pin(MMUEXT_PIN_L4_TABLE,
777 PFN_DOWN(__pa(user_pgd)));
778 }
779 }
780#else /* CONFIG_X86_32 */
781#ifdef CONFIG_X86_PAE
782 /* Need to make sure unshared kernel PMD is pinnable */
783 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
784 PT_PMD);
785#endif
786 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
787#endif /* CONFIG_X86_64 */
788 xen_mc_issue(0);
789}
790
791static void xen_pgd_pin(struct mm_struct *mm)
792{
793 __xen_pgd_pin(mm, mm->pgd);
794}
795
796/*
797 * On save, we need to pin all pagetables to make sure they get their
798 * mfns turned into pfns. Search the list for any unpinned pgds and pin
799 * them (unpinned pgds are not currently in use, probably because the
800 * process is under construction or destruction).
801 *
802 * Expected to be called in stop_machine() ("equivalent to taking
803 * every spinlock in the system"), so the locking doesn't really
804 * matter all that much.
805 */
806void xen_mm_pin_all(void)
807{
808 struct page *page;
809
810 spin_lock(&pgd_lock);
811
812 list_for_each_entry(page, &pgd_list, lru) {
813 if (!PagePinned(page)) {
814 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
815 SetPageSavePinned(page);
816 }
817 }
818
819 spin_unlock(&pgd_lock);
820}
821
822/*
823 * The init_mm pagetable is really pinned as soon as its created, but
824 * that's before we have page structures to store the bits. So do all
825 * the book-keeping now.
826 */
827static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
828 enum pt_level level)
829{
830 SetPagePinned(page);
831 return 0;
832}
833
834static void __init xen_mark_init_mm_pinned(void)
835{
836 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
837}
838
839static int xen_unpin_page(struct mm_struct *mm, struct page *page,
840 enum pt_level level)
841{
842 unsigned pgfl = TestClearPagePinned(page);
843
844 if (pgfl && !PageHighMem(page)) {
845 void *pt = lowmem_page_address(page);
846 unsigned long pfn = page_to_pfn(page);
847 spinlock_t *ptl = NULL;
848 struct multicall_space mcs;
849
850 /*
851 * Do the converse to pin_page. If we're using split
852 * pte locks, we must be holding the lock for while
853 * the pte page is unpinned but still RO to prevent
854 * concurrent updates from seeing it in this
855 * partially-pinned state.
856 */
857 if (level == PT_PTE) {
858 ptl = xen_pte_lock(page, mm);
859
860 if (ptl)
861 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
862 }
863
864 mcs = __xen_mc_entry(0);
865
866 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
867 pfn_pte(pfn, PAGE_KERNEL),
868 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
869
870 if (ptl) {
871 /* unlock when batch completed */
872 xen_mc_callback(xen_pte_unlock, ptl);
873 }
874 }
875
876 return 0; /* never need to flush on unpin */
877}
878
879/* Release a pagetables pages back as normal RW */
880static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
881{
882 trace_xen_mmu_pgd_unpin(mm, pgd);
883
884 xen_mc_batch();
885
886 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
887
888#ifdef CONFIG_X86_64
889 {
890 pgd_t *user_pgd = xen_get_user_pgd(pgd);
891
892 if (user_pgd) {
893 xen_do_pin(MMUEXT_UNPIN_TABLE,
894 PFN_DOWN(__pa(user_pgd)));
895 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
896 }
897 }
898#endif
899
900#ifdef CONFIG_X86_PAE
901 /* Need to make sure unshared kernel PMD is unpinned */
902 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
903 PT_PMD);
904#endif
905
906 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
907
908 xen_mc_issue(0);
909}
910
911static void xen_pgd_unpin(struct mm_struct *mm)
912{
913 __xen_pgd_unpin(mm, mm->pgd);
914}
915
916/*
917 * On resume, undo any pinning done at save, so that the rest of the
918 * kernel doesn't see any unexpected pinned pagetables.
919 */
920void xen_mm_unpin_all(void)
921{
922 struct page *page;
923
924 spin_lock(&pgd_lock);
925
926 list_for_each_entry(page, &pgd_list, lru) {
927 if (PageSavePinned(page)) {
928 BUG_ON(!PagePinned(page));
929 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
930 ClearPageSavePinned(page);
931 }
932 }
933
934 spin_unlock(&pgd_lock);
935}
936
937static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
938{
939 spin_lock(&next->page_table_lock);
940 xen_pgd_pin(next);
941 spin_unlock(&next->page_table_lock);
942}
943
944static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
945{
946 spin_lock(&mm->page_table_lock);
947 xen_pgd_pin(mm);
948 spin_unlock(&mm->page_table_lock);
949}
950
3d28ebce 951static void drop_mm_ref_this_cpu(void *info)
7e0563de
VK
952{
953 struct mm_struct *mm = info;
7e0563de 954
3d28ebce 955 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
7e0563de
VK
956 leave_mm(smp_processor_id());
957
3d28ebce
AL
958 /*
959 * If this cpu still has a stale cr3 reference, then make sure
960 * it has been flushed.
961 */
7e0563de 962 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
3d28ebce 963 xen_mc_flush();
7e0563de
VK
964}
965
3d28ebce
AL
966#ifdef CONFIG_SMP
967/*
968 * Another cpu may still have their %cr3 pointing at the pagetable, so
969 * we need to repoint it somewhere else before we can unpin it.
970 */
7e0563de
VK
971static void xen_drop_mm_ref(struct mm_struct *mm)
972{
973 cpumask_var_t mask;
974 unsigned cpu;
975
3d28ebce 976 drop_mm_ref_this_cpu(mm);
7e0563de
VK
977
978 /* Get the "official" set of cpus referring to our pagetable. */
979 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
980 for_each_online_cpu(cpu) {
94b1b03b 981 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
7e0563de 982 continue;
3d28ebce 983 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
7e0563de
VK
984 }
985 return;
986 }
7e0563de 987
3d28ebce
AL
988 /*
989 * It's possible that a vcpu may have a stale reference to our
990 * cr3, because its in lazy mode, and it hasn't yet flushed
991 * its set of pending hypercalls yet. In this case, we can
992 * look at its actual current cr3 value, and force it to flush
993 * if needed.
994 */
94b1b03b 995 cpumask_clear(mask);
7e0563de
VK
996 for_each_online_cpu(cpu) {
997 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
998 cpumask_set_cpu(cpu, mask);
999 }
1000
3d28ebce 1001 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
7e0563de
VK
1002 free_cpumask_var(mask);
1003}
1004#else
1005static void xen_drop_mm_ref(struct mm_struct *mm)
1006{
3d28ebce 1007 drop_mm_ref_this_cpu(mm);
7e0563de
VK
1008}
1009#endif
1010
1011/*
1012 * While a process runs, Xen pins its pagetables, which means that the
1013 * hypervisor forces it to be read-only, and it controls all updates
1014 * to it. This means that all pagetable updates have to go via the
1015 * hypervisor, which is moderately expensive.
1016 *
1017 * Since we're pulling the pagetable down, we switch to use init_mm,
1018 * unpin old process pagetable and mark it all read-write, which
1019 * allows further operations on it to be simple memory accesses.
