arch, mm: convert all architectures to use 5level-fixup.h
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / hexagon / include / asm / pgtable.h
CommitLineData
a7e79840
RK
1/*
2 * Page table support for the Hexagon architecture
3 *
e1858b2a 4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
a7e79840
RK
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18 * 02110-1301, USA.
19 */
20
21#ifndef _ASM_PGTABLE_H
22#define _ASM_PGTABLE_H
23
24/*
25 * Page table definitions for Qualcomm Hexagon processor.
26 */
27#include <linux/swap.h>
28#include <asm/page.h>
9849a569 29#define __ARCH_USE_5LEVEL_HACK
a7e79840
RK
30#include <asm-generic/pgtable-nopmd.h>
31
32/* A handy thing to have if one has the RAM. Declared in head.S */
33extern unsigned long empty_zero_page;
34extern unsigned long zero_page_mask;
35
36/*
37 * The PTE model described here is that of the Hexagon Virtual Machine,
38 * which autonomously walks 2-level page tables. At a lower level, we
39 * also describe the RISCish software-loaded TLB entry structure of
40 * the underlying Hexagon processor. A kernel built to run on the
41 * virtual machine has no need to know about the underlying hardware.
42 */
43#include <asm/vm_mmu.h>
44
45/*
46 * To maximize the comfort level for the PTE manipulation macros,
47 * define the "well known" architecture-specific bits.
48 */
49#define _PAGE_READ __HVM_PTE_R
50#define _PAGE_WRITE __HVM_PTE_W
51#define _PAGE_EXECUTE __HVM_PTE_X
52#define _PAGE_USER __HVM_PTE_U
53
54/*
55 * We have a total of 4 "soft" bits available in the abstract PTE.
56 * The two mandatory software bits are Dirty and Accessed.
57 * To make nonlinear swap work according to the more recent
58 * model, we want a low order "Present" bit to indicate whether
59 * the PTE describes MMU programming or swap space.
60 */
61#define _PAGE_PRESENT (1<<0)
62#define _PAGE_DIRTY (1<<1)
63#define _PAGE_ACCESSED (1<<2)
64
a7e79840
RK
65/*
66 * For now, let's say that Valid and Present are the same thing.
67 * Alternatively, we could say that it's the "or" of R, W, and X
68 * permissions.
69 */
70#define _PAGE_VALID _PAGE_PRESENT
71
72/*
73 * We're not defining _PAGE_GLOBAL here, since there's no concept
74 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
75 * and we want to use the same page table structures and macros in
76 * the native kernel as we do in the virtual machine kernel.
77 * So we'll put up with a bit of inefficiency for now...
78 */
79
80/*
81 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
82 * only the second from the bottom, pgd and pud both being collapsed.
83 * Each entry represents 4MB of virtual address space, 4K of table
84 * thus maps the full 4GB.
85 */
86#define PGDIR_SHIFT 22
87#define PTRS_PER_PGD 1024
88
89#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
90#define PGDIR_MASK (~(PGDIR_SIZE-1))
91
92#ifdef CONFIG_PAGE_SIZE_4KB
93#define PTRS_PER_PTE 1024
94#endif
95
96#ifdef CONFIG_PAGE_SIZE_16KB
97#define PTRS_PER_PTE 256
98#endif
99
100#ifdef CONFIG_PAGE_SIZE_64KB
101#define PTRS_PER_PTE 64
102#endif
103
104#ifdef CONFIG_PAGE_SIZE_256KB
105#define PTRS_PER_PTE 16
106#endif
107
108#ifdef CONFIG_PAGE_SIZE_1MB
109#define PTRS_PER_PTE 4
110#endif
111
112/* Any bigger and the PTE disappears. */
113#define pgd_ERROR(e) \
114 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
115 pgd_val(e))
116
117/*
118 * Page Protection Constants. Includes (in this variant) cache attributes.
119 */
120extern unsigned long _dflt_cache_att;
121
122#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
123 _dflt_cache_att)
124#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
125 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
126#define PAGE_COPY PAGE_READONLY
127#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
128 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
129#define PAGE_COPY_EXEC PAGE_EXEC
130#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
131 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
132#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
133 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
134
135
136/*
137 * Aliases for mapping mmap() protection bits to page protections.
138 * These get used for static initialization, so using the _dflt_cache_att
139 * variable for the default cache attribute isn't workable. If the
140 * default gets changed at boot time, the boot option code has to
141 * update data structures like the protaction_map[] array.
