f8e66c08b11a
[GitHub/LineageOS/G12/android_kernel_amlogic_linux-4.9.git] /
1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25 #include <linux/dma-mapping.h>
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29
30 #include "nouveau_drm.h"
31 #include "nouveau_dma.h"
32 #include "nouveau_gem.h"
33 #include "nouveau_connector.h"
34 #include "nouveau_encoder.h"
35 #include "nouveau_crtc.h"
36 #include "nouveau_fence.h"
37 #include "nv50_display.h"
38
39 #include <core/client.h>
40 #include <core/gpuobj.h>
41 #include <core/class.h>
42
43 #include <subdev/timer.h>
44 #include <subdev/bar.h>
45 #include <subdev/fb.h>
46 #include <subdev/i2c.h>
47
48 #define EVO_DMA_NR 9
49
50 #define EVO_MASTER (0x00)
51 #define EVO_FLIP(c) (0x01 + (c))
52 #define EVO_OVLY(c) (0x05 + (c))
53 #define EVO_OIMM(c) (0x09 + (c))
54 #define EVO_CURS(c) (0x0d + (c))
55
56 /* offsets in shared sync bo of various structures */
57 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
58 #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
59 #define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00)
60 #define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10)
61
62 #define EVO_CORE_HANDLE (0xd1500000)
63 #define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
64 #define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
65 #define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) | \
66 (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))
67
68 /******************************************************************************
69 * EVO channel
70 *****************************************************************************/
71
72 struct nv50_chan {
73 struct nouveau_object *user;
74 u32 handle;
75 };
76
77 static int
78 nv50_chan_create(struct nouveau_object *core, u32 bclass, u8 head,
79 void *data, u32 size, struct nv50_chan *chan)
80 {
81 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
82 const u32 oclass = EVO_CHAN_OCLASS(bclass, core);
83 const u32 handle = EVO_CHAN_HANDLE(bclass, head);
84 int ret;
85
86 ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle,
87 oclass, data, size, &chan->user);
88 if (ret)
89 return ret;
90
91 chan->handle = handle;
92 return 0;
93 }
94
95 static void
96 nv50_chan_destroy(struct nouveau_object *core, struct nv50_chan *chan)
97 {
98 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
99 if (chan->handle)
100 nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle);
101 }
102
103 /******************************************************************************
104 * PIO EVO channel
105 *****************************************************************************/
106
107 struct nv50_pioc {
108 struct nv50_chan base;
109 };
110
111 static void
112 nv50_pioc_destroy(struct nouveau_object *core, struct nv50_pioc *pioc)
113 {
114 nv50_chan_destroy(core, &pioc->base);
115 }
116
117 static int
118 nv50_pioc_create(struct nouveau_object *core, u32 bclass, u8 head,
119 void *data, u32 size, struct nv50_pioc *pioc)
120 {
121 return nv50_chan_create(core, bclass, head, data, size, &pioc->base);
122 }
123
124 /******************************************************************************
125 * DMA EVO channel
126 *****************************************************************************/
127
128 struct nv50_dmac {
129 struct nv50_chan base;
130 dma_addr_t handle;
131 u32 *ptr;
132
133 /* Protects against concurrent pushbuf access to this channel, lock is
134 * grabbed by evo_wait (if the pushbuf reservation is successful) and
135 * dropped again by evo_kick. */
136 struct mutex lock;
137 };
138
139 static void
140 nv50_dmac_destroy(struct nouveau_object *core, struct nv50_dmac *dmac)
141 {
142 if (dmac->ptr) {
143 struct pci_dev *pdev = nv_device(core)->pdev;
144 pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
145 }
146
147 nv50_chan_destroy(core, &dmac->base);
148 }
149
150 static int
151 nv50_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
152 {
153 struct nouveau_fb *pfb = nouveau_fb(core);
154 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
155 struct nouveau_object *object;
156 int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
157 NV_DMA_IN_MEMORY_CLASS,
158 &(struct nv_dma_class) {
159 .flags = NV_DMA_TARGET_VRAM |
160 NV_DMA_ACCESS_RDWR,
161 .start = 0,
162 .limit = pfb->ram->size - 1,
163 .conf0 = NV50_DMA_CONF0_ENABLE |
164 NV50_DMA_CONF0_PART_256,
165 }, sizeof(struct nv_dma_class), &object);
166 if (ret)
167 return ret;
168
169 ret = nouveau_object_new(client, parent, NvEvoFB16,
170 NV_DMA_IN_MEMORY_CLASS,
171 &(struct nv_dma_class) {
172 .flags = NV_DMA_TARGET_VRAM |
173 NV_DMA_ACCESS_RDWR,
174 .start = 0,
175 .limit = pfb->ram->size - 1,
176 .conf0 = NV50_DMA_CONF0_ENABLE | 0x70 |
177 NV50_DMA_CONF0_PART_256,
178 }, sizeof(struct nv_dma_class), &object);
179 if (ret)
180 return ret;
181
182 ret = nouveau_object_new(client, parent, NvEvoFB32,
183 NV_DMA_IN_MEMORY_CLASS,
184 &(struct nv_dma_class) {
185 .flags = NV_DMA_TARGET_VRAM |
186 NV_DMA_ACCESS_RDWR,
187 .start = 0,
188 .limit = pfb->ram->size - 1,
189 .conf0 = NV50_DMA_CONF0_ENABLE | 0x7a |
190 NV50_DMA_CONF0_PART_256,
191 }, sizeof(struct nv_dma_class), &object);
192 return ret;
193 }
194
195 static int
196 nvc0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
197 {
198 struct nouveau_fb *pfb = nouveau_fb(core);
199 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
200 struct nouveau_object *object;
201 int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
202 NV_DMA_IN_MEMORY_CLASS,
203 &(struct nv_dma_class) {
204 .flags = NV_DMA_TARGET_VRAM |
205 NV_DMA_ACCESS_RDWR,
206 .start = 0,
207 .limit = pfb->ram->size - 1,
208 .conf0 = NVC0_DMA_CONF0_ENABLE,
209 }, sizeof(struct nv_dma_class), &object);
210 if (ret)
211 return ret;
212
213 ret = nouveau_object_new(client, parent, NvEvoFB16,
214 NV_DMA_IN_MEMORY_CLASS,
215 &(struct nv_dma_class) {
216 .flags = NV_DMA_TARGET_VRAM |
217 NV_DMA_ACCESS_RDWR,
218 .start = 0,
219 .limit = pfb->ram->size - 1,
220 .conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
221 }, sizeof(struct nv_dma_class), &object);
222 if (ret)
223 return ret;
224
225 ret = nouveau_object_new(client, parent, NvEvoFB32,
226 NV_DMA_IN_MEMORY_CLASS,
227 &(struct nv_dma_class) {
228 .flags = NV_DMA_TARGET_VRAM |
229 NV_DMA_ACCESS_RDWR,
230 .start = 0,
231 .limit = pfb->ram->size - 1,
232 .conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
233 }, sizeof(struct nv_dma_class), &object);
234 return ret;
235 }
236
237 static int
238 nvd0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
239 {
240 struct nouveau_fb *pfb = nouveau_fb(core);
241 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
242 struct nouveau_object *object;
243 int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
244 NV_DMA_IN_MEMORY_CLASS,
245 &(struct nv_dma_class) {
246 .flags = NV_DMA_TARGET_VRAM |
247 NV_DMA_ACCESS_RDWR,
248 .start = 0,
249 .limit = pfb->ram->size - 1,
250 .conf0 = NVD0_DMA_CONF0_ENABLE |
251 NVD0_DMA_CONF0_PAGE_LP,
252 }, sizeof(struct nv_dma_class), &object);
253 if (ret)
254 return ret;
255
256 ret = nouveau_object_new(client, parent, NvEvoFB32,
257 NV_DMA_IN_MEMORY_CLASS,
258 &(struct nv_dma_class) {
259 .flags = NV_DMA_TARGET_VRAM |
260 NV_DMA_ACCESS_RDWR,
261 .start = 0,
262 .limit = pfb->ram->size - 1,
263 .conf0 = NVD0_DMA_CONF0_ENABLE | 0xfe |
264 NVD0_DMA_CONF0_PAGE_LP,
265 }, sizeof(struct nv_dma_class), &object);
266 return ret;
267 }
268
269 static int
270 nv50_dmac_create(struct nouveau_object *core, u32 bclass, u8 head,
271 void *data, u32 size, u64 syncbuf,
272 struct nv50_dmac *dmac)
273 {
274 struct nouveau_fb *pfb = nouveau_fb(core);
275 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
276 struct nouveau_object *object;
277 u32 pushbuf = *(u32 *)data;
278 int ret;
279
280 mutex_init(&dmac->lock);
281
282 dmac->ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE,
283 &dmac->handle);
284 if (!dmac->ptr)
285 return -ENOMEM;
286
287 ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf,
288 NV_DMA_FROM_MEMORY_CLASS,
289 &(struct nv_dma_class) {
290 .flags = NV_DMA_TARGET_PCI_US |
291 NV_DMA_ACCESS_RD,
292 .start = dmac->handle + 0x0000,
293 .limit = dmac->handle + 0x0fff,
294 }, sizeof(struct nv_dma_class), &object);
295 if (ret)
296 return ret;
297
298 ret = nv50_chan_create(core, bclass, head, data, size, &dmac->base);
299 if (ret)
300 return ret;
301
302 ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync,
303 NV_DMA_IN_MEMORY_CLASS,
304 &(struct nv_dma_class) {
305 .flags = NV_DMA_TARGET_VRAM |
306 NV_DMA_ACCESS_RDWR,
307 .start = syncbuf + 0x0000,
308 .limit = syncbuf + 0x0fff,
309 }, sizeof(struct nv_dma_class), &object);