1020 *
1021 * The only subtle point is that another CPU may be still using the
1022 * pagetable because of lazy tlb flushing. This means we need need to
1023 * switch all CPUs off this pagetable before we can unpin it.
1024 */
1025static void xen_exit_mmap(struct mm_struct *mm)
1026{
1027 get_cpu(); /* make sure we don't move around */
1028 xen_drop_mm_ref(mm);
1029 put_cpu();
1030
1031 spin_lock(&mm->page_table_lock);
1032
1033 /* pgd may not be pinned in the error exit path of execve */
1034 if (xen_page_pinned(mm->pgd))
1035 xen_pgd_unpin(mm);
1036
1037 spin_unlock(&mm->page_table_lock);
1038}
1039
1040static void xen_post_allocator_init(void);
1041
1042static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1043{
1044 struct mmuext_op op;
1045
1046 op.cmd = cmd;
1047 op.arg1.mfn = pfn_to_mfn(pfn);
1048 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1049 BUG();
1050}
1051
1052#ifdef CONFIG_X86_64
1053static void __init xen_cleanhighmap(unsigned long vaddr,
1054 unsigned long vaddr_end)
1055{
1056 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1057 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1058
1059 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1060 * We include the PMD passed in on _both_ boundaries. */
1061 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1062 pmd++, vaddr += PMD_SIZE) {
1063 if (pmd_none(*pmd))
1064 continue;
1065 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1066 set_pmd(pmd, __pmd(0));
1067 }
1068 /* In case we did something silly, we should crash in this function
1069 * instead of somewhere later and be confusing. */
1070 xen_mc_flush();
1071}
1072
1073/*
1074 * Make a page range writeable and free it.
1075 */
1076static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1077{
1078 void *vaddr = __va(paddr);
1079 void *vaddr_end = vaddr + size;
1080
1081 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1082 make_lowmem_page_readwrite(vaddr);
1083
1084 memblock_free(paddr, size);
1085}
1086
1087static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1088{
1089 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1090
1091 if (unpin)
1092 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1093 ClearPagePinned(virt_to_page(__va(pa)));
1094 xen_free_ro_pages(pa, PAGE_SIZE);
1095}
1096
1097static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1098{
1099 unsigned long pa;
1100 pte_t *pte_tbl;
1101 int i;
1102
1103 if (pmd_large(*pmd)) {
1104 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1105 xen_free_ro_pages(pa, PMD_SIZE);
1106 return;
1107 }
1108
1109 pte_tbl = pte_offset_kernel(pmd, 0);
1110 for (i = 0; i < PTRS_PER_PTE; i++) {
1111 if (pte_none(pte_tbl[i]))
1112 continue;
1113 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1114 xen_free_ro_pages(pa, PAGE_SIZE);
1115 }
1116 set_pmd(pmd, __pmd(0));
1117 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1118}
1119
1120static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1121{
1122 unsigned long pa;
1123 pmd_t *pmd_tbl;
1124 int i;
1125
1126 if (pud_large(*pud)) {
1127 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1128 xen_free_ro_pages(pa, PUD_SIZE);
1129 return;
1130 }
1131
1132 pmd_tbl = pmd_offset(pud, 0);
1133 for (i = 0; i < PTRS_PER_PMD; i++) {
1134 if (pmd_none(pmd_tbl[i]))
1135 continue;
1136 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1137 }
1138 set_pud(pud, __pud(0));
1139 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1140}
1141
1142static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1143{
1144 unsigned long pa;
1145 pud_t *pud_tbl;
1146 int i;
1147
1148 if (p4d_large(*p4d)) {
1149 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1150 xen_free_ro_pages(pa, P4D_SIZE);
1151 return;
1152 }
1153
1154 pud_tbl = pud_offset(p4d, 0);
1155 for (i = 0; i < PTRS_PER_PUD; i++) {
1156 if (pud_none(pud_tbl[i]))
1157 continue;
1158 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1159 }
1160 set_p4d(p4d, __p4d(0));
1161 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1162}
1163
1164/*
1165 * Since it is well isolated we can (and since it is perhaps large we should)
1166 * also free the page tables mapping the initial P->M table.
1167 */
1168static void __init xen_cleanmfnmap(unsigned long vaddr)
1169{
1170 pgd_t *pgd;
1171 p4d_t *p4d;
7e0563de
VK
1172 bool unpin;
1173
1174 unpin = (vaddr == 2 * PGDIR_SIZE);
1175 vaddr &= PMD_MASK;
1176 pgd = pgd_offset_k(vaddr);
1177 p4d = p4d_offset(pgd, 0);
af02cd97
KS
1178 if (!p4d_none(*p4d))
1179 xen_cleanmfnmap_p4d(p4d, unpin);
7e0563de
VK
1180}
1181
1182static void __init xen_pagetable_p2m_free(void)
1183{
1184 unsigned long size;
1185 unsigned long addr;
1186
1187 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1188
1189 /* No memory or already called. */
1190 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1191 return;
1192
1193 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1194 memset((void *)xen_start_info->mfn_list, 0xff, size);
1195
1196 addr = xen_start_info->mfn_list;
1197 /*
1198 * We could be in __ka space.
1199 * We roundup to the PMD, which means that if anybody at this stage is
1200 * using the __ka address of xen_start_info or
1201 * xen_start_info->shared_info they are in going to crash. Fortunatly
1202 * we have already revectored in xen_setup_kernel_pagetable and in
1203 * xen_setup_shared_info.
1204 */
1205 size = roundup(size, PMD_SIZE);
1206
1207 if (addr >= __START_KERNEL_map) {
1208 xen_cleanhighmap(addr, addr + size);
1209 size = PAGE_ALIGN(xen_start_info->nr_pages *
1210 sizeof(unsigned long));
1211 memblock_free(__pa(addr), size);
1212 } else {
1213 xen_cleanmfnmap(addr);
1214 }
1215}
1216
1217static void __init xen_pagetable_cleanhighmap(void)
1218{
1219 unsigned long size;
1220 unsigned long addr;
1221
1222 /* At this stage, cleanup_highmap has already cleaned __ka space
1223 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1224 * the ramdisk). We continue on, erasing PMD entries that point to page
1225 * tables - do note that they are accessible at this stage via __va.
