From 163f1511520386c74a86a2ce2b1dbef07a227713 Mon Sep 17 00:00:00 2001 From: Mika Westerberg Date: Tue, 6 Jun 2017 15:25:18 +0300 Subject: [PATCH] thunderbolt: Add documentation how Thunderbolt bus can be used Since there are no such tool yet that handles all the low-level details of connecting devices and upgrading their firmware, add a small document that shows how the Thunderbolt bus can be used directly from command line. Signed-off-by: Mika Westerberg Reviewed-by: Yehezkel Bernat Reviewed-by: Michael Jamet Reviewed-by: Andy Shevchenko Signed-off-by: Andreas Noever Signed-off-by: Greg Kroah-Hartman --- Documentation/admin-guide/index.rst | 1 + Documentation/admin-guide/thunderbolt.rst | 199 ++++++++++++++++++++++ 2 files changed, 200 insertions(+) create mode 100644 Documentation/admin-guide/thunderbolt.rst diff --git a/Documentation/admin-guide/index.rst b/Documentation/admin-guide/index.rst index 8c60a8a32a1a..6d99a7ce6e21 100644 --- a/Documentation/admin-guide/index.rst +++ b/Documentation/admin-guide/index.rst @@ -61,6 +61,7 @@ configure specific aspects of kernel behavior to your liking. java ras pm/index + thunderbolt .. only:: subproject and html diff --git a/Documentation/admin-guide/thunderbolt.rst b/Documentation/admin-guide/thunderbolt.rst new file mode 100644 index 000000000000..6a4cd1f159ca --- /dev/null +++ b/Documentation/admin-guide/thunderbolt.rst @@ -0,0 +1,199 @@ +============= + Thunderbolt +============= +The interface presented here is not meant for end users. Instead there +should be a userspace tool that handles all the low-level details, keeps +database of the authorized devices and prompts user for new connections. + +More details about the sysfs interface for Thunderbolt devices can be +found in ``Documentation/ABI/testing/sysfs-bus-thunderbolt``. + +Those users who just want to connect any device without any sort of +manual work, can add following line to +``/etc/udev/rules.d/99-local.rules``:: + + ACTION=="add", SUBSYSTEM=="thunderbolt", ATTR{authorized}=="0", ATTR{authorized}="1" + +This will authorize all devices automatically when they appear. However, +keep in mind that this bypasses the security levels and makes the system +vulnerable to DMA attacks. + +Security levels and how to use them +----------------------------------- +Starting from Intel Falcon Ridge Thunderbolt controller there are 4 +security levels available. The reason for these is the fact that the +connected devices can be DMA masters and thus read contents of the host +memory without CPU and OS knowing about it. There are ways to prevent +this by setting up an IOMMU but it is not always available for various +reasons. + +The security levels are as follows: + + none + All devices are automatically connected by the firmware. No user + approval is needed. In BIOS settings this is typically called + *Legacy mode*. + + user + User is asked whether the device is allowed to be connected. + Based on the device identification information available through + ``/sys/bus/thunderbolt/devices``. user then can do the decision. + In BIOS settings this is typically called *Unique ID*. + + secure + User is asked whether the device is allowed to be connected. In + addition to UUID the device (if it supports secure connect) is sent + a challenge that should match the expected one based on a random key + written to ``key`` sysfs attribute. In BIOS settings this is + typically called *One time saved key*. + + dponly + The firmware automatically creates tunnels for Display Port and + USB. No PCIe tunneling is done. In BIOS settings this is + typically called *Display Port Only*. + +The current security level can be read from +``/sys/bus/thunderbolt/devices/domainX/security`` where ``domainX`` is +the Thunderbolt domain the host controller manages. There is typically +one domain per Thunderbolt host controller. + +If the security level reads as ``user`` or ``secure`` the connected +device must be authorized by the user before PCIe tunnels are created +(e.g the PCIe device appears). + +Each Thunderbolt device plugged in will appear in sysfs under +``/sys/bus/thunderbolt/devices``. The device directory carries +information that can be used to identify the particular device, +including its name and UUID. + +Authorizing devices when security level is ``user`` or ``secure`` +----------------------------------------------------------------- +When a device is plugged in it will appear in sysfs as follows:: + + /sys/bus/thunderbolt/devices/0-1/authorized - 0 + /sys/bus/thunderbolt/devices/0-1/device - 0x8004 + /sys/bus/thunderbolt/devices/0-1/device_name - Thunderbolt to FireWire Adapter + /sys/bus/thunderbolt/devices/0-1/vendor - 0x1 + /sys/bus/thunderbolt/devices/0-1/vendor_name - Apple, Inc. + /sys/bus/thunderbolt/devices/0-1/unique_id - e0376f00-0300-0100-ffff-ffffffffffff + +The ``authorized`` attribute reads 0 which means no PCIe tunnels are +created yet. The user can authorize the device by simply:: + + # echo 1 > /sys/bus/thunderbolt/devices/0-1/authorized + +This