310 if (ret)
311 return ret;
312
313 ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM,
314 NV_DMA_IN_MEMORY_CLASS,
315 &(struct nv_dma_class) {
316 .flags = NV_DMA_TARGET_VRAM |
317 NV_DMA_ACCESS_RDWR,
318 .start = 0,
319 .limit = pfb->ram->size - 1,
320 }, sizeof(struct nv_dma_class), &object);
321 if (ret)
322 return ret;
323
324 if (nv_device(core)->card_type < NV_C0)
325 ret = nv50_dmac_create_fbdma(core, dmac->base.handle);
326 else
327 if (nv_device(core)->card_type < NV_D0)
328 ret = nvc0_dmac_create_fbdma(core, dmac->base.handle);
329 else
330 ret = nvd0_dmac_create_fbdma(core, dmac->base.handle);
331 return ret;
332 }
333
334 struct nv50_mast {
335 struct nv50_dmac base;
336 };
337
338 struct nv50_curs {
339 struct nv50_pioc base;
340 };
341
342 struct nv50_sync {
343 struct nv50_dmac base;
344 u32 addr;
345 u32 data;
346 };
347
348 struct nv50_ovly {
349 struct nv50_dmac base;
350 };
351
352 struct nv50_oimm {
353 struct nv50_pioc base;
354 };
355
356 struct nv50_head {
357 struct nouveau_crtc base;
358 struct nouveau_bo *image;
359 struct nv50_curs curs;
360 struct nv50_sync sync;
361 struct nv50_ovly ovly;
362 struct nv50_oimm oimm;
363 };
364
365 #define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
366 #define nv50_curs(c) (&nv50_head(c)->curs)
367 #define nv50_sync(c) (&nv50_head(c)->sync)
368 #define nv50_ovly(c) (&nv50_head(c)->ovly)
369 #define nv50_oimm(c) (&nv50_head(c)->oimm)
370 #define nv50_chan(c) (&(c)->base.base)
371 #define nv50_vers(c) nv_mclass(nv50_chan(c)->user)
372
373 struct nv50_disp {
374 struct nouveau_object *core;
375 struct nv50_mast mast;
376
377 u32 modeset;
378
379 struct nouveau_bo *sync;
380 };
381
382 static struct nv50_disp *
383 nv50_disp(struct drm_device *dev)
384 {
385 return nouveau_display(dev)->priv;
386 }
387
388 #define nv50_mast(d) (&nv50_disp(d)->mast)
389
390 static struct drm_crtc *
391 nv50_display_crtc_get(struct drm_encoder *encoder)
392 {
393 return nouveau_encoder(encoder)->crtc;
394 }
395
396 /******************************************************************************
397 * EVO channel helpers
398 *****************************************************************************/
399 static u32 *
400 evo_wait(void *evoc, int nr)
401 {
402 struct nv50_dmac *dmac = evoc;
403 u32 put = nv_ro32(dmac->base.user, 0x0000) / 4;
404
405 mutex_lock(&dmac->lock);
406 if (put + nr >= (PAGE_SIZE / 4) - 8) {
407 dmac->ptr[put] = 0x20000000;
408
409 nv_wo32(dmac->base.user, 0x0000, 0x00000000);
410 if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) {
411 mutex_unlock(&dmac->lock);
412 NV_ERROR(dmac->base.user, "channel stalled\n");
413 return NULL;
414 }
415
416 put = 0;
417 }
418
419 return dmac->ptr + put;
420 }
421
422 static void
423 evo_kick(u32 *push, void *evoc)
424 {
425 struct nv50_dmac *dmac = evoc;
426 nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
427 mutex_unlock(&dmac->lock);
428 }
429
430 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
431 #define evo_data(p,d) *((p)++) = (d)
432
433 static bool
434 evo_sync_wait(void *data)
435 {
436 if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000)
437 return true;
438 usleep_range(1, 2);
439 return false;
440 }
441
442 static int
443 evo_sync(struct drm_device *dev)
444 {
445 struct nouveau_device *device = nouveau_dev(dev);
446 struct nv50_disp *disp = nv50_disp(dev);
447 struct nv50_mast *mast = nv50_mast(dev);
448 u32 *push = evo_wait(mast, 8);
449 if (push) {
450 nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
451 evo_mthd(push, 0x0084, 1);
452 evo_data(push, 0x80000000 | EVO_MAST_NTFY);
453 evo_mthd(push, 0x0080, 2);
454 evo_data(push, 0x00000000);
455 evo_data(push, 0x00000000);
456 evo_kick(push, mast);
457 if (nv_wait_cb(device, evo_sync_wait, disp->sync))
458 return 0;
459 }
460
461 return -EBUSY;
462 }
463
464 /******************************************************************************
465 * Page flipping channel
466 *****************************************************************************/
467 struct nouveau_bo *
468 nv50_display_crtc_sema(struct drm_device *dev, int crtc)
469 {
470 return nv50_disp(dev)->sync;
471 }
472
473 struct nv50_display_flip {
474 struct nv50_disp *disp;
475 struct nv50_sync *chan;
476 };
477
478 static bool
479 nv50_display_flip_wait(void *data)
480 {
481 struct nv50_display_flip *flip = data;
482 if (nouveau_bo_rd32(flip->disp->sync, flip->chan->addr / 4) ==
483 flip->chan->data)
484 return true;
485 usleep_range(1, 2);
486 return false;
487 }
488
489 void
490 nv50_display_flip_stop(struct drm_crtc *crtc)
491 {
492 struct nouveau_device *device = nouveau_dev(crtc->dev);
493 struct nv50_display_flip flip = {
494 .disp = nv50_disp(crtc->dev),
495 .chan = nv50_sync(crtc),
496 };
497 u32 *push;
498
499 push = evo_wait(flip.chan, 8);
500 if (push) {
501 evo_mthd(push, 0x0084, 1);
502 evo_data(push, 0x00000000);
503 evo_mthd(push, 0x0094, 1);
504 evo_data(push, 0x00000000);
505 evo_mthd(push, 0x00c0, 1);
506 evo_data(push, 0x00000000);
507 evo_mthd(push, 0x0080, 1);
508 evo_data(push, 0x00000000);
509 evo_kick(push, flip.chan);
510 }
511
512 nv_wait_cb(device, nv50_display_flip_wait, &flip);
513 }
514
515 int
516 nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
517 struct nouveau_channel *chan, u32 swap_interval)
518 {
519 struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
520 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
521 struct nv50_head *head = nv50_head(crtc);
522 struct nv50_sync *sync = nv50_sync(crtc);
523 u32 *push;
524 int ret;
525
526 swap_interval <<= 4;
527 if (swap_interval == 0)
528 swap_interval |= 0x100;
529 if (chan == NULL)
530 evo_sync(crtc->dev);
531
532 push = evo_wait(sync, 128);
533 if (unlikely(push == NULL))
534 return -EBUSY;
535
536 if (chan && nv_mclass(chan->object) < NV84_CHANNEL_IND_CLASS) {
537 ret = RING_SPACE(chan, 8);
538 if (ret)
539 return ret;
540
541 BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
542 OUT_RING (chan, NvEvoSema0 + nv_crtc->index);
543 OUT_RING (chan, sync->addr ^ 0x10);
544 BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
545 OUT_RING (chan, sync->data + 1);
546 BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
547 OUT_RING (chan, sync->addr);
548 OUT_RING (chan, sync->data);
549 } else
550 if (chan && nv_mclass(chan->object) < NVC0_CHANNEL_IND_CLASS) {
551 u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
552 ret = RING_SPACE(chan, 12);
553 if (ret)
554 return ret;
555
556 BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
557 OUT_RING (chan, chan->vram);
558 BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
559 OUT_RING (chan, upper_32_bits(addr ^ 0x10));
560 OUT_RING (chan, lower_32_bits(addr ^ 0x10));
561 OUT_RING (chan, sync->data + 1);
562 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG);
563 BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
564 OUT_RING (chan, upper_32_bits(addr));
565 OUT_RING (chan, lower_32_bits(addr));
566 OUT_RING (chan, sync->data);
567 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL);
568 } else
569 if (chan) {
570 u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
571 ret = RING_SPACE(chan, 10);
572 if (ret)
573 return ret;
574
575 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
576 OUT_RING (chan, upper_32_bits(addr ^ 0x10));
577 OUT_RING (chan, lower_32_bits(addr ^ 0x10));
578 OUT_RING (chan, sync->data + 1);
579 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG |
580 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
581 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
582 OUT_RING (chan, upper_32_bits(addr));
583 OUT_RING (chan, lower_32_bits(addr));
584 OUT_RING (chan, sync->data);
585 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL |
586 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
587 }
588
589 if (chan) {
590 sync->addr ^= 0x10;
591 sync->data++;
592 FIRE_RING (chan);
593 }
594
595 /* queue the flip */
596 evo_mthd(push, 0x0100, 1);
597 evo_data(push, 0xfffe0000);
598 evo_mthd(push, 0x0084, 1);
599 evo_data(push, swap_interval);
600 if (!(swap_interval & 0x00000100)) {
601 evo_mthd(push, 0x00e0, 1);
602 evo_data(push, 0x40000000);
603 }
604 evo_mthd(push, 0x0088, 4);
605 evo_data(push, sync->addr);
606 evo_data(push, sync->data++);
607 evo_data(push, sync->data);
608 evo_data(push, NvEvoSync);
609 evo_mthd(push, 0x00a0, 2);
610 evo_data(push, 0x00000000);
611 evo_data(push, 0x00000000);
612 evo_mthd(push, 0x00c0, 1);
613 evo_data(push, nv_fb->r_dma);
614 evo_mthd(push, 0x0110, 2);
615 evo_data(push, 0x00000000);
616 evo_data(push, 0x00000000);
617 if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) {
618 evo_mthd(push, 0x0800, 5);
