From 7d8b6c63751cfbbe5eef81a48c22978b3407a3ad Mon Sep 17 00:00:00 2001 From: Eric Paris Date: Wed, 23 Jul 2014 15:36:26 -0400 Subject: [PATCH] CAPABILITIES: remove undefined caps from all processes This is effectively a revert of 7b9a7ec565505699f503b4fcf61500dceb36e744 plus fixing it a different way... We found, when trying to run an application from an application which had dropped privs that the kernel does security checks on undefined capability bits. This was ESPECIALLY difficult to debug as those undefined bits are hidden from /proc/$PID/status. Consider a root application which drops all capabilities from ALL 4 capability sets. We assume, since the application is going to set eff/perm/inh from an array that it will clear not only the defined caps less than CAP_LAST_CAP, but also the higher 28ish bits which are undefined future capabilities. The BSET gets cleared differently. Instead it is cleared one bit at a time. The problem here is that in security/commoncap.c::cap_task_prctl() we actually check the validity of a capability being read. So any task which attempts to 'read all things set in bset' followed by 'unset all things set in bset' will not even attempt to unset the undefined bits higher than CAP_LAST_CAP. So the 'parent' will look something like: CapInh: 0000000000000000 CapPrm: 0000000000000000 CapEff: 0000000000000000 CapBnd: ffffffc000000000 All of this 'should' be fine. Given that these are undefined bits that aren't supposed to have anything to do with permissions. But they do... So lets now consider a task which cleared the eff/perm/inh completely and cleared all of the valid caps in the bset (but not the invalid caps it couldn't read out of the kernel). We know that this is exactly what the libcap-ng library does and what the go capabilities library does. They both leave you in that above situation if you try to clear all of you capapabilities from all 4 sets. If that root task calls execve() the child task will pick up all caps not blocked by the bset. The bset however does not block bits higher than CAP_LAST_CAP. So now the child task has bits in eff which are not in the parent. These are 'meaningless' undefined bits, but still bits which the parent doesn't have. The problem is now in cred_cap_issubset() (or any operation which does a subset test) as the child, while a subset for valid cap bits, is not a subset for invalid cap bits! So now we set durring commit creds that the child is not dumpable. Given it is 'more priv' than its parent. It also means the parent cannot ptrace the child and other stupidity. The solution here: 1) stop hiding capability bits in status This makes debugging easier! 2) stop giving any task undefined capability bits. it's simple, it you don't put those invalid bits in CAP_FULL_SET you won't get them in init and you won't get them in any other task either. This fixes the cap_issubset() tests and resulting fallout (which made the init task in a docker container untraceable among other things) 3) mask out undefined bits when sys_capset() is called as it might use ~0, ~0 to denote 'all capabilities' for backward/forward compatibility. This lets 'capsh --caps="all=eip" -- -c /bin/bash' run. 4) mask out undefined bit when we read a file capability off of disk as again likely all bits are set in the xattr for forward/backward compatibility. This lets 'setcap all+pe /bin/bash; /bin/bash' run Signed-off-by: Eric Paris Reviewed-by: Kees Cook Cc: Andrew Vagin Cc: Andrew G. Morgan Cc: Serge E. Hallyn Cc: Kees Cook Cc: Steve Grubb Cc: Dan Walsh Cc: stable@vger.kernel.org Signed-off-by: James Morris --- fs/proc/array.c | 11 +---------- include/linux/capability.h | 5 ++++- kernel/audit.c | 2 +- kernel/capability.c | 4 ++++ security/commoncap.c | 3 +++ 5 files changed, 13 insertions(+), 12 deletions(-) diff --git a/fs/proc/array.c b/fs/proc/array.c index 64db2bceac59..3e1290b0492e 100644 --- a/fs/proc/array.c +++ b/fs/proc/array.c @@ -297,15 +297,11 @@ static void render_cap_t(struct seq_file *m, const char *header, seq_puts(m, header); CAP_FOR_EACH_U32(__capi) { seq_printf(m, "%08x", - a->cap[(_KERNEL_CAPABILITY_U32S-1) - __capi]); + a->cap[CAP_LAST_U32 - __capi]); } seq_putc(m, '\n'); } -/* Remove non-existent capabilities */ -#define NORM_CAPS(v) (v.cap[CAP_TO_INDEX(CAP_LAST_CAP)] &= \ - CAP_TO_MASK(CAP_LAST_CAP + 1) - 1) - static inline void task_cap(struct seq_file *m, struct task_struct *p) { const struct cred *cred; @@ -319,11 +315,6 @@ static inline void task_cap(struct seq_file *m, struct task_struct *p) cap_bset = cred->cap_bset; rcu_read_unlock(); - NORM_CAPS(cap_inheritable); - NORM_CAPS(cap_permitted); - NORM_CAPS(cap_effective); - NORM_CAPS(cap_bset); - render_cap_t(m, "CapInh:\t", &cap_inheritable); render_cap_t(m, "CapPrm:\t", &cap_permitted); render_cap_t(m, "CapEff:\t", &cap_effective); diff --git a/include/linux/capability.h b/include/linux/capability.h index 84b13ad67c1c..aa93e5ef594c 100644 --- a/include/linux/capability.h +++ b/include/linux/capability.h @@ -78,8 +78,11 @@ extern const kernel_cap_t __cap_init_eff_set; # error Fix up hand-coded capability macro initializers #else /* HAND-CODED capability initializers */ +#define CAP_LAST_U32 ((_KERNEL_CAPABILITY_U32S) - 1) +#define CAP_LAST_U32_VALID_MASK (CAP_TO_MASK(CAP_LAST_CAP + 1) -1) + # define CAP_EMPTY_SET ((kernel_cap_t){{ 0, 0 }}) -# define CAP_FULL_SET ((kernel_cap_t){{ ~0, ~0 }}) +# define CAP_FULL_SET ((kernel_cap_t){{ ~0, CAP_LAST_U32_VALID_MASK }}) # define CAP_FS_SET ((kernel_cap_t){{ CAP_FS_MASK_B0 \ | CAP_TO_MASK(CAP_LINUX_IMMUTABLE), \ CAP_FS_MASK_B1 } }) diff --git a/kernel/audit.c b/kernel/audit.c index 3ef2e0e797e8..ba2ff5a5c600 100644 --- a/kernel/audit.c +++ b/kernel/audit.c @@ -1677,7 +1677,7 @@ void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) audit_log_format(ab, " %s=", prefix); CAP_FOR_EACH_U32(i) { audit_log_format(ab, "%08x", - cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); + cap->cap[CAP_LAST_U32 - i]); } } diff --git a/kernel/capability.c b/kernel/capability.c index a5cf13c018ce..989f5bfc57dc 100644 --- a/kernel/capability.c +++ b/kernel/capability.c @@ -258,6 +258,10 @@ SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) i++; } + effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; + permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; + inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; + new = prepare_creds(); if (!new) return -ENOMEM; diff --git a/security/commoncap.c b/security/commoncap.c index 9fe46e22c7f2..bab0611afc1e 100644 --- a/security/commoncap.c +++ b/security/commoncap.c @@ -421,6 +421,9 @@ int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable); } + cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; + cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; + return 0; } -- 2.20.1