0d805ee7
ZD
1226 * As Xen is aligning the memory end to a 4MB boundary, for good
1227 * measure we also round up to PMD_SIZE * 2 - which means that if
7e0563de
VK
1228 * anybody is using __ka address to the initial boot-stack - and try
1229 * to use it - they are going to crash. The xen_start_info has been
1230 * taken care of already in xen_setup_kernel_pagetable. */
1231 addr = xen_start_info->pt_base;
0d805ee7 1232 size = xen_start_info->nr_pt_frames * PAGE_SIZE;
7e0563de 1233
0d805ee7 1234 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
7e0563de 1235 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
7e0563de
VK
1236}
1237#endif
1238
1239static void __init xen_pagetable_p2m_setup(void)
1240{
7e0563de
VK
1241 xen_vmalloc_p2m_tree();
1242
1243#ifdef CONFIG_X86_64
1244 xen_pagetable_p2m_free();
1245
1246 xen_pagetable_cleanhighmap();
1247#endif
1248 /* And revector! Bye bye old array */
1249 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1250}
1251
1252static void __init xen_pagetable_init(void)
1253{
1254 paging_init();
1255 xen_post_allocator_init();
1256
1257 xen_pagetable_p2m_setup();
1258
1259 /* Allocate and initialize top and mid mfn levels for p2m structure */
1260 xen_build_mfn_list_list();
1261
1262 /* Remap memory freed due to conflicts with E820 map */
989513a7 1263 xen_remap_memory();
7e0563de
VK
1264
1265 xen_setup_shared_info();
1266}
1267static void xen_write_cr2(unsigned long cr2)
1268{
1269 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1270}
1271
1272static unsigned long xen_read_cr2(void)
1273{
1274 return this_cpu_read(xen_vcpu)->arch.cr2;
1275}
1276
1277unsigned long xen_read_cr2_direct(void)
1278{
1279 return this_cpu_read(xen_vcpu_info.arch.cr2);
1280}
1281
9a19a93b 1282static noinline void xen_flush_tlb(void)
7e0563de
VK
1283{
1284 struct mmuext_op *op;
1285 struct multicall_space mcs;
1286
7e0563de
VK
1287 preempt_disable();
1288
1289 mcs = xen_mc_entry(sizeof(*op));
1290
1291 op = mcs.args;
1292 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1293 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1294
1295 xen_mc_issue(PARAVIRT_LAZY_MMU);
1296
1297 preempt_enable();
1298}
1299
208beef6 1300static void xen_flush_tlb_one_user(unsigned long addr)
7e0563de
VK
1301{
1302 struct mmuext_op *op;
1303 struct multicall_space mcs;
1304
208beef6 1305 trace_xen_mmu_flush_tlb_one_user(addr);
7e0563de
VK
1306
1307 preempt_disable();
1308
1309 mcs = xen_mc_entry(sizeof(*op));
1310 op = mcs.args;
1311 op->cmd = MMUEXT_INVLPG_LOCAL;
1312 op->arg1.linear_addr = addr & PAGE_MASK;
1313 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1314
1315 xen_mc_issue(PARAVIRT_LAZY_MMU);
1316
1317 preempt_enable();
1318}
1319
1320static void xen_flush_tlb_others(const struct cpumask *cpus,
a2055abe 1321 const struct flush_tlb_info *info)
7e0563de
VK
1322{
1323 struct {
1324 struct mmuext_op op;
1325#ifdef CONFIG_SMP
1326 DECLARE_BITMAP(mask, num_processors);
1327#else
1328 DECLARE_BITMAP(mask, NR_CPUS);
1329#endif
1330 } *args;
1331 struct multicall_space mcs;
1332
a2055abe 1333 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
7e0563de
VK
1334
1335 if (cpumask_empty(cpus))
1336 return; /* nothing to do */
1337
1338 mcs = xen_mc_entry(sizeof(*args));
1339 args = mcs.args;
1340 args->op.arg2.vcpumask = to_cpumask(args->mask);
1341
1342 /* Remove us, and any offline CPUS. */
1343 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1344 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1345
1346 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
a2055abe
AL
1347 if (info->end != TLB_FLUSH_ALL &&
1348 (info->end - info->start) <= PAGE_SIZE) {
7e0563de 1349 args->op.cmd = MMUEXT_INVLPG_MULTI;
a2055abe 1350 args->op.arg1.linear_addr = info->start;
7e0563de
VK
1351 }
1352
1353 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1354
1355 xen_mc_issue(PARAVIRT_LAZY_MMU);
1356}
1357
1358static unsigned long xen_read_cr3(void)
1359{
1360 return this_cpu_read(xen_cr3);
1361}
1362
1363static void set_current_cr3(void *v)
1364{
1365 this_cpu_write(xen_current_cr3, (unsigned long)v);
1366}
1367
1368static void __xen_write_cr3(bool kernel, unsigned long cr3)
1369{
1370 struct mmuext_op op;
1371 unsigned long mfn;
1372
1373 trace_xen_mmu_write_cr3(kernel, cr3);
1374
1375 if (cr3)
1376 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1377 else
1378 mfn = 0;
1379
1380 WARN_ON(mfn == 0 && kernel);
1381
1382 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1383 op.arg1.mfn = mfn;
1384
1385 xen_extend_mmuext_op(&op);
1386
1387 if (kernel) {
1388 this_cpu_write(xen_cr3, cr3);
1389
1390 /* Update xen_current_cr3 once the batch has actually
1391 been submitted. */
1392 xen_mc_callback(set_current_cr3, (void *)cr3);
1393 }
1394}
1395static void xen_write_cr3(unsigned long cr3)
1396{
1397 BUG_ON(preemptible());
1398
1399 xen_mc_batch(); /* disables interrupts */
1400
1401 /* Update while interrupts are disabled, so its atomic with
1402 respect to ipis */
1403 this_cpu_write(xen_cr3, cr3);
1404
1405 __xen_write_cr3(true, cr3);
1406
1407#ifdef CONFIG_X86_64
1408 {
1409 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1410 if (user_pgd)
1411 __xen_write_cr3(false, __pa(user_pgd));
1412 else
1413 __xen_write_cr3(false, 0);
1414 }
1415#endif
1416
1417 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1418}
1419
1420#ifdef CONFIG_X86_64
1421/*
1422 * At the start of the day - when Xen launches a guest, it has already
1423 * built pagetables for the guest. We diligently look over them
1424 * in xen_setup_kernel_pagetable and graft as appropriate them in the
65ade2f8
KS
1425 * init_top_pgt and its friends. Then when we are happy we load
1426 * the new init_top_pgt - and continue on.
7e0563de
VK
1427 *
1428 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1429 * up the rest of the pagetables. When it has completed it loads the cr3.
1430 * N.B. that baremetal would start at 'start_kernel' (and the early
1431 * #PF handler would create bootstrap pagetables) - so we are running
1432 * with the same assumptions as what to do when write_cr3 is executed
1433 * at this point.
1434 *
1435 * Since there are no user-page tables at all, we have two variants
1436 * of xen_write_cr3 - the early bootup (this one), and the late one
1437 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1438 * the Linux kernel and user-space are both in ring 3 while the
1439 * hypervisor is in ring 0.
1440 */
1441static void __init xen_write_cr3_init(unsigned long cr3)
1442{
1443 BUG_ON(preemptible());
1444
1445 xen_mc_batch(); /* disables interrupts */
1446
1447 /* Update while interrupts are disabled, so its atomic with
1448 respect to ipis */
1449 this_cpu_write(xen_cr3, cr3);
1450
1451 __xen_write_cr3(true, cr3);
1452
1453 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1454}
1455#endif
1456
1457static int xen_pgd_alloc(struct mm_struct *mm)
1458{
1459 pgd_t *pgd = mm->pgd;
1460 int ret = 0;
1461
1462 BUG_ON(PagePinned(virt_to_page(pgd)));
1463
1464#ifdef CONFIG_X86_64
1465 {
1466 struct page *page = virt_to_page(pgd);
1467 pgd_t *user_pgd;
1468
1469 BUG_ON(page->private != 0);
1470
1471 ret = -ENOMEM;
1472
1473 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1474 page->private = (unsigned long)user_pgd;
1475
1476 if (user_pgd != NULL) {
1477#ifdef CONFIG_X86_VSYSCALL_EMULATION
1478 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1479 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1480#endif
1481 ret = 0;
1482 }
1483
1484 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1485 }
1486#endif
1487 return ret;
1488}
1489
1490static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1491{
1492#ifdef CONFIG_X86_64
1493 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1494
1495 if (user_pgd)
1496 free_page((unsigned long)user_pgd);
1497#endif
1498}
1499
1500/*
1501 * Init-time set_pte while constructing initial pagetables, which
1502 * doesn't allow RO page table pages to be remapped RW.