619 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
620 evo_data(push, 0);
621 evo_data(push, (fb->height << 16) | fb->width);
622 evo_data(push, nv_fb->r_pitch);
623 evo_data(push, nv_fb->r_format);
624 } else {
625 evo_mthd(push, 0x0400, 5);
626 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
627 evo_data(push, 0);
628 evo_data(push, (fb->height << 16) | fb->width);
629 evo_data(push, nv_fb->r_pitch);
630 evo_data(push, nv_fb->r_format);
631 }
632 evo_mthd(push, 0x0080, 1);
633 evo_data(push, 0x00000000);
634 evo_kick(push, sync);
635
636 nouveau_bo_ref(nv_fb->nvbo, &head->image);
637 return 0;
638 }
639
640 /******************************************************************************
641 * CRTC
642 *****************************************************************************/
643 static int
644 nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
645 {
646 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
647 struct nouveau_connector *nv_connector;
648 struct drm_connector *connector;
649 u32 *push, mode = 0x00;
650
651 nv_connector = nouveau_crtc_connector_get(nv_crtc);
652 connector = &nv_connector->base;
653 if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
654 if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
655 mode = DITHERING_MODE_DYNAMIC2X2;
656 } else {
657 mode = nv_connector->dithering_mode;
658 }
659
660 if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
661 if (connector->display_info.bpc >= 8)
662 mode |= DITHERING_DEPTH_8BPC;
663 } else {
664 mode |= nv_connector->dithering_depth;
665 }
666
667 push = evo_wait(mast, 4);
668 if (push) {
669 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
670 evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
671 evo_data(push, mode);
672 } else
673 if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) {
674 evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
675 evo_data(push, mode);
676 } else {
677 evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
678 evo_data(push, mode);
679 }
680
681 if (update) {
682 evo_mthd(push, 0x0080, 1);
683 evo_data(push, 0x00000000);
684 }
685 evo_kick(push, mast);
686 }
687
688 return 0;
689 }
690
691 static int
692 nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
693 {
694 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
695 struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
696 struct drm_crtc *crtc = &nv_crtc->base;
697 struct nouveau_connector *nv_connector;
698 int mode = DRM_MODE_SCALE_NONE;
699 u32 oX, oY, *push;
700
701 /* start off at the resolution we programmed the crtc for, this
702 * effectively handles NONE/FULL scaling
703 */
704 nv_connector = nouveau_crtc_connector_get(nv_crtc);
705 if (nv_connector && nv_connector->native_mode)
706 mode = nv_connector->scaling_mode;
707
708 if (mode != DRM_MODE_SCALE_NONE)
709 omode = nv_connector->native_mode;
710 else
711 omode = umode;
712
713 oX = omode->hdisplay;
714 oY = omode->vdisplay;
715 if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
716 oY *= 2;
717
718 /* add overscan compensation if necessary, will keep the aspect
719 * ratio the same as the backend mode unless overridden by the
720 * user setting both hborder and vborder properties.
721 */
722 if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
723 (nv_connector->underscan == UNDERSCAN_AUTO &&
724 nv_connector->edid &&
725 drm_detect_hdmi_monitor(nv_connector->edid)))) {
726 u32 bX = nv_connector->underscan_hborder;
727 u32 bY = nv_connector->underscan_vborder;
728 u32 aspect = (oY << 19) / oX;
729
730 if (bX) {
731 oX -= (bX * 2);
732 if (bY) oY -= (bY * 2);
733 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
734 } else {
735 oX -= (oX >> 4) + 32;
736 if (bY) oY -= (bY * 2);
737 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
738 }
739 }
740
741 /* handle CENTER/ASPECT scaling, taking into account the areas
742 * removed already for overscan compensation
743 */
744 switch (mode) {
745 case DRM_MODE_SCALE_CENTER:
746 oX = min((u32)umode->hdisplay, oX);
747 oY = min((u32)umode->vdisplay, oY);
748 /* fall-through */
749 case DRM_MODE_SCALE_ASPECT:
750 if (oY < oX) {
751 u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
752 oX = ((oY * aspect) + (aspect / 2)) >> 19;
753 } else {
754 u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
755 oY = ((oX * aspect) + (aspect / 2)) >> 19;
756 }
757 break;
758 default:
759 break;
760 }
761
762 push = evo_wait(mast, 8);
763 if (push) {
764 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
765 /*XXX: SCALE_CTRL_ACTIVE??? */
766 evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
767 evo_data(push, (oY << 16) | oX);
768 evo_data(push, (oY << 16) | oX);
769 evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
770 evo_data(push, 0x00000000);
771 evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
772 evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
773 } else {
774 evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
775 evo_data(push, (oY << 16) | oX);
776 evo_data(push, (oY << 16) | oX);
777 evo_data(push, (oY << 16) | oX);
778 evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
779 evo_data(push, 0x00000000);
780 evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
781 evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
782 }
783
784 evo_kick(push, mast);
785
786 if (update) {
787 nv50_display_flip_stop(crtc);
788 nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
789 }
790 }
791
792 return 0;
793 }
794
795 static int
796 nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
797 {
798 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
799 u32 *push, hue, vib;
800 int adj;
801
802 adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
803 vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
804 hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
805
806 push = evo_wait(mast, 16);
807 if (push) {
808 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
809 evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
810 evo_data(push, (hue << 20) | (vib << 8));
811 } else {
812 evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
813 evo_data(push, (hue << 20) | (vib << 8));
814 }
815
816 if (update) {
817 evo_mthd(push, 0x0080, 1);
818 evo_data(push, 0x00000000);
819 }
820 evo_kick(push, mast);
821 }
822
823 return 0;
824 }
825
826 static int
827 nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
828 int x, int y, bool update)
829 {
830 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
831 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
832 u32 *push;
833
834 push = evo_wait(mast, 16);
835 if (push) {
836 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
837 evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
838 evo_data(push, nvfb->nvbo->bo.offset >> 8);
839 evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
840 evo_data(push, (fb->height << 16) | fb->width);
841 evo_data(push, nvfb->r_pitch);
842 evo_data(push, nvfb->r_format);
843 evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
844 evo_data(push, (y << 16) | x);
845 if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) {
846 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
847 evo_data(push, nvfb->r_dma);
848 }
849 } else {
850 evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
851 evo_data(push, nvfb->nvbo->bo.offset >> 8);
852 evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
853 evo_data(push, (fb->height << 16) | fb->width);
854 evo_data(push, nvfb->r_pitch);
855 evo_data(push, nvfb->r_format);
856 evo_data(push, nvfb->r_dma);
857 evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
858 evo_data(push, (y << 16) | x);
859 }
860
861 if (update) {
862 evo_mthd(push, 0x0080, 1);
863 evo_data(push, 0x00000000);
864 }
865 evo_kick(push, mast);
866 }
867
868 nv_crtc->fb.tile_flags = nvfb->r_dma;
869 return 0;
870 }
871
872 static void
873 nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
874 {
875 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
876 u32 *push = evo_wait(mast, 16);
877 if (push) {
878 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
879 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
880 evo_data(push, 0x85000000);
881 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
882 } else
883 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
884 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
885 evo_data(push, 0x85000000);
886 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
887 evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
888 evo_data(push, NvEvoVRAM);
889 } else {
890 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
891 evo_data(push, 0x85000000);