142 */
143#define CACHEDEF (CACHE_DEFAULT << 6)
144
145/* Private (copy-on-write) page protections. */
146#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
147#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
148#define __P010 __P000 /* Write-only copy-on-write */
149#define __P011 __P001 /* Read/Write copy-on-write */
150#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
151 _PAGE_EXECUTE | CACHEDEF)
152#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
153 _PAGE_READ | CACHEDEF)
154#define __P110 __P100 /* Write/execute copy-on-write */
155#define __P111 __P101 /* Read/Write/Execute, copy-on-write */
156
157/* Shared page protections. */
158#define __S000 __P000
159#define __S001 __P001
160#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
161 _PAGE_WRITE | CACHEDEF)
162#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
163 _PAGE_WRITE | CACHEDEF)
164#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
165 _PAGE_EXECUTE | CACHEDEF)
166#define __S101 __P101
167#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
168 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
169#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
170 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
171
172extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
173
174/* Seems to be zero even in architectures where the zero page is firewalled? */
d016bf7e 175#define FIRST_USER_ADDRESS 0UL
a7e79840
RK
176#define pte_special(pte) 0
177#define pte_mkspecial(pte) (pte)
178
179/* HUGETLB not working currently */
180#ifdef CONFIG_HUGETLB_PAGE
181#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
182#endif
183
184/*
185 * For now, assume that higher-level code will do TLB/MMU invalidations
186 * and don't insert that overhead into this low-level function.
187 */
188extern void sync_icache_dcache(pte_t pte);
189
190#define pte_present_exec_user(pte) \
191 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
192 (_PAGE_EXECUTE | _PAGE_USER))
193
194static inline void set_pte(pte_t *ptep, pte_t pteval)
195{
196 /* should really be using pte_exec, if it weren't declared later. */
197 if (pte_present_exec_user(pteval))
198 sync_icache_dcache(pteval);
199
200 *ptep = pteval;
201}
202
203/*
204 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
205 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
206 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
207 * as a universal null entry, but some of those least significant bits
208 * are interpreted by software.
209 */
210#define _NULL_PMD 0x7
211#define _NULL_PTE 0x0
212
213static inline void pmd_clear(pmd_t *pmd_entry_ptr)
214{
215 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
216}
217
218/*
219 * Conveniently, a null PTE value is invalid.
220 */
221static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
222 pte_t *ptep)
223{
224 pte_val(*ptep) = _NULL_PTE;
225}
226
227#ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
228/**
229 * pmd_index - returns the index of the entry in the PMD page
230 * which would control the given virtual address
231 */
232#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
233
234#endif
235
236/**
237 * pgd_index - returns the index of the entry in the PGD page
238 * which would control the given virtual address
239 *
240 * This returns the *index* for the address in the pgd_t
241 */
242#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
243
244/*
245 * pgd_offset - find an offset in a page-table-directory
246 */
247#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
248
249/*
250 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
251 */
252#define pgd_offset_k(address) pgd_offset(&init_mm, address)
253
254/**
255 * pmd_none - check if pmd_entry is mapped
256 * @pmd_entry: pmd entry
257 *
258 * MIPS checks it against that "invalid pte table" thing.
259 */
260static inline int pmd_none(pmd_t pmd)
261{
262 return pmd_val(pmd) == _NULL_PMD;
263}
264
265/**
266 * pmd_present - is there a page table behind this?
267 * Essentially the inverse of pmd_none. We maybe
268 * save an inline instruction by defining it this
269 * way, instead of simply "!pmd_none".
270 */
271static inline int pmd_present(pmd_t pmd)
272{
273 return pmd_val(pmd) != (unsigned long)_NULL_PMD;
274}
275
276/**
277 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
278 * As we have no known cause of badness, it's null, as it is for many
279 * architectures.