1503 *
1504 * If there is no MFN for this PFN then this page is initially
1505 * ballooned out so clear the PTE (as in decrease_reservation() in
1506 * drivers/xen/balloon.c).
1507 *
1508 * Many of these PTE updates are done on unpinned and writable pages
1509 * and doing a hypercall for these is unnecessary and expensive. At
1510 * this point it is not possible to tell if a page is pinned or not,
1511 * so always write the PTE directly and rely on Xen trapping and
1512 * emulating any updates as necessary.
1513 */
1514__visible pte_t xen_make_pte_init(pteval_t pte)
1515{
1516#ifdef CONFIG_X86_64
1517 unsigned long pfn;
1518
1519 /*
1520 * Pages belonging to the initial p2m list mapped outside the default
1521 * address range must be mapped read-only. This region contains the
1522 * page tables for mapping the p2m list, too, and page tables MUST be
1523 * mapped read-only.
1524 */
1525 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1526 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1527 pfn >= xen_start_info->first_p2m_pfn &&
1528 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1529 pte &= ~_PAGE_RW;
1530#endif
1531 pte = pte_pfn_to_mfn(pte);
1532 return native_make_pte(pte);
1533}
1534PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1535
1536static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1537{
1538#ifdef CONFIG_X86_32
1539 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1540 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1541 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1542 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1543 pte_val_ma(pte));
1544#endif
13b23ccf 1545 __xen_set_pte(ptep, pte);
7e0563de
VK
1546}
1547
1548/* Early in boot, while setting up the initial pagetable, assume
1549 everything is pinned. */
1550static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1551{
1552#ifdef CONFIG_FLATMEM
1553 BUG_ON(mem_map); /* should only be used early */
1554#endif
1555 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1556 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1557}
1558
1559/* Used for pmd and pud */
1560static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1561{
1562#ifdef CONFIG_FLATMEM
1563 BUG_ON(mem_map); /* should only be used early */
1564#endif
1565 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1566}
1567
1568/* Early release_pte assumes that all pts are pinned, since there's
1569 only init_mm and anything attached to that is pinned. */
1570static void __init xen_release_pte_init(unsigned long pfn)
1571{
1572 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1573 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1574}
1575
1576static void __init xen_release_pmd_init(unsigned long pfn)
1577{
1578 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1579}
1580
1581static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1582{
1583 struct multicall_space mcs;
1584 struct mmuext_op *op;
1585
1586 mcs = __xen_mc_entry(sizeof(*op));
1587 op = mcs.args;
1588 op->cmd = cmd;
1589 op->arg1.mfn = pfn_to_mfn(pfn);
1590
1591 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1592}
1593
1594static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1595{
1596 struct multicall_space mcs;
1597 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1598
1599 mcs = __xen_mc_entry(0);
1600 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1601 pfn_pte(pfn, prot), 0);
1602}
1603
1604/* This needs to make sure the new pte page is pinned iff its being
1605 attached to a pinned pagetable. */
1606static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1607 unsigned level)
1608{
1609 bool pinned = PagePinned(virt_to_page(mm->pgd));
1610
1611 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1612
1613 if (pinned) {
1614 struct page *page = pfn_to_page(pfn);
1615
1616 SetPagePinned(page);
1617
1618 if (!PageHighMem(page)) {
1619 xen_mc_batch();
1620
1621 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1622
1623 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1624 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1625
1626 xen_mc_issue(PARAVIRT_LAZY_MMU);
1627 } else {
1628 /* make sure there are no stray mappings of
1629 this page */
1630 kmap_flush_unused();
1631 }
1632 }
1633}
1634
1635static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1636{
1637 xen_alloc_ptpage(mm, pfn, PT_PTE);
1638}
1639
1640static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1641{
1642 xen_alloc_ptpage(mm, pfn, PT_PMD);
1643}
1644
1645/* This should never happen until we're OK to use struct page */
1646static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1647{
1648 struct page *page = pfn_to_page(pfn);
1649 bool pinned = PagePinned(page);
1650
1651 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1652
1653 if (pinned) {
1654 if (!PageHighMem(page)) {
1655 xen_mc_batch();
1656
1657 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1658 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1659
1660 __set_pfn_prot(pfn, PAGE_KERNEL);
1661
1662 xen_mc_issue(PARAVIRT_LAZY_MMU);
1663 }
1664 ClearPagePinned(page);
1665 }
1666}
1667
1668static void xen_release_pte(unsigned long pfn)
1669{
1670 xen_release_ptpage(pfn, PT_PTE);
1671}
1672
1673static void xen_release_pmd(unsigned long pfn)
1674{
1675 xen_release_ptpage(pfn, PT_PMD);
1676}
1677
af02cd97 1678#ifdef CONFIG_X86_64
7e0563de
VK
1679static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1680{
1681 xen_alloc_ptpage(mm, pfn, PT_PUD);
1682}
1683
1684static void xen_release_pud(unsigned long pfn)
1685{
1686 xen_release_ptpage(pfn, PT_PUD);
1687}
1688#endif
1689
1690void __init xen_reserve_top(void)
1691{
1692#ifdef CONFIG_X86_32
1693 unsigned long top = HYPERVISOR_VIRT_START;
1694 struct xen_platform_parameters pp;
1695
1696 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1697 top = pp.virt_start;
1698
1699 reserve_top_address(-top);
1700#endif /* CONFIG_X86_32 */
1701}
1702
1703/*
1704 * Like __va(), but returns address in the kernel mapping (which is
1705 * all we have until the physical memory mapping has been set up.