892 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
893 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
894 evo_data(push, NvEvoVRAM);
895 }
896 evo_kick(push, mast);
897 }
898 }
899
900 static void
901 nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
902 {
903 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
904 u32 *push = evo_wait(mast, 16);
905 if (push) {
906 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
907 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
908 evo_data(push, 0x05000000);
909 } else
910 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
911 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
912 evo_data(push, 0x05000000);
913 evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
914 evo_data(push, 0x00000000);
915 } else {
916 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
917 evo_data(push, 0x05000000);
918 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
919 evo_data(push, 0x00000000);
920 }
921 evo_kick(push, mast);
922 }
923 }
924
925 static void
926 nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
927 {
928 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
929
930 if (show)
931 nv50_crtc_cursor_show(nv_crtc);
932 else
933 nv50_crtc_cursor_hide(nv_crtc);
934
935 if (update) {
936 u32 *push = evo_wait(mast, 2);
937 if (push) {
938 evo_mthd(push, 0x0080, 1);
939 evo_data(push, 0x00000000);
940 evo_kick(push, mast);
941 }
942 }
943 }
944
945 static void
946 nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
947 {
948 }
949
950 static void
951 nv50_crtc_prepare(struct drm_crtc *crtc)
952 {
953 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
954 struct nv50_mast *mast = nv50_mast(crtc->dev);
955 u32 *push;
956
957 nv50_display_flip_stop(crtc);
958
959 push = evo_wait(mast, 2);
960 if (push) {
961 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
962 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
963 evo_data(push, 0x00000000);
964 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
965 evo_data(push, 0x40000000);
966 } else
967 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
968 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
969 evo_data(push, 0x00000000);
970 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
971 evo_data(push, 0x40000000);
972 evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
973 evo_data(push, 0x00000000);
974 } else {
975 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
976 evo_data(push, 0x00000000);
977 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
978 evo_data(push, 0x03000000);
979 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
980 evo_data(push, 0x00000000);
981 }
982
983 evo_kick(push, mast);
984 }
985
986 nv50_crtc_cursor_show_hide(nv_crtc, false, false);
987 }
988
989 static void
990 nv50_crtc_commit(struct drm_crtc *crtc)
991 {
992 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
993 struct nv50_mast *mast = nv50_mast(crtc->dev);
994 u32 *push;
995
996 push = evo_wait(mast, 32);
997 if (push) {
998 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
999 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
1000 evo_data(push, NvEvoVRAM_LP);
1001 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
1002 evo_data(push, 0xc0000000);
1003 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1004 } else
1005 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1006 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
1007 evo_data(push, nv_crtc->fb.tile_flags);
1008 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
1009 evo_data(push, 0xc0000000);
1010 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1011 evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
1012 evo_data(push, NvEvoVRAM);
1013 } else {
1014 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
1015 evo_data(push, nv_crtc->fb.tile_flags);
1016 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
1017 evo_data(push, 0x83000000);
1018 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1019 evo_data(push, 0x00000000);
1020 evo_data(push, 0x00000000);
1021 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
1022 evo_data(push, NvEvoVRAM);
1023 evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
1024 evo_data(push, 0xffffff00);
1025 }
1026
1027 evo_kick(push, mast);
1028 }
1029
1030 nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true);
1031 nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1032 }
1033
1034 static bool
1035 nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
1036 struct drm_display_mode *adjusted_mode)
1037 {
1038 return true;
1039 }
1040
1041 static int
1042 nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
1043 {
1044 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
1045 struct nv50_head *head = nv50_head(crtc);
1046 int ret;
1047
1048 ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
1049 if (ret == 0) {
1050 if (head->image)
1051 nouveau_bo_unpin(head->image);
1052 nouveau_bo_ref(nvfb->nvbo, &head->image);
1053 }
1054
1055 return ret;
1056 }
1057
1058 static int
1059 nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
1060 struct drm_display_mode *mode, int x, int y,
1061 struct drm_framebuffer *old_fb)
1062 {
1063 struct nv50_mast *mast = nv50_mast(crtc->dev);
1064 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1065 struct nouveau_connector *nv_connector;
1066 u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
1067 u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
1068 u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
1069 u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
1070 u32 vblan2e = 0, vblan2s = 1;
1071 u32 *push;
1072 int ret;
1073
1074 hactive = mode->htotal;
1075 hsynce = mode->hsync_end - mode->hsync_start - 1;
1076 hbackp = mode->htotal - mode->hsync_end;
1077 hblanke = hsynce + hbackp;
1078 hfrontp = mode->hsync_start - mode->hdisplay;
1079 hblanks = mode->htotal - hfrontp - 1;
1080
1081 vactive = mode->vtotal * vscan / ilace;
1082 vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
1083 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
1084 vblanke = vsynce + vbackp;
1085 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
1086 vblanks = vactive - vfrontp - 1;
1087 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1088 vblan2e = vactive + vsynce + vbackp;
1089 vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
1090 vactive = (vactive * 2) + 1;
1091 }
1092
1093 ret = nv50_crtc_swap_fbs(crtc, old_fb);
1094 if (ret)
1095 return ret;
1096
1097 push = evo_wait(mast, 64);
1098 if (push) {
1099 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1100 evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
1101 evo_data(push, 0x00800000 | mode->clock);
1102 evo_data(push, (ilace == 2) ? 2 : 0);
1103 evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
1104 evo_data(push, 0x00000000);
1105 evo_data(push, (vactive << 16) | hactive);
1106 evo_data(push, ( vsynce << 16) | hsynce);
1107 evo_data(push, (vblanke << 16) | hblanke);
1108 evo_data(push, (vblanks << 16) | hblanks);
1109 evo_data(push, (vblan2e << 16) | vblan2s);
1110 evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
1111 evo_data(push, 0x00000000);
1112 evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
1113 evo_data(push, 0x00000311);
1114 evo_data(push, 0x00000100);
1115 } else {
1116 evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
1117 evo_data(push, 0x00000000);
1118 evo_data(push, (vactive << 16) | hactive);
1119 evo_data(push, ( vsynce << 16) | hsynce);
1120 evo_data(push, (vblanke << 16) | hblanke);
1121 evo_data(push, (vblanks << 16) | hblanks);
1122 evo_data(push, (vblan2e << 16) | vblan2s);
1123 evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
1124 evo_data(push, 0x00000000); /* ??? */
1125 evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
1126 evo_data(push, mode->clock * 1000);
1127 evo_data(push, 0x00200000); /* ??? */
1128 evo_data(push, mode->clock * 1000);
1129 evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
1130 evo_data(push, 0x00000311);
1131 evo_data(push, 0x00000100);
1132 }
1133
1134 evo_kick(push, mast);
1135 }
1136
1137 nv_connector = nouveau_crtc_connector_get(nv_crtc);
1138 nv50_crtc_set_dither(nv_crtc, false);
1139 nv50_crtc_set_scale(nv_crtc, false);
1140 nv50_crtc_set_color_vibrance(nv_crtc, false);
1141 nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
1142 return 0;
1143 }
1144
1145 static int
1146 nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1147 struct drm_framebuffer *old_fb)
1148 {
1149 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
1150 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1151 int ret;