280 */
281static inline int pmd_bad(pmd_t pmd)
282{
283 return 0;
284}
285
286/*
287 * pmd_page - converts a PMD entry to a page pointer
288 */
289#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
290#define pmd_pgtable(pmd) pmd_page(pmd)
291
292/**
293 * pte_none - check if pte is mapped
294 * @pte: pte_t entry
295 */
296static inline int pte_none(pte_t pte)
297{
298 return pte_val(pte) == _NULL_PTE;
299};
300
301/*
302 * pte_present - check if page is present
303 */
304static inline int pte_present(pte_t pte)
305{
306 return pte_val(pte) & _PAGE_PRESENT;
307}
308
309/* mk_pte - make a PTE out of a page pointer and protection bits */
310#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
311
312/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
313#define pte_page(x) pfn_to_page(pte_pfn(x))
314
315/* pte_mkold - mark PTE as not recently accessed */
316static inline pte_t pte_mkold(pte_t pte)
317{
318 pte_val(pte) &= ~_PAGE_ACCESSED;
319 return pte;
320}
321
322/* pte_mkyoung - mark PTE as recently accessed */
323static inline pte_t pte_mkyoung(pte_t pte)
324{
325 pte_val(pte) |= _PAGE_ACCESSED;
326 return pte;
327}
328
329/* pte_mkclean - mark page as in sync with backing store */
330static inline pte_t pte_mkclean(pte_t pte)
331{
332 pte_val(pte) &= ~_PAGE_DIRTY;
333 return pte;
334}
335
336/* pte_mkdirty - mark page as modified */
337static inline pte_t pte_mkdirty(pte_t pte)
338{
339 pte_val(pte) |= _PAGE_DIRTY;
340 return pte;
341}
342
343/* pte_young - "is PTE marked as accessed"? */
344static inline int pte_young(pte_t pte)
345{
346 return pte_val(pte) & _PAGE_ACCESSED;
347}
348
349/* pte_dirty - "is PTE dirty?" */
350static inline int pte_dirty(pte_t pte)
351{
352 return pte_val(pte) & _PAGE_DIRTY;
353}
354
355/* pte_modify - set protection bits on PTE */
356static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
357{
358 pte_val(pte) &= PAGE_MASK;
359 pte_val(pte) |= pgprot_val(prot);
360 return pte;
361}
362
363/* pte_wrprotect - mark page as not writable */
364static inline pte_t pte_wrprotect(pte_t pte)
365{
366 pte_val(pte) &= ~_PAGE_WRITE;
367 return pte;
368}
369
370/* pte_mkwrite - mark page as writable */
371static inline pte_t pte_mkwrite(pte_t pte)
372{
373 pte_val(pte) |= _PAGE_WRITE;
374 return pte;
375}
376
377/* pte_mkexec - mark PTE as executable */
378static inline pte_t pte_mkexec(pte_t pte)
379{
380 pte_val(pte) |= _PAGE_EXECUTE;
381 return pte;
382}
383
384/* pte_read - "is PTE marked as readable?" */
385static inline int pte_read(pte_t pte)
386{
387 return pte_val(pte) & _PAGE_READ;
388}
389
390/* pte_write - "is PTE marked as writable?" */
391static inline int pte_write(pte_t pte)
392{
393 return pte_val(pte) & _PAGE_WRITE;
394}
395
396
397/* pte_exec - "is PTE marked as executable?" */
398static inline int pte_exec(pte_t pte)
399{
400 return pte_val(pte) & _PAGE_EXECUTE;
401}
402
403/* __pte_to_swp_entry - extract swap entry from PTE */
404#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
405
406/* __swp_entry_to_pte - extract PTE from swap entry */
407#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
408
409/* pfn_pte - convert page number and protection value to page table entry */
410#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
411
412/* pte_pfn - convert pte to page frame number */
413#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
414#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
415
416/*
417 * set_pte_at - update page table and do whatever magic may be
418 * necessary to make the underlying hardware/firmware take note.
419 *
420 * VM may require a virtual instruction to alert the MMU.
421 */
422#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
423
424/*
425 * May need to invoke the virtual machine as well...
426 */
427#define pte_unmap(pte) do { } while (0)
428#define pte_unmap_nested(pte) do { } while (0)
429
430/*
431 * pte_offset_map - returns the linear address of the page table entry
432 * corresponding to an address
433 */
434#define pte_offset_map(dir, address) \
435 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
436
437#define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
438
439/* pte_offset_kernel - kernel version of pte_offset */
440#define pte_offset_kernel(dir, address) \
441 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
442 + __pte_offset(address))
443
444/* ZERO_PAGE - returns the globally shared zero page */
445#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
446
447#define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
448
a7e79840
RK
449/* I think this is in case we have page table caches; needed by init/main.c */
450#define pgtable_cache_init() do { } while (0)
451
452/*
d99f95e6
KS
453 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
454 * interpreted as swap information. The remaining free bits are interpreted as
455 * swap type/offset tuple. Rather than have the TLB fill handler test
456 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
457 * all zeros for swap entries, which speeds up the miss handler at the cost of
458 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
459 * processor architecture and target applications suggest a lot of TLB misses
460 * and not much swap space.
a7e79840
RK
461 *
462 * Format of swap PTE:
463 * bit 0: Present (zero)
d99f95e6
KS
464 * bits 1-5: swap type (arch independent layer uses 5 bits max)
465 * bits 6-9: bits 3:0 of offset
466 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
467 * bits 13-31: bits 22:4 of swap offset
a7e79840
RK
468 *
469 * The split offset makes some of the following macros a little gnarly,
470 * but there's plenty of precedent for this sort of thing.
471 */
a7e79840
RK
472
473/* Used for swap PTEs */
d99f95e6 474#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
a7e79840
RK
475
476#define __swp_offset(swp_pte) \
d99f95e6 477 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
a7e79840
RK
478
479#define __swp_entry(type, offset) \
480 ((swp_entry_t) { \
d99f95e6
KS
481 ((type << 1) | \
482 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
a7e79840
RK
483
484/* Oh boy. There are a lot of possible arch overrides found in this file. */
485#include <asm-generic/pgtable.h>
486
487#endif