1706 */
1707static void * __init __ka(phys_addr_t paddr)
1708{
1709#ifdef CONFIG_X86_64
1710 return (void *)(paddr + __START_KERNEL_map);
1711#else
1712 return __va(paddr);
1713#endif
1714}
1715
1716/* Convert a machine address to physical address */
1717static unsigned long __init m2p(phys_addr_t maddr)
1718{
1719 phys_addr_t paddr;
1720
1721 maddr &= PTE_PFN_MASK;
1722 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1723
1724 return paddr;
1725}
1726
1727/* Convert a machine address to kernel virtual */
1728static void * __init m2v(phys_addr_t maddr)
1729{
1730 return __ka(m2p(maddr));
1731}
1732
1733/* Set the page permissions on an identity-mapped pages */
1734static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1735 unsigned long flags)
1736{
1737 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1738 pte_t pte = pfn_pte(pfn, prot);
1739
1740 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1741 BUG();
1742}
1743static void __init set_page_prot(void *addr, pgprot_t prot)
1744{
1745 return set_page_prot_flags(addr, prot, UVMF_NONE);
1746}
1747#ifdef CONFIG_X86_32
1748static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1749{
1750 unsigned pmdidx, pteidx;
1751 unsigned ident_pte;
1752 unsigned long pfn;
1753
1754 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1755 PAGE_SIZE);
1756
1757 ident_pte = 0;
1758 pfn = 0;
1759 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1760 pte_t *pte_page;
1761
1762 /* Reuse or allocate a page of ptes */
1763 if (pmd_present(pmd[pmdidx]))
1764 pte_page = m2v(pmd[pmdidx].pmd);
1765 else {
1766 /* Check for free pte pages */
1767 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1768 break;
1769
1770 pte_page = &level1_ident_pgt[ident_pte];
1771 ident_pte += PTRS_PER_PTE;
1772
1773 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1774 }
1775
1776 /* Install mappings */
1777 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1778 pte_t pte;
1779
1780 if (pfn > max_pfn_mapped)
1781 max_pfn_mapped = pfn;
1782
1783 if (!pte_none(pte_page[pteidx]))
1784 continue;
1785
1786 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1787 pte_page[pteidx] = pte;
1788 }
1789 }
1790
1791 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1792 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1793
1794 set_page_prot(pmd, PAGE_KERNEL_RO);
1795}
1796#endif
1797void __init xen_setup_machphys_mapping(void)
1798{
1799 struct xen_machphys_mapping mapping;
1800
1801 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1802 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1803 machine_to_phys_nr = mapping.max_mfn + 1;
1804 } else {
1805 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1806 }
1807#ifdef CONFIG_X86_32
1808 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1809 < machine_to_phys_mapping);
1810#endif
1811}
1812
1813#ifdef CONFIG_X86_64
1814static void __init convert_pfn_mfn(void *v)
1815{
1816 pte_t *pte = v;
1817 int i;
1818
1819 /* All levels are converted the same way, so just treat them
1820 as ptes. */
1821 for (i = 0; i < PTRS_PER_PTE; i++)
1822 pte[i] = xen_make_pte(pte[i].pte);
1823}
1824static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1825 unsigned long addr)
1826{
1827 if (*pt_base == PFN_DOWN(__pa(addr))) {
1828 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1829 clear_page((void *)addr);
1830 (*pt_base)++;
1831 }
1832 if (*pt_end == PFN_DOWN(__pa(addr))) {
1833 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1834 clear_page((void *)addr);
1835 (*pt_end)--;
1836 }
1837}
1838/*
1839 * Set up the initial kernel pagetable.
1840 *
1841 * We can construct this by grafting the Xen provided pagetable into
1842 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1843 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1844 * kernel has a physical mapping to start with - but that's enough to
1845 * get __va working. We need to fill in the rest of the physical
1846 * mapping once some sort of allocator has been set up.
1847 */
1848void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1849{
1850 pud_t *l3;
1851 pmd_t *l2;
1852 unsigned long addr[3];
1853 unsigned long pt_base, pt_end;
1854 unsigned i;
1855
1856 /* max_pfn_mapped is the last pfn mapped in the initial memory
1857 * mappings. Considering that on Xen after the kernel mappings we
1858 * have the mappings of some pages that don't exist in pfn space, we
1859 * set max_pfn_mapped to the last real pfn mapped. */
1860 if (xen_start_info->mfn_list < __START_KERNEL_map)
1861 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1862 else
1863 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1864
1865 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1866 pt_end = pt_base + xen_start_info->nr_pt_frames;
1867
1868 /* Zap identity mapping */
65ade2f8 1869 init_top_pgt[0] = __pgd(0);
7e0563de 1870
989513a7 1871 /* Pre-constructed entries are in pfn, so convert to mfn */
d412ab7c 1872 /* L4[273] -> level3_ident_pgt */
989513a7 1873 /* L4[511] -> level3_kernel_pgt */
65ade2f8 1874 convert_pfn_mfn(init_top_pgt);
7e0563de 1875
989513a7
JG
1876 /* L3_i[0] -> level2_ident_pgt */
1877 convert_pfn_mfn(level3_ident_pgt);
1878 /* L3_k[510] -> level2_kernel_pgt */
1879 /* L3_k[511] -> level2_fixmap_pgt */
1880 convert_pfn_mfn(level3_kernel_pgt);
1881
4fe780c1 1882 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
989513a7 1883 convert_pfn_mfn(level2_fixmap_pgt);
7e0563de 1884
7e0563de
VK
1885 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1886 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1887 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1888
1889 addr[0] = (unsigned long)pgd;
1890 addr[1] = (unsigned long)l3;
1891 addr[2] = (unsigned long)l2;
d412ab7c
KS
1892 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1893 * Both L4[273][0] and L4[511][510] have entries that point to the same
7e0563de
VK
1894 * L2 (PMD) tables. Meaning that if you modify it in __va space
1895 * it will be also modified in the __ka space! (But if you just
1896 * modify the PMD table to point to other PTE's or none, then you
1897 * are OK - which is what cleanup_highmap does) */
1898 copy_page(level2_ident_pgt, l2);
1899 /* Graft it onto L4[511][510] */
1900 copy_page(level2_kernel_pgt, l2);
1901
c7f40ff4
JB
1902 /*
1903 * Zap execute permission from the ident map. Due to the sharing of
1904 * L1 entries we need to do this in the L2.
1905 */
1906 if (__supported_pte_mask & _PAGE_NX) {
1907 for (i = 0; i < PTRS_PER_PMD; ++i) {
1908 if (pmd_none(level2_ident_pgt[i]))
1909 continue;
1910 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1911 }
1912 }
1913
7e0563de
VK
1914 /* Copy the initial P->M table mappings if necessary. */
1915 i = pgd_index(xen_start_info->mfn_list);
1916 if (i && i < pgd_index(__START_KERNEL_map))
65ade2f8 1917 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
7e0563de 1918
989513a7 1919 /* Make pagetable pieces RO */
65ade2f8 1920 set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
989513a7
JG
1921 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1922 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1923 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1924 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1925 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1926 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
4fe780c1
FT
1927
1928 for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1929 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1930 PAGE_KERNEL_RO);
1931 }
989513a7
JG
1932
1933 /* Pin down new L4 */
1934 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
65ade2f8 1935 PFN_DOWN(__pa_symbol(init_top_pgt)));
989513a7
JG
1936
1937 /* Unpin Xen-provided one */
1938 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
7e0563de 1939
989513a7
JG
1940 /*
1941 * At this stage there can be no user pgd, and no page structure to
1942 * attach it to, so make sure we just set kernel pgd.
1943 */
1944 xen_mc_batch();
65ade2f8 1945 __xen_write_cr3(true, __pa(init_top_pgt));
989513a7 1946 xen_mc_issue(PARAVIRT_LAZY_CPU);
7e0563de
VK
1947
1948 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1949 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1950 * the initial domain. For guests using the toolstack, they are in:
1951 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1952 * rip out the [L4] (pgd), but for guests we shave off three pages.