1152
1153 if (!crtc->fb) {
1154 NV_DEBUG(drm, "No FB bound\n");
1155 return 0;
1156 }
1157
1158 ret = nv50_crtc_swap_fbs(crtc, old_fb);
1159 if (ret)
1160 return ret;
1161
1162 nv50_display_flip_stop(crtc);
1163 nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
1164 nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1165 return 0;
1166 }
1167
1168 static int
1169 nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
1170 struct drm_framebuffer *fb, int x, int y,
1171 enum mode_set_atomic state)
1172 {
1173 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1174 nv50_display_flip_stop(crtc);
1175 nv50_crtc_set_image(nv_crtc, fb, x, y, true);
1176 return 0;
1177 }
1178
1179 static void
1180 nv50_crtc_lut_load(struct drm_crtc *crtc)
1181 {
1182 struct nv50_disp *disp = nv50_disp(crtc->dev);
1183 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1184 void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
1185 int i;
1186
1187 for (i = 0; i < 256; i++) {
1188 u16 r = nv_crtc->lut.r[i] >> 2;
1189 u16 g = nv_crtc->lut.g[i] >> 2;
1190 u16 b = nv_crtc->lut.b[i] >> 2;
1191
1192 if (nv_mclass(disp->core) < NVD0_DISP_CLASS) {
1193 writew(r + 0x0000, lut + (i * 0x08) + 0);
1194 writew(g + 0x0000, lut + (i * 0x08) + 2);
1195 writew(b + 0x0000, lut + (i * 0x08) + 4);
1196 } else {
1197 writew(r + 0x6000, lut + (i * 0x20) + 0);
1198 writew(g + 0x6000, lut + (i * 0x20) + 2);
1199 writew(b + 0x6000, lut + (i * 0x20) + 4);
1200 }
1201 }
1202 }
1203
1204 static void
1205 nv50_crtc_disable(struct drm_crtc *crtc)
1206 {
1207 struct nv50_head *head = nv50_head(crtc);
1208 if (head->image)
1209 nouveau_bo_unpin(head->image);
1210 nouveau_bo_ref(NULL, &head->image);
1211 }
1212
1213 static int
1214 nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
1215 uint32_t handle, uint32_t width, uint32_t height)
1216 {
1217 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1218 struct drm_device *dev = crtc->dev;
1219 struct drm_gem_object *gem;
1220 struct nouveau_bo *nvbo;
1221 bool visible = (handle != 0);
1222 int i, ret = 0;
1223
1224 if (visible) {
1225 if (width != 64 || height != 64)
1226 return -EINVAL;
1227
1228 gem = drm_gem_object_lookup(dev, file_priv, handle);
1229 if (unlikely(!gem))
1230 return -ENOENT;
1231 nvbo = nouveau_gem_object(gem);
1232
1233 ret = nouveau_bo_map(nvbo);
1234 if (ret == 0) {
1235 for (i = 0; i < 64 * 64; i++) {
1236 u32 v = nouveau_bo_rd32(nvbo, i);
1237 nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
1238 }
1239 nouveau_bo_unmap(nvbo);
1240 }
1241
1242 drm_gem_object_unreference_unlocked(gem);
1243 }
1244
1245 if (visible != nv_crtc->cursor.visible) {
1246 nv50_crtc_cursor_show_hide(nv_crtc, visible, true);
1247 nv_crtc->cursor.visible = visible;
1248 }
1249
1250 return ret;
1251 }
1252
1253 static int
1254 nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1255 {
1256 struct nv50_curs *curs = nv50_curs(crtc);
1257 struct nv50_chan *chan = nv50_chan(curs);
1258 nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff));
1259 nv_wo32(chan->user, 0x0080, 0x00000000);
1260 return 0;
1261 }
1262
1263 static void
1264 nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1265 uint32_t start, uint32_t size)
1266 {
1267 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1268 u32 end = max(start + size, (u32)256);
1269 u32 i;
1270
1271 for (i = start; i < end; i++) {
1272 nv_crtc->lut.r[i] = r[i];
1273 nv_crtc->lut.g[i] = g[i];
1274 nv_crtc->lut.b[i] = b[i];
1275 }
1276
1277 nv50_crtc_lut_load(crtc);
1278 }
1279
1280 static void
1281 nv50_crtc_destroy(struct drm_crtc *crtc)
1282 {
1283 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1284 struct nv50_disp *disp = nv50_disp(crtc->dev);
1285 struct nv50_head *head = nv50_head(crtc);
1286
1287 nv50_dmac_destroy(disp->core, &head->ovly.base);
1288 nv50_pioc_destroy(disp->core, &head->oimm.base);
1289 nv50_dmac_destroy(disp->core, &head->sync.base);
1290 nv50_pioc_destroy(disp->core, &head->curs.base);
1291
1292 /*XXX: this shouldn't be necessary, but the core doesn't call
1293 * disconnect() during the cleanup paths
1294 */
1295 if (head->image)
1296 nouveau_bo_unpin(head->image);
1297 nouveau_bo_ref(NULL, &head->image);
1298
1299 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
1300 if (nv_crtc->cursor.nvbo)
1301 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1302 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
1303
1304 nouveau_bo_unmap(nv_crtc->lut.nvbo);
1305 if (nv_crtc->lut.nvbo)
1306 nouveau_bo_unpin(nv_crtc->lut.nvbo);
1307 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
1308
1309 drm_crtc_cleanup(crtc);
1310 kfree(crtc);
1311 }
1312
1313 static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
1314 .dpms = nv50_crtc_dpms,
1315 .prepare = nv50_crtc_prepare,
1316 .commit = nv50_crtc_commit,
1317 .mode_fixup = nv50_crtc_mode_fixup,
1318 .mode_set = nv50_crtc_mode_set,
1319 .mode_set_base = nv50_crtc_mode_set_base,
1320 .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
1321 .load_lut = nv50_crtc_lut_load,
1322 .disable = nv50_crtc_disable,
1323 };
1324
1325 static const struct drm_crtc_funcs nv50_crtc_func = {
1326 .cursor_set = nv50_crtc_cursor_set,
1327 .cursor_move = nv50_crtc_cursor_move,
1328 .gamma_set = nv50_crtc_gamma_set,
1329 .set_config = nouveau_crtc_set_config,
1330 .destroy = nv50_crtc_destroy,
1331 .page_flip = nouveau_crtc_page_flip,
1332 };
1333
1334 static void
1335 nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
1336 {
1337 }
1338
1339 static void
1340 nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
1341 {
1342 }
1343
1344 static int
1345 nv50_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index)
1346 {
1347 struct nv50_disp *disp = nv50_disp(dev);
1348 struct nv50_head *head;
1349 struct drm_crtc *crtc;
1350 int ret, i;
1351
1352 head = kzalloc(sizeof(*head), GFP_KERNEL);
1353 if (!head)
1354 return -ENOMEM;
1355
1356 head->base.index = index;
1357 head->base.set_dither = nv50_crtc_set_dither;
1358 head->base.set_scale = nv50_crtc_set_scale;
1359 head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
1360 head->base.color_vibrance = 50;
1361 head->base.vibrant_hue = 0;
1362 head->base.cursor.set_offset = nv50_cursor_set_offset;
1363 head->base.cursor.set_pos = nv50_cursor_set_pos;
1364 for (i = 0; i < 256; i++) {
1365 head->base.lut.r[i] = i << 8;
1366 head->base.lut.g[i] = i << 8;
1367 head->base.lut.b[i] = i << 8;
1368 }
1369
1370 crtc = &head->base.base;
1371 drm_crtc_init(dev, crtc, &nv50_crtc_func);
1372 drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
1373 drm_mode_crtc_set_gamma_size(crtc, 256);
1374
1375 ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
1376 0, 0x0000, NULL, &head->base.lut.nvbo);
1377 if (!ret) {
1378 ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM);
1379 if (!ret) {
1380 ret = nouveau_bo_map(head->base.lut.nvbo);
1381 if (ret)
1382 nouveau_bo_unpin(head->base.lut.nvbo);
1383 }
1384 if (ret)
1385 nouveau_bo_ref(NULL, &head->base.lut.nvbo);
1386 }
1387
1388 if (ret)
1389 goto out;
1390
1391 nv50_crtc_lut_load(crtc);
1392
1393 /* allocate cursor resources */
1394 ret = nv50_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index,
1395 &(struct nv50_display_curs_class) {
1396 .head = index,
1397 }, sizeof(struct nv50_display_curs_class),
1398 &head->curs.base);
1399 if (ret)
1400 goto out;
1401
1402 ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
1403 0, 0x0000, NULL, &head->base.cursor.nvbo);
1404 if (!ret) {
1405 ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM);
1406 if (!ret) {
1407 ret = nouveau_bo_map(head->base.cursor.nvbo);
1408 if (ret)
1409 nouveau_bo_unpin(head->base.lut.nvbo);
1410 }
1411 if (ret)
1412 nouveau_bo_ref(NULL, &head->base.cursor.nvbo);
1413 }
1414
1415 if (ret)
1416 goto out;
1417
1418 /* allocate page flip / sync resources */
1419 ret = nv50_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index,
1420 &(struct nv50_display_sync_class) {
1421 .pushbuf = EVO_PUSH_HANDLE(SYNC, index),
1422 .head = index,
1423 }, sizeof(struct nv50_display_sync_class),
1424 disp->sync->bo.offset, &head->sync.base);
1425 if (ret)
1426 goto out;
1427
1428 head->sync.addr = EVO_FLIP_SEM0(index);
1429 head->sync.data = 0x00000000;
1430
1431 /* allocate overlay resources */
1432 ret = nv50_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index,
1433 &(struct nv50_display_oimm_class) {
1434 .head = index,
1435 }, sizeof(struct nv50_display_oimm_class),
1436 &head->oimm.base);
1437 if (ret)
1438 goto out;
1439
1440 ret = nv50_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index,
1441 &(struct nv50_display_ovly_class) {
1442 .pushbuf = EVO_PUSH_HANDLE(OVLY, index),
1443 .head = index,