will create the PCIe tunnels and the device is now connected. + +If the device supports secure connect, and the domain security level is +set to ``secure``, it has an additional attribute ``key`` which can hold +a random 32 byte value used for authorization and challenging the device in +future connects:: + + /sys/bus/thunderbolt/devices/0-3/authorized - 0 + /sys/bus/thunderbolt/devices/0-3/device - 0x305 + /sys/bus/thunderbolt/devices/0-3/device_name - AKiTiO Thunder3 PCIe Box + /sys/bus/thunderbolt/devices/0-3/key - + /sys/bus/thunderbolt/devices/0-3/vendor - 0x41 + /sys/bus/thunderbolt/devices/0-3/vendor_name - inXtron + /sys/bus/thunderbolt/devices/0-3/unique_id - dc010000-0000-8508-a22d-32ca6421cb16 + +Notice the key is empty by default. + +If the user does not want to use secure connect it can just ``echo 1`` +to the ``authorized`` attribute and the PCIe tunnels will be created in +the same way than in ``user`` security level. + +If the user wants to use secure connect, the first time the device is +plugged a key needs to be created and send to the device:: + + # key=$(openssl rand -hex 32) + # echo $key > /sys/bus/thunderbolt/devices/0-3/key + # echo 1 > /sys/bus/thunderbolt/devices/0-3/authorized + +Now the device is connected (PCIe tunnels are created) and in addition +the key is stored on the device NVM. + +Next time the device is plugged in the user can verify (challenge) the +device using the same key:: + + # echo $key > /sys/bus/thunderbolt/devices/0-3/key + # echo 2 > /sys/bus/thunderbolt/devices/0-3/authorized + +If the challenge the device returns back matches the one we expect based +on the key, the device is connected and the PCIe tunnels are created. +However, if the challenge failed no tunnels are created and error is +returned to the user. + +If the user still wants to connect the device it can either approve +the device without a key or write new key and write 1 to the +``authorized`` file to get the new key stored on the device NVM. + +Upgrading NVM on Thunderbolt device or host +------------------------------------------- +Since most of the functionality is handled in a firmware running on a +host controller or a device, it is important that the firmware can be +upgraded to the latest where possible bugs in it have been fixed. +Typically OEMs provide this firmware from their support site. + +There is also a central site which has links where to download firmwares +for some machines: + + `Thunderbolt Updates `_ + +Before you upgrade firmware on a device or host, please make sure it is +the suitable. Failing to do that may render the device (or host) in a +state where it cannot be used properly anymore without special tools! + +Host NVM upgrade on Apple Macs is not supported. + +Once the NVM image has been downloaded, you need to plug in a +Thunderbolt device so that the host controller appears. It does not +matter which device is connected (unless you are upgrading NVM on a +device - then you need to connect that particular device). + +Note OEM-specific method to power the controller up ("force power") may +be available for your system in which case there is no need to plug in a +Thunderbolt device. + +After that we can write the firmware to the non-active parts of the NVM +of the host or device. As an example here is how Intel NUC6i7KYK (Skull +Canyon) Thunderbolt controller NVM is upgraded:: + + # dd if=KYK_TBT_FW_0018.bin of=/sys/bus/thunderbolt/devices/0-0/nvm_non_active0/nvmem + +Once the operation completes we can trigger NVM authentication and +upgrade process as follows:: + + # echo 1 > /sys/bus/thunderbolt/devices/0-0/nvm_authenticate + +If no errors are returned, the host controller shortly disappears. Once +it comes back the driver notices it and initiates a full power cycle. +After a while the host controller appears again and this time it should +be fully functional. + +We can verify that the new NVM firmware is active by running following +commands:: + + # cat /sys/bus/thunderbolt/devices/0-0/nvm_authenticate + 0x0 + # cat /sys/bus/thunderbolt/devices/0-0/nvm_version + 18.0 + +If ``nvm_authenticate`` contains anything else than 0x0 it is the error +code from the last authentication cycle, which means the authentication +of the NVM image failed. + +Note names of the NVMem devices ``nvm_activeN`` and ``nvm_non_activeN`` +depends on the order they are registered in the NVMem subsystem. N in +the name is the identifier added by the NVMem subsystem. + +Upgrading NVM when host controller is in safe mode +-------------------------------------------------- +If the existing NVM is not properly authenticated (or is missing) the +host controller goes into safe mode which means that only available +functionality is flashing new NVM image. When in this mode the reading +``nvm_version`` fails with ``ENODATA`` and the device identification +information is missing. + +To recover from this mode, one needs to flash a valid NVM image to the +host host controller in the same way it is done in the previous chapter. -- 2.20.1