1953 */
1954 for (i = 0; i < ARRAY_SIZE(addr); i++)
1955 check_pt_base(&pt_base, &pt_end, addr[i]);
1956
1957 /* Our (by three pages) smaller Xen pagetable that we are using */
1958 xen_pt_base = PFN_PHYS(pt_base);
1959 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1960 memblock_reserve(xen_pt_base, xen_pt_size);
1961
1962 /* Revector the xen_start_info */
1963 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1964}
1965
1966/*
1967 * Read a value from a physical address.
1968 */
1969static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1970{
1971 unsigned long *vaddr;
1972 unsigned long val;
1973
1974 vaddr = early_memremap_ro(addr, sizeof(val));
1975 val = *vaddr;
1976 early_memunmap(vaddr, sizeof(val));
1977 return val;
1978}
1979
1980/*
1981 * Translate a virtual address to a physical one without relying on mapped
69861e0a
JG
1982 * page tables. Don't rely on big pages being aligned in (guest) physical
1983 * space!
7e0563de
VK
1984 */
1985static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1986{
1987 phys_addr_t pa;
1988 pgd_t pgd;
1989 pud_t pud;
1990 pmd_t pmd;
1991 pte_t pte;
1992
6c690ee1 1993 pa = read_cr3_pa();
7e0563de
VK
1994 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1995 sizeof(pgd)));
1996 if (!pgd_present(pgd))
1997 return 0;
1998
1999 pa = pgd_val(pgd) & PTE_PFN_MASK;
2000 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2001 sizeof(pud)));
2002 if (!pud_present(pud))
2003 return 0;
69861e0a 2004 pa = pud_val(pud) & PTE_PFN_MASK;
7e0563de
VK
2005 if (pud_large(pud))
2006 return pa + (vaddr & ~PUD_MASK);
2007
2008 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2009 sizeof(pmd)));
2010 if (!pmd_present(pmd))
2011 return 0;
69861e0a 2012 pa = pmd_val(pmd) & PTE_PFN_MASK;
7e0563de
VK
2013 if (pmd_large(pmd))
2014 return pa + (vaddr & ~PMD_MASK);
2015
2016 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2017 sizeof(pte)));
2018 if (!pte_present(pte))
2019 return 0;
2020 pa = pte_pfn(pte) << PAGE_SHIFT;
2021
2022 return pa | (vaddr & ~PAGE_MASK);
2023}
2024
2025/*
2026 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2027 * this area.
2028 */
2029void __init xen_relocate_p2m(void)
2030{
af02cd97 2031 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
7e0563de 2032 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
af02cd97 2033 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
7e0563de
VK
2034 pte_t *pt;
2035 pmd_t *pmd;
2036 pud_t *pud;
7e0563de
VK
2037 pgd_t *pgd;
2038 unsigned long *new_p2m;
2039 int save_pud;
2040
2041 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2042 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2043 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2044 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2045 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
af02cd97 2046 n_frames = n_pte + n_pt + n_pmd + n_pud;
7e0563de
VK
2047
2048 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2049 if (!new_area) {
2050 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2051 BUG();
2052 }
2053
2054 /*
2055 * Setup the page tables for addressing the new p2m list.
2056 * We have asked the hypervisor to map the p2m list at the user address
2057 * PUD_SIZE. It may have done so, or it may have used a kernel space
2058 * address depending on the Xen version.
2059 * To avoid any possible virtual address collision, just use
2060 * 2 * PUD_SIZE for the new area.
2061 */
af02cd97 2062 pud_phys = new_area;
7e0563de
VK
2063 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2064 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2065 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2066
6c690ee1 2067 pgd = __va(read_cr3_pa());
7e0563de 2068 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
7e0563de 2069 save_pud = n_pud;
af02cd97
KS
2070 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2071 pud = early_memremap(pud_phys, PAGE_SIZE);
2072 clear_page(pud);
2073 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2074 idx_pmd++) {
2075 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2076 clear_page(pmd);
2077 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2078 idx_pt++) {
2079 pt = early_memremap(pt_phys, PAGE_SIZE);
2080 clear_page(pt);
2081 for (idx_pte = 0;
2082 idx_pte < min(n_pte, PTRS_PER_PTE);
2083 idx_pte++) {
2084 set_pte(pt + idx_pte,
2085 pfn_pte(p2m_pfn, PAGE_KERNEL));
2086 p2m_pfn++;
7e0563de 2087 }
af02cd97
KS
2088 n_pte -= PTRS_PER_PTE;
2089 early_memunmap(pt, PAGE_SIZE);
2090 make_lowmem_page_readonly(__va(pt_phys));
2091 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2092 PFN_DOWN(pt_phys));
2093 set_pmd(pmd + idx_pt,
2094 __pmd(_PAGE_TABLE | pt_phys));
2095 pt_phys += PAGE_SIZE;
7e0563de 2096 }
af02cd97
KS
2097 n_pt -= PTRS_PER_PMD;
2098 early_memunmap(pmd, PAGE_SIZE);
2099 make_lowmem_page_readonly(__va(pmd_phys));
2100 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2101 PFN_DOWN(pmd_phys));
2102 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2103 pmd_phys += PAGE_SIZE;
7e0563de 2104 }
af02cd97
KS
2105 n_pmd -= PTRS_PER_PUD;
2106 early_memunmap(pud, PAGE_SIZE);
2107 make_lowmem_page_readonly(__va(pud_phys));
2108 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2109 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2110 pud_phys += PAGE_SIZE;
2111 }
7e0563de
VK
2112
2113 /* Now copy the old p2m info to the new area. */
2114 memcpy(new_p2m, xen_p2m_addr, size);
2115 xen_p2m_addr = new_p2m;
2116
2117 /* Release the old p2m list and set new list info. */
2118 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2119 BUG_ON(!p2m_pfn);
2120 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2121
2122 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2123 pfn = xen_start_info->first_p2m_pfn;
2124 pfn_end = xen_start_info->first_p2m_pfn +
2125 xen_start_info->nr_p2m_frames;
2126 set_pgd(pgd + 1, __pgd(0));
2127 } else {
2128 pfn = p2m_pfn;
2129 pfn_end = p2m_pfn_end;
2130 }
2131
2132 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2133 while (pfn < pfn_end) {
2134 if (pfn == p2m_pfn) {
2135 pfn = p2m_pfn_end;
2136 continue;
2137 }
2138 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2139 pfn++;
2140 }
2141
2142 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2143 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2144 xen_start_info->nr_p2m_frames = n_frames;
2145}
2146
2147#else /* !CONFIG_X86_64 */
2148static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2149static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2150
2151static void __init xen_write_cr3_init(unsigned long cr3)
2152{
2153 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2154
6c690ee1 2155 BUG_ON(read_cr3_pa() != __pa(initial_page_table));
7e0563de
VK
2156 BUG_ON(cr3 != __pa(swapper_pg_dir));
2157
2158 /*
2159 * We are switching to swapper_pg_dir for the first time (from
2160 * initial_page_table) and therefore need to mark that page
2161 * read-only and then pin it.