1444 }, sizeof(struct nv50_display_ovly_class),
1445 disp->sync->bo.offset, &head->ovly.base);
1446 if (ret)
1447 goto out;
1448
1449 out:
1450 if (ret)
1451 nv50_crtc_destroy(crtc);
1452 return ret;
1453 }
1454
1455 /******************************************************************************
1456 * DAC
1457 *****************************************************************************/
1458 static void
1459 nv50_dac_dpms(struct drm_encoder *encoder, int mode)
1460 {
1461 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1462 struct nv50_disp *disp = nv50_disp(encoder->dev);
1463 int or = nv_encoder->or;
1464 u32 dpms_ctrl;
1465
1466 dpms_ctrl = 0x00000000;
1467 if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
1468 dpms_ctrl |= 0x00000001;
1469 if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
1470 dpms_ctrl |= 0x00000004;
1471
1472 nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl);
1473 }
1474
1475 static bool
1476 nv50_dac_mode_fixup(struct drm_encoder *encoder,
1477 const struct drm_display_mode *mode,
1478 struct drm_display_mode *adjusted_mode)
1479 {
1480 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1481 struct nouveau_connector *nv_connector;
1482
1483 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1484 if (nv_connector && nv_connector->native_mode) {
1485 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1486 int id = adjusted_mode->base.id;
1487 *adjusted_mode = *nv_connector->native_mode;
1488 adjusted_mode->base.id = id;
1489 }
1490 }
1491
1492 return true;
1493 }
1494
1495 static void
1496 nv50_dac_commit(struct drm_encoder *encoder)
1497 {
1498 }
1499
1500 static void
1501 nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1502 struct drm_display_mode *adjusted_mode)
1503 {
1504 struct nv50_mast *mast = nv50_mast(encoder->dev);
1505 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1506 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1507 u32 *push;
1508
1509 nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
1510
1511 push = evo_wait(mast, 8);
1512 if (push) {
1513 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1514 u32 syncs = 0x00000000;
1515
1516 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1517 syncs |= 0x00000001;
1518 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1519 syncs |= 0x00000002;
1520
1521 evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
1522 evo_data(push, 1 << nv_crtc->index);
1523 evo_data(push, syncs);
1524 } else {
1525 u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
1526 u32 syncs = 0x00000001;
1527
1528 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1529 syncs |= 0x00000008;
1530 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1531 syncs |= 0x00000010;
1532
1533 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1534 magic |= 0x00000001;
1535
1536 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1537 evo_data(push, syncs);
1538 evo_data(push, magic);
1539 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
1540 evo_data(push, 1 << nv_crtc->index);
1541 }
1542
1543 evo_kick(push, mast);
1544 }
1545
1546 nv_encoder->crtc = encoder->crtc;
1547 }
1548
1549 static void
1550 nv50_dac_disconnect(struct drm_encoder *encoder)
1551 {
1552 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1553 struct nv50_mast *mast = nv50_mast(encoder->dev);
1554 const int or = nv_encoder->or;
1555 u32 *push;
1556
1557 if (nv_encoder->crtc) {
1558 nv50_crtc_prepare(nv_encoder->crtc);
1559
1560 push = evo_wait(mast, 4);
1561 if (push) {
1562 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1563 evo_mthd(push, 0x0400 + (or * 0x080), 1);
1564 evo_data(push, 0x00000000);
1565 } else {
1566 evo_mthd(push, 0x0180 + (or * 0x020), 1);
1567 evo_data(push, 0x00000000);
1568 }
1569 evo_kick(push, mast);
1570 }
1571 }
1572
1573 nv_encoder->crtc = NULL;
1574 }
1575
1576 static enum drm_connector_status
1577 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1578 {
1579 struct nv50_disp *disp = nv50_disp(encoder->dev);
1580 int ret, or = nouveau_encoder(encoder)->or;
1581 u32 load = nouveau_drm(encoder->dev)->vbios.dactestval;
1582 if (load == 0)
1583 load = 340;
1584
1585 ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load));
1586 if (ret || !load)
1587 return connector_status_disconnected;
1588
1589 return connector_status_connected;
1590 }
1591
1592 static void
1593 nv50_dac_destroy(struct drm_encoder *encoder)
1594 {
1595 drm_encoder_cleanup(encoder);
1596 kfree(encoder);
1597 }
1598
1599 static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
1600 .dpms = nv50_dac_dpms,
1601 .mode_fixup = nv50_dac_mode_fixup,
1602 .prepare = nv50_dac_disconnect,
1603 .commit = nv50_dac_commit,
1604 .mode_set = nv50_dac_mode_set,
1605 .disable = nv50_dac_disconnect,
1606 .get_crtc = nv50_display_crtc_get,
1607 .detect = nv50_dac_detect
1608 };
1609
1610 static const struct drm_encoder_funcs nv50_dac_func = {
1611 .destroy = nv50_dac_destroy,
1612 };
1613
1614 static int
1615 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
1616 {
1617 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1618 struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
1619 struct nouveau_encoder *nv_encoder;
1620 struct drm_encoder *encoder;
1621 int type = DRM_MODE_ENCODER_DAC;
1622
1623 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1624 if (!nv_encoder)
1625 return -ENOMEM;
1626 nv_encoder->dcb = dcbe;
1627 nv_encoder->or = ffs(dcbe->or) - 1;
1628 nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
1629
1630 encoder = to_drm_encoder(nv_encoder);
1631 encoder->possible_crtcs = dcbe->heads;
1632 encoder->possible_clones = 0;
1633 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type);
1634 drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
1635
1636 drm_mode_connector_attach_encoder(connector, encoder);
1637 return 0;
1638 }
1639
1640 /******************************************************************************
1641 * Audio
1642 *****************************************************************************/
1643 static void
1644 nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1645 {
1646 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1647 struct nouveau_connector *nv_connector;
1648 struct nv50_disp *disp = nv50_disp(encoder->dev);
1649
1650 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1651 if (!drm_detect_monitor_audio(nv_connector->edid))
1652 return;
1653
1654 drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1655
1656 nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or,
1657 nv_connector->base.eld,
1658 nv_connector->base.eld[2] * 4);
1659 }
1660
1661 static void
1662 nv50_audio_disconnect(struct drm_encoder *encoder)
1663 {
1664 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1665 struct nv50_disp *disp = nv50_disp(encoder->dev);
1666
1667 nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0);
1668 }
1669
1670 /******************************************************************************
1671 * HDMI
1672 *****************************************************************************/
1673 static void
1674 nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1675 {
1676 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1677 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1678 struct nouveau_connector *nv_connector;
1679 struct nv50_disp *disp = nv50_disp(encoder->dev);
1680 const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1681 u32 rekey = 56; /* binary driver, and tegra constant */
1682 u32 max_ac_packet;
1683
1684 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1685 if (!drm_detect_hdmi_monitor(nv_connector->edid))
1686 return;
1687
1688 max_ac_packet = mode->htotal - mode->hdisplay;
1689 max_ac_packet -= rekey;
1690 max_ac_packet -= 18; /* constant from tegra */
1691 max_ac_packet /= 32;
1692
1693 nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff,
1694 NV84_DISP_SOR_HDMI_PWR_STATE_ON |
1695 (max_ac_packet << 16) | rekey);
1696
1697 nv50_audio_mode_set(encoder, mode);
1698 }
1699
1700 static void
1701 nv50_hdmi_disconnect(struct drm_encoder *encoder)
1702 {
1703 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1704 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1705 struct nv50_disp *disp = nv50_disp(encoder->dev);
1706 const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1707
1708 nv50_audio_disconnect(encoder);
1709
1710 nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000);
1711 }
1712
1713 /******************************************************************************
1714 * SOR
1715 *****************************************************************************/
1716 static void
1717 nv50_sor_dpms(struct drm_encoder *encoder, int mode)
