799e65b
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] /
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
3 *
4 * RPCSEC_GSS client authentication.
5 *
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 #include <linux/hashtable.h>
55
56 #include "../netns.h"
57
58 static const struct rpc_authops authgss_ops;
59
60 static const struct rpc_credops gss_credops;
61 static const struct rpc_credops gss_nullops;
62
63 #define GSS_RETRY_EXPIRED 5
64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
65
66 #define GSS_KEY_EXPIRE_TIMEO 240
67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
68
69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
70 # define RPCDBG_FACILITY RPCDBG_AUTH
71 #endif
72
73 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2)
74 /* length of a krb5 verifier (48), plus data added before arguments when
75 * using integrity (two 4-byte integers): */
76 #define GSS_VERF_SLACK 100
77
78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
79 static DEFINE_SPINLOCK(gss_auth_hash_lock);
80
81 struct gss_pipe {
82 struct rpc_pipe_dir_object pdo;
83 struct rpc_pipe *pipe;
84 struct rpc_clnt *clnt;
85 const char *name;
86 struct kref kref;
87 };
88
89 struct gss_auth {
90 struct kref kref;
91 struct hlist_node hash;
92 struct rpc_auth rpc_auth;
93 struct gss_api_mech *mech;
94 enum rpc_gss_svc service;
95 struct rpc_clnt *client;
96 struct net *net;
97 /*
98 * There are two upcall pipes; dentry[1], named "gssd", is used
99 * for the new text-based upcall; dentry[0] is named after the
100 * mechanism (for example, "krb5") and exists for
101 * backwards-compatibility with older gssd's.
102 */
103 struct gss_pipe *gss_pipe[2];
104 const char *target_name;
105 };
106
107 /* pipe_version >= 0 if and only if someone has a pipe open. */
108 static DEFINE_SPINLOCK(pipe_version_lock);
109 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
111 static void gss_put_auth(struct gss_auth *gss_auth);
112
113 static void gss_free_ctx(struct gss_cl_ctx *);
114 static const struct rpc_pipe_ops gss_upcall_ops_v0;
115 static const struct rpc_pipe_ops gss_upcall_ops_v1;
116
117 static inline struct gss_cl_ctx *
118 gss_get_ctx(struct gss_cl_ctx *ctx)
119 {
120 atomic_inc(&ctx->count);
121 return ctx;
122 }
123
124 static inline void
125 gss_put_ctx(struct gss_cl_ctx *ctx)
126 {
127 if (atomic_dec_and_test(&ctx->count))
128 gss_free_ctx(ctx);
129 }
130
131 /* gss_cred_set_ctx:
132 * called by gss_upcall_callback and gss_create_upcall in order
133 * to set the gss context. The actual exchange of an old context
134 * and a new one is protected by the pipe->lock.
135 */
136 static void
137 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
138 {
139 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
140
141 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
142 return;
143 gss_get_ctx(ctx);
144 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
145 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
146 smp_mb__before_atomic();
147 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
148 }
149
150 static const void *
151 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
152 {
153 const void *q = (const void *)((const char *)p + len);
154 if (unlikely(q > end || q < p))
155 return ERR_PTR(-EFAULT);
156 memcpy(res, p, len);
157 return q;
158 }
159
160 static inline const void *
161 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
162 {
163 const void *q;
164 unsigned int len;
165
166 p = simple_get_bytes(p, end