2162 *
2163 * Xen disallows sharing of kernel PMDs for PAE
2164 * guests. Therefore we must copy the kernel PMD from
2165 * initial_page_table into a new kernel PMD to be used in
2166 * swapper_pg_dir.
2167 */
2168 swapper_kernel_pmd =
2169 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2170 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2171 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2172 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2173 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2174
2175 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2176 xen_write_cr3(cr3);
2177 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2178
2179 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2180 PFN_DOWN(__pa(initial_page_table)));
2181 set_page_prot(initial_page_table, PAGE_KERNEL);
2182 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2183
2184 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2185}
2186
2187/*
2188 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2189 * not the first page table in the page table pool.
2190 * Iterate through the initial page tables to find the real page table base.
2191 */
51ae2538 2192static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
7e0563de
VK
2193{
2194 phys_addr_t pt_base, paddr;
2195 unsigned pmdidx;
2196
2197 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2198
2199 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2200 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2201 paddr = m2p(pmd[pmdidx].pmd);
2202 pt_base = min(pt_base, paddr);
2203 }
2204
2205 return pt_base;
2206}
2207
2208void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2209{
2210 pmd_t *kernel_pmd;
2211
2212 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2213
2214 xen_pt_base = xen_find_pt_base(kernel_pmd);
2215 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2216
2217 initial_kernel_pmd =
2218 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2219
2220 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2221
2222 copy_page(initial_kernel_pmd, kernel_pmd);
2223
2224 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2225
2226 copy_page(initial_page_table, pgd);
2227 initial_page_table[KERNEL_PGD_BOUNDARY] =
2228 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2229
2230 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2231 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2232 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2233
2234 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2235
2236 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2237 PFN_DOWN(__pa(initial_page_table)));
2238 xen_write_cr3(__pa(initial_page_table));
2239
2240 memblock_reserve(xen_pt_base, xen_pt_size);
2241}
2242#endif /* CONFIG_X86_64 */
2243
2244void __init xen_reserve_special_pages(void)
2245{
2246 phys_addr_t paddr;
2247
2248 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2249 if (xen_start_info->store_mfn) {
2250 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2251 memblock_reserve(paddr, PAGE_SIZE);
2252 }
2253 if (!xen_initial_domain()) {
2254 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2255 memblock_reserve(paddr, PAGE_SIZE);
2256 }
2257}
2258
2259void __init xen_pt_check_e820(void)
2260{
2261 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2262 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2263 BUG();
2264 }
2265}
2266
2267static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2268
2269static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2270{
2271 pte_t pte;
2272
2273 phys >>= PAGE_SHIFT;
2274
2275 switch (idx) {
2276 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
7e0563de
VK
2277#ifdef CONFIG_X86_32
2278 case FIX_WP_TEST:
2279# ifdef CONFIG_HIGHMEM
2280 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2281# endif
2282#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2283 case VSYSCALL_PAGE:
2284#endif
2285 case FIX_TEXT_POKE0:
2286 case FIX_TEXT_POKE1:
7e0563de
VK
2287 /* All local page mappings */
2288 pte = pfn_pte(phys, prot);
2289 break;
2290
2291#ifdef CONFIG_X86_LOCAL_APIC
2292 case FIX_APIC_BASE: /* maps dummy local APIC */
2293 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2294 break;
2295#endif
2296
2297#ifdef CONFIG_X86_IO_APIC
2298 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2299 /*
2300 * We just don't map the IO APIC - all access is via
2301 * hypercalls. Keep the address in the pte for reference.
2302 */
2303 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2304 break;
2305#endif
2306
2307 case FIX_PARAVIRT_BOOTMAP:
2308 /* This is an MFN, but it isn't an IO mapping from the
2309 IO domain */
2310 pte = mfn_pte(phys, prot);
2311 break;
2312
2313 default:
2314 /* By default, set_fixmap is used for hardware mappings */
2315 pte = mfn_pte(phys, prot);
2316 break;
2317 }
2318
2319 __native_set_fixmap(idx, pte);
2320
2321#ifdef CONFIG_X86_VSYSCALL_EMULATION
2322 /* Replicate changes to map the vsyscall page into the user
2323 pagetable vsyscall mapping. */
2324 if (idx == VSYSCALL_PAGE) {
2325 unsigned long vaddr = __fix_to_virt(idx);
2326 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2327 }
2328#endif
2329}
2330
2331static void __init xen_post_allocator_init(void)
2332{
7e0563de
VK
2333 pv_mmu_ops.set_pte = xen_set_pte;
2334 pv_mmu_ops.set_pmd = xen_set_pmd;
2335 pv_mmu_ops.set_pud = xen_set_pud;
af02cd97 2336#ifdef CONFIG_X86_64
7e0563de
VK
2337 pv_mmu_ops.set_p4d = xen_set_p4d;
2338#endif
2339
2340 /* This will work as long as patching hasn't happened yet
2341 (which it hasn't) */
2342 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2343 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2344 pv_mmu_ops.release_pte = xen_release_pte;
2345 pv_mmu_ops.release_pmd = xen_release_pmd;
af02cd97 2346#ifdef CONFIG_X86_64
7e0563de
VK
2347 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2348 pv_mmu_ops.release_pud = xen_release_pud;
2349#endif
2350 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2351
2352#ifdef CONFIG_X86_64
2353 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2354 SetPagePinned(virt_to_page(level3_user_vsyscall));
2355#endif
2356 xen_mark_init_mm_pinned();
2357}
2358
2359static void xen_leave_lazy_mmu(void)
2360{
2361 preempt_disable();
2362 xen_mc_flush();
2363 paravirt_leave_lazy_mmu();
2364 preempt_enable();
2365}
2366
2367static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2368 .read_cr2 = xen_read_cr2,
2369 .write_cr2 = xen_write_cr2,
2370
2371 .read_cr3 = xen_read_cr3,
2372 .write_cr3 = xen_write_cr3_init,
2373
2374 .flush_tlb_user = xen_flush_tlb,
2375 .flush_tlb_kernel = xen_flush_tlb,
208beef6 2376 .flush_tlb_one_user = xen_flush_tlb_one_user,
7e0563de
VK
2377 .flush_tlb_others = xen_flush_tlb_others,
2378
7e0563de
VK
2379 .pgd_alloc = xen_pgd_alloc,
2380 .pgd_free = xen_pgd_free,
2381
2382 .alloc_pte = xen_alloc_pte_init,
2383 .release_pte = xen_release_pte_init,
2384 .alloc_pmd = xen_alloc_pmd_init,
2385 .release_pmd = xen_release_pmd_init,
2386
2387 .set_pte = xen_set_pte_init,
2388 .set_pte_at = xen_set_pte_at,
2389 .set_pmd = xen_set_pmd_hyper,
2390
2391 .ptep_modify_prot_start = __ptep_modify_prot_start,
2392 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2393
2394 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2395 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2396
2397 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2398 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2399
2400#ifdef CONFIG_X86_PAE
2401 .set_pte_atomic = xen_set_pte_atomic,
2402 .pte_clear = xen_pte_clear,
2403 .pmd_clear = xen_pmd_clear,
2404#endif /* CONFIG_X86_PAE */
2405 .set_pud = xen_set_pud_hyper,
2406
2407 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2408 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2409
af02cd97 2410#ifdef CONFIG_X86_64
7e0563de
VK
2411 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2412 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2413 .set_p4d = xen_set_p4d_hyper,
2414
2415 .alloc_pud = xen_alloc_pmd_init,
2416 .release_pud = xen_release_pmd_init,
af02cd97 2417#endif /* CONFIG_X86_64 */
7e0563de
VK
2418
2419 .activate_mm = xen_activate_mm,
2420 .dup_mmap = xen_dup_mmap,
2421 .exit_mmap = xen_exit_mmap,
2422
2423 .lazy_mode = {
2424 .enter = paravirt_enter_lazy_mmu,
2425 .leave = xen_leave_lazy_mmu,
2426 .flush = paravirt_flush_lazy_mmu,
2427 },
2428
2429 .set_fixmap = xen_set_fixmap,
2430};
2431
2432void __init xen_init_mmu_ops(void)
2433{
2434 x86_init.paging.pagetable_init = xen_pagetable_init;
2435
7e0563de
VK
2436 pv_mmu_ops = xen_mmu_ops;
2437
2438 memset(dummy_mapping, 0xff, PAGE_SIZE);
2439}
2440
2441/* Protected by xen_reservation_lock. */
2442#define MAX_CONTIG_ORDER 9 /* 2MB */
2443static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2444
2445#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2446static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2447 unsigned long *in_frames,
2448 unsigned long *out_frames)
2449{
2450 int i;
2451 struct multicall_space mcs;
2452
2453 xen_mc_batch();
2454 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2455 mcs = __xen_mc_entry(0);
2456
2457 if (in_frames)
2458 in_frames[i] = virt_to_mfn(vaddr);
2459
2460 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2461 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2462
2463 if (out_frames)
2464 out_frames[i] = virt_to_pfn(vaddr);
2465 }
2466 xen_mc_issue(0);
2467}
2468
2469/*
2470 * Update the pfn-to-mfn mappings for a virtual address range, either to
2471 * point to an array of mfns, or contiguously from a single starting
2472 * mfn.