1718 {
1719 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1720 struct drm_device *dev = encoder->dev;
1721 struct nv50_disp *disp = nv50_disp(dev);
1722 struct drm_encoder *partner;
1723 int or = nv_encoder->or;
1724
1725 nv_encoder->last_dpms = mode;
1726
1727 list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1728 struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1729
1730 if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1731 continue;
1732
1733 if (nv_partner != nv_encoder &&
1734 nv_partner->dcb->or == nv_encoder->dcb->or) {
1735 if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1736 return;
1737 break;
1738 }
1739 }
1740
1741 nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON));
1742 }
1743
1744 static bool
1745 nv50_sor_mode_fixup(struct drm_encoder *encoder,
1746 const struct drm_display_mode *mode,
1747 struct drm_display_mode *adjusted_mode)
1748 {
1749 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1750 struct nouveau_connector *nv_connector;
1751
1752 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1753 if (nv_connector && nv_connector->native_mode) {
1754 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1755 int id = adjusted_mode->base.id;
1756 *adjusted_mode = *nv_connector->native_mode;
1757 adjusted_mode->base.id = id;
1758 }
1759 }
1760
1761 return true;
1762 }
1763
1764 static void
1765 nv50_sor_disconnect(struct drm_encoder *encoder)
1766 {
1767 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1768 struct nv50_mast *mast = nv50_mast(encoder->dev);
1769 const int or = nv_encoder->or;
1770 u32 *push;
1771
1772 if (nv_encoder->crtc) {
1773 nv50_crtc_prepare(nv_encoder->crtc);
1774
1775 push = evo_wait(mast, 4);
1776 if (push) {
1777 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1778 evo_mthd(push, 0x0600 + (or * 0x40), 1);
1779 evo_data(push, 0x00000000);
1780 } else {
1781 evo_mthd(push, 0x0200 + (or * 0x20), 1);
1782 evo_data(push, 0x00000000);
1783 }
1784 evo_kick(push, mast);
1785 }
1786
1787 nv50_hdmi_disconnect(encoder);
1788 }
1789
1790 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1791 nv_encoder->crtc = NULL;
1792 }
1793
1794 static void
1795 nv50_sor_commit(struct drm_encoder *encoder)
1796 {
1797 }
1798
1799 static void
1800 nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1801 struct drm_display_mode *mode)
1802 {
1803 struct nv50_disp *disp = nv50_disp(encoder->dev);
1804 struct nv50_mast *mast = nv50_mast(encoder->dev);
1805 struct drm_device *dev = encoder->dev;
1806 struct nouveau_drm *drm = nouveau_drm(dev);
1807 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1808 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1809 struct nouveau_connector *nv_connector;
1810 struct nvbios *bios = &drm->vbios;
1811 u32 *push, lvds = 0;
1812 u8 owner = 1 << nv_crtc->index;
1813 u8 proto = 0xf;
1814 u8 depth = 0x0;
1815
1816 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1817 switch (nv_encoder->dcb->type) {
1818 case DCB_OUTPUT_TMDS:
1819 if (nv_encoder->dcb->sorconf.link & 1) {
1820 if (mode->clock < 165000)
1821 proto = 0x1;
1822 else
1823 proto = 0x5;
1824 } else {
1825 proto = 0x2;
1826 }
1827
1828 nv50_hdmi_mode_set(encoder, mode);
1829 break;
1830 case DCB_OUTPUT_LVDS:
1831 proto = 0x0;
1832
1833 if (bios->fp_no_ddc) {
1834 if (bios->fp.dual_link)
1835 lvds |= 0x0100;
1836 if (bios->fp.if_is_24bit)
1837 lvds |= 0x0200;
1838 } else {
1839 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1840 if (((u8 *)nv_connector->edid)[121] == 2)
1841 lvds |= 0x0100;
1842 } else
1843 if (mode->clock >= bios->fp.duallink_transition_clk) {
1844 lvds |= 0x0100;
1845 }
1846
1847 if (lvds & 0x0100) {
1848 if (bios->fp.strapless_is_24bit & 2)
1849 lvds |= 0x0200;
1850 } else {
1851 if (bios->fp.strapless_is_24bit & 1)
1852 lvds |= 0x0200;
1853 }
1854
1855 if (nv_connector->base.display_info.bpc == 8)
1856 lvds |= 0x0200;
1857 }
1858
1859 nv_call(disp->core, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, lvds);
1860 break;
1861 case DCB_OUTPUT_DP:
1862 if (nv_connector->base.display_info.bpc == 6) {
1863 nv_encoder->dp.datarate = mode->clock * 18 / 8;
1864 depth = 0x2;
1865 } else
1866 if (nv_connector->base.display_info.bpc == 8) {
1867 nv_encoder->dp.datarate = mode->clock * 24 / 8;
1868 depth = 0x5;
1869 } else {
1870 nv_encoder->dp.datarate = mode->clock * 30 / 8;
1871 depth = 0x6;
1872 }
1873
1874 if (nv_encoder->dcb->sorconf.link & 1)
1875 proto = 0x8;
1876 else
1877 proto = 0x9;
1878 break;
1879 default:
1880 BUG_ON(1);
1881 break;
1882 }
1883
1884 nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1885
1886 push = evo_wait(nv50_mast(dev), 8);
1887 if (push) {
1888 if (nv50_vers(mast) < NVD0_DISP_CLASS) {
1889 u32 ctrl = (depth << 16) | (proto << 8) | owner;
1890 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1891 ctrl |= 0x00001000;
1892 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1893 ctrl |= 0x00002000;
1894 evo_mthd(push, 0x0600 + (nv_encoder->or * 0x040), 1);
1895 evo_data(push, ctrl);
1896 } else {
1897 u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
1898 u32 syncs = 0x00000001;
1899
1900 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1901 syncs |= 0x00000008;
1902 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1903 syncs |= 0x00000010;
1904
1905 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1906 magic |= 0x00000001;
1907
1908 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1909 evo_data(push, syncs | (depth << 6));
1910 evo_data(push, magic);
1911 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 1);
1912 evo_data(push, owner | (proto << 8));
1913 }
1914
1915 evo_kick(push, mast);
1916 }
1917
1918 nv_encoder->crtc = encoder->crtc;
1919 }
1920
1921 static void
1922 nv50_sor_destroy(struct drm_encoder *encoder)
1923 {
1924 drm_encoder_cleanup(encoder);
1925 kfree(encoder);
1926 }
1927
1928 static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
1929 .dpms = nv50_sor_dpms,
1930 .mode_fixup = nv50_sor_mode_fixup,
1931 .prepare = nv50_sor_disconnect,
1932 .commit = nv50_sor_commit,
1933 .mode_set = nv50_sor_mode_set,
1934 .disable = nv50_sor_disconnect,
1935 .get_crtc = nv50_display_crtc_get,
1936 };
1937
1938 static const struct drm_encoder_funcs nv50_sor_func = {
1939 .destroy = nv50_sor_destroy,
1940 };
1941
1942 static int
1943 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1944 {
1945 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1946 struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
1947 struct nouveau_encoder *nv_encoder;
1948 struct drm_encoder *encoder;
1949 int type;
1950
1951 switch (dcbe->type) {
1952 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1953 case DCB_OUTPUT_TMDS:
1954 case DCB_OUTPUT_DP:
1955 default:
1956 type = DRM_MODE_ENCODER_TMDS;
1957 break;
1958 }
1959
1960 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1961 if (!nv_encoder)
1962 return -ENOMEM;
1963 nv_encoder->dcb = dcbe;
1964 nv_encoder->or = ffs(dcbe->or) - 1;
1965 nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
1966 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1967
1968 encoder = to_drm_encoder(nv_encoder);
1969 encoder->possible_crtcs = dcbe->heads;
1970 encoder->possible_clones = 0;
1971 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type);
1972 drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
1973
1974 drm_mode_connector_attach_encoder(connector, encoder);
1975 return 0;
1976 }
1977
1978 /******************************************************************************
1979 * PIOR
1980 *****************************************************************************/
1981
1982 static void
1983 nv50_pior_dpms(struct drm_encoder *encoder, int mode)
1984 {
1985 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1986 struct nv50_disp *disp = nv50_disp(encoder->dev);
1987 u32 mthd = (nv_encoder->dcb->type << 12) | nv_encoder->or;
1988 u32 ctrl = (mode == DRM_MODE_DPMS_ON);
1989 nv_call(disp->core, NV50_DISP_PIOR_PWR + mthd, ctrl);
1990 }
1991
1992 static bool
1993 nv50_pior_mode_fixup(struct drm_encoder *encoder,
1994 const struct drm_display_mode *mode,
1995 struct drm_display_mode *adjusted_mode)
1996 {
1997 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1998 struct nouveau_connector *nv_connector;
1999
2000 nv_connector = nouveau_encoder_connector_get(nv_encoder);
2001 if (nv_connector && nv_connector->native_mode) {
2002 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
2003 int id = adjusted_mode->base.id;
2004 *adjusted_mode = *nv_connector->native_mode;
2005 adjusted_mode->base.id = id;
2006 }
2007 }
2008
2009 adjusted_mode->clock *= 2;
2010 return true;
2011 }
2012