2473 */
2474static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2475 unsigned long *mfns,
2476 unsigned long first_mfn)
2477{
2478 unsigned i, limit;
2479 unsigned long mfn;
2480
2481 xen_mc_batch();
2482
2483 limit = 1u << order;
2484 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2485 struct multicall_space mcs;
2486 unsigned flags;
2487
2488 mcs = __xen_mc_entry(0);
2489 if (mfns)
2490 mfn = mfns[i];
2491 else
2492 mfn = first_mfn + i;
2493
2494 if (i < (limit - 1))
2495 flags = 0;
2496 else {
2497 if (order == 0)
2498 flags = UVMF_INVLPG | UVMF_ALL;
2499 else
2500 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2501 }
2502
2503 MULTI_update_va_mapping(mcs.mc, vaddr,
2504 mfn_pte(mfn, PAGE_KERNEL), flags);
2505
2506 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2507 }
2508
2509 xen_mc_issue(0);
2510}
2511
2512/*
2513 * Perform the hypercall to exchange a region of our pfns to point to
2514 * memory with the required contiguous alignment. Takes the pfns as
2515 * input, and populates mfns as output.
2516 *
2517 * Returns a success code indicating whether the hypervisor was able to
2518 * satisfy the request or not.
2519 */
2520static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2521 unsigned long *pfns_in,
2522 unsigned long extents_out,
2523 unsigned int order_out,
2524 unsigned long *mfns_out,
2525 unsigned int address_bits)
2526{
2527 long rc;
2528 int success;
2529
2530 struct xen_memory_exchange exchange = {
2531 .in = {
2532 .nr_extents = extents_in,
2533 .extent_order = order_in,
2534 .extent_start = pfns_in,
2535 .domid = DOMID_SELF
2536 },
2537 .out = {
2538 .nr_extents = extents_out,
2539 .extent_order = order_out,
2540 .extent_start = mfns_out,
2541 .address_bits = address_bits,
2542 .domid = DOMID_SELF
2543 }
2544 };
2545
2546 BUG_ON(extents_in << order_in != extents_out << order_out);
2547
2548 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2549 success = (exchange.nr_exchanged == extents_in);
2550
2551 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2552 BUG_ON(success && (rc != 0));
2553
2554 return success;
2555}
2556
2557int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2558 unsigned int address_bits,
2559 dma_addr_t *dma_handle)
2560{
2561 unsigned long *in_frames = discontig_frames, out_frame;
2562 unsigned long flags;
2563 int success;
2564 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2565
2566 /*
2567 * Currently an auto-translated guest will not perform I/O, nor will
2568 * it require PAE page directories below 4GB. Therefore any calls to
2569 * this function are redundant and can be ignored.
2570 */
2571
7e0563de
VK
2572 if (unlikely(order > MAX_CONTIG_ORDER))
2573 return -ENOMEM;
2574
2575 memset((void *) vstart, 0, PAGE_SIZE << order);
2576
2577 spin_lock_irqsave(&xen_reservation_lock, flags);
2578
2579 /* 1. Zap current PTEs, remembering MFNs. */
2580 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2581
2582 /* 2. Get a new contiguous memory extent. */
2583 out_frame = virt_to_pfn(vstart);
2584 success = xen_exchange_memory(1UL << order, 0, in_frames,
2585 1, order, &out_frame,
2586 address_bits);
2587
2588 /* 3. Map the new extent in place of old pages. */
2589 if (success)
2590 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2591 else
2592 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2593
2594 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2595
2596 *dma_handle = virt_to_machine(vstart).maddr;
2597 return success ? 0 : -ENOMEM;
2598}
2599EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2600
2601void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2602{
2603 unsigned long *out_frames = discontig_frames, in_frame;
2604 unsigned long flags;
2605 int success;
2606 unsigned long vstart;
2607
7e0563de
VK
2608 if (unlikely(order > MAX_CONTIG_ORDER))
2609 return;
2610
2611 vstart = (unsigned long)phys_to_virt(pstart);
2612 memset((void *) vstart, 0, PAGE_SIZE << order);
2613
2614 spin_lock_irqsave(&xen_reservation_lock, flags);
2615
2616 /* 1. Find start MFN of contiguous extent. */
2617 in_frame = virt_to_mfn(vstart);
2618
2619 /* 2. Zap current PTEs. */
2620 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2621
2622 /* 3. Do the exchange for non-contiguous MFNs. */
2623 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2624 0, out_frames, 0);
2625
2626 /* 4. Map new pages in place of old pages. */
2627 if (success)
2628 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2629 else
2630 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2631
2632 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2633}
2634EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
29985b09
JG
2635
2636#ifdef CONFIG_KEXEC_CORE
2637phys_addr_t paddr_vmcoreinfo_note(void)
2638{
2639 if (xen_pv_domain())
203e9e41 2640 return virt_to_machine(vmcoreinfo_note).maddr;
29985b09 2641 else
203e9e41 2642 return __pa(vmcoreinfo_note);
29985b09
JG
2643}
2644#endif /* CONFIG_KEXEC_CORE */