2013 static void
2014 nv50_pior_commit(struct drm_encoder *encoder)
2015 {
2016 }
2017
2018 static void
2019 nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
2020 struct drm_display_mode *adjusted_mode)
2021 {
2022 struct nv50_mast *mast = nv50_mast(encoder->dev);
2023 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2024 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
2025 struct nouveau_connector *nv_connector;
2026 u8 owner = 1 << nv_crtc->index;
2027 u8 proto, depth;
2028 u32 *push;
2029
2030 nv_connector = nouveau_encoder_connector_get(nv_encoder);
2031 switch (nv_connector->base.display_info.bpc) {
2032 case 10: depth = 0x6; break;
2033 case 8: depth = 0x5; break;
2034 case 6: depth = 0x2; break;
2035 default: depth = 0x0; break;
2036 }
2037
2038 switch (nv_encoder->dcb->type) {
2039 case DCB_OUTPUT_TMDS:
2040 case DCB_OUTPUT_DP:
2041 proto = 0x0;
2042 break;
2043 default:
2044 BUG_ON(1);
2045 break;
2046 }
2047
2048 nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON);
2049
2050 push = evo_wait(mast, 8);
2051 if (push) {
2052 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
2053 u32 ctrl = (depth << 16) | (proto << 8) | owner;
2054 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
2055 ctrl |= 0x00001000;
2056 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
2057 ctrl |= 0x00002000;
2058 evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1);
2059 evo_data(push, ctrl);
2060 }
2061
2062 evo_kick(push, mast);
2063 }
2064
2065 nv_encoder->crtc = encoder->crtc;
2066 }
2067
2068 static void
2069 nv50_pior_disconnect(struct drm_encoder *encoder)
2070 {
2071 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2072 struct nv50_mast *mast = nv50_mast(encoder->dev);
2073 const int or = nv_encoder->or;
2074 u32 *push;
2075
2076 if (nv_encoder->crtc) {
2077 nv50_crtc_prepare(nv_encoder->crtc);
2078
2079 push = evo_wait(mast, 4);
2080 if (push) {
2081 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
2082 evo_mthd(push, 0x0700 + (or * 0x040), 1);
2083 evo_data(push, 0x00000000);
2084 }
2085 evo_kick(push, mast);
2086 }
2087 }
2088
2089 nv_encoder->crtc = NULL;
2090 }
2091
2092 static void
2093 nv50_pior_destroy(struct drm_encoder *encoder)
2094 {
2095 drm_encoder_cleanup(encoder);
2096 kfree(encoder);
2097 }
2098
2099 static const struct drm_encoder_helper_funcs nv50_pior_hfunc = {
2100 .dpms = nv50_pior_dpms,
2101 .mode_fixup = nv50_pior_mode_fixup,
2102 .prepare = nv50_pior_disconnect,
2103 .commit = nv50_pior_commit,
2104 .mode_set = nv50_pior_mode_set,
2105 .disable = nv50_pior_disconnect,
2106 .get_crtc = nv50_display_crtc_get,
2107 };
2108
2109 static const struct drm_encoder_funcs nv50_pior_func = {
2110 .destroy = nv50_pior_destroy,
2111 };
2112
2113 static int
2114 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2115 {
2116 struct nouveau_drm *drm = nouveau_drm(connector->dev);
2117 struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
2118 struct nouveau_i2c_port *ddc = NULL;
2119 struct nouveau_encoder *nv_encoder;
2120 struct drm_encoder *encoder;
2121 int type;
2122
2123 switch (dcbe->type) {
2124 case DCB_OUTPUT_TMDS:
2125 ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTDDC(dcbe->extdev));
2126 type = DRM_MODE_ENCODER_TMDS;
2127 break;
2128 case DCB_OUTPUT_DP:
2129 ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTAUX(dcbe->extdev));
2130 type = DRM_MODE_ENCODER_TMDS;
2131 break;
2132 default:
2133 return -ENODEV;
2134 }
2135
2136 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2137 if (!nv_encoder)
2138 return -ENOMEM;
2139 nv_encoder->dcb = dcbe;
2140 nv_encoder->or = ffs(dcbe->or) - 1;
2141 nv_encoder->i2c = ddc;
2142
2143 encoder = to_drm_encoder(nv_encoder);
2144 encoder->possible_crtcs = dcbe->heads;
2145 encoder->possible_clones = 0;
2146 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type);
2147 drm_encoder_helper_add(encoder, &nv50_pior_hfunc);
2148
2149 drm_mode_connector_attach_encoder(connector, encoder);
2150 return 0;
2151 }
2152
2153 /******************************************************************************
2154 * Init
2155 *****************************************************************************/
2156 void
2157 nv50_display_fini(struct drm_device *dev)
2158 {
2159 }
2160
2161 int
2162 nv50_display_init(struct drm_device *dev)
2163 {
2164 struct nv50_disp *disp = nv50_disp(dev);
2165 struct drm_crtc *crtc;
2166 u32 *push;
2167
2168 push = evo_wait(nv50_mast(dev), 32);
2169 if (!push)
2170 return -EBUSY;
2171
2172 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2173 struct nv50_sync *sync = nv50_sync(crtc);
2174 nouveau_bo_wr32(disp->sync, sync->addr / 4, sync->data);
2175 }
2176
2177 evo_mthd(push, 0x0088, 1);
2178 evo_data(push, NvEvoSync);
2179 evo_kick(push, nv50_mast(dev));
2180 return 0;
2181 }
2182
2183 void
2184 nv50_display_destroy(struct drm_device *dev)
2185 {
2186 struct nv50_disp *disp = nv50_disp(dev);
2187
2188 nv50_dmac_destroy(disp->core, &disp->mast.base);
2189
2190 nouveau_bo_unmap(disp->sync);
2191 if (disp->sync)
2192 nouveau_bo_unpin(disp->sync);
2193 nouveau_bo_ref(NULL, &disp->sync);
2194
2195 nouveau_display(dev)->priv = NULL;
2196 kfree(disp);
2197 }
2198
2199 int
2200 nv50_display_create(struct drm_device *dev)
2201 {
2202 static const u16 oclass[] = {
2203 NVF0_DISP_CLASS,
2204 NVE0_DISP_CLASS,
2205 NVD0_DISP_CLASS,
2206 NVA3_DISP_CLASS,
2207 NV94_DISP_CLASS,
2208 NVA0_DISP_CLASS,
2209 NV84_DISP_CLASS,
2210 NV50_DISP_CLASS,
2211 };
2212 struct nouveau_device *device = nouveau_dev(dev);
2213 struct nouveau_drm *drm = nouveau_drm(dev);
2214 struct dcb_table *dcb = &drm->vbios.dcb;
2215 struct drm_connector *connector, *tmp;
2216 struct nv50_disp *disp;
2217 struct dcb_output *dcbe;
2218 int crtcs, ret, i;
2219
2220 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2221 if (!disp)
2222 return -ENOMEM;
2223
2224 nouveau_display(dev)->priv = disp;
2225 nouveau_display(dev)->dtor = nv50_display_destroy;
2226 nouveau_display(dev)->init = nv50_display_init;
2227 nouveau_display(dev)->fini = nv50_display_fini;
2228
2229 /* small shared memory area we use for notifiers and semaphores */
2230 ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2231 0, 0x0000, NULL, &disp->sync);
2232 if (!ret) {
2233 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2234 if (!ret) {
2235 ret = nouveau_bo_map(disp->sync);
2236 if (ret)
2237 nouveau_bo_unpin(disp->sync);
2238 }
2239 if (ret)
2240 nouveau_bo_ref(NULL, &disp->sync);
2241 }
2242
2243 if (ret)
2244 goto out;
2245
2246 /* attempt to allocate a supported evo display class */
2247 ret = -ENODEV;
2248 for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) {
2249 ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE,
2250 0xd1500000, oclass[i], NULL, 0,
2251 &disp->core);
2252 }
2253
2254 if (ret)
2255 goto out;
2256
2257 /* allocate master evo channel */
2258 ret = nv50_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0,
2259 &(struct nv50_display_mast_class) {
2260 .pushbuf = EVO_PUSH_HANDLE(MAST, 0),
2261 }, sizeof(struct nv50_display_mast_class),
2262 disp->sync->bo.offset, &disp->mast.base);
2263 if (ret)
2264 goto out;
2265
2266 /* create crtc objects to represent the hw heads */
2267 if (nv_mclass(disp->core) >= NVD0_DISP_CLASS)
2268 crtcs = nv_rd32(device, 0x022448);
2269 else
2270 crtcs = 2;
2271
2272 for (i = 0; i < crtcs; i++) {
2273 ret = nv50_crtc_create(dev, disp->core, i);
2274 if (ret)
2275 goto out;
2276 }
2277
2278 /* create encoder/connector objects based on VBIOS DCB table */
2279 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2280 connector = nouveau_connector_create(dev, dcbe->connector);
2281 if (IS_ERR(connector))
2282 continue;
2283
2284 if (dcbe->location == DCB_LOC_ON_CHIP) {
2285 switch (dcbe->type) {
2286 case DCB_OUTPUT_TMDS:
2287 case DCB_OUTPUT_LVDS:
2288 case DCB_OUTPUT_DP:
2289 ret = nv50_sor_create(connector, dcbe);
2290 break;
2291 case DCB_OUTPUT_ANALOG:
2292 ret = nv50_dac_create(connector, dcbe);
2293 break;
2294 default:
2295 ret = -ENODEV;
2296 break;
2297 }
2298 } else {
2299 ret = nv50_pior_create(connector, dcbe);
2300 }
2301
2302 if (ret) {
2303 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2304 dcbe->location, dcbe->type,
2305 ffs(dcbe->or) - 1, ret);
2306 ret = 0;
2307 }
2308 }
2309
2310 /* cull any connectors we created that don't have an encoder */
2311 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2312 if (connector->encoder_ids[0])
2313 continue;
2314
2315 NV_WARN(drm, "%s has no encoders, removing\n",
2316 drm_get_connector_name(connector));
2317 connector->funcs->destroy(connector);
2318 }
2319
2320 out:
2321 if (ret)
2322 nv50_display_destroy(dev);
2323 return ret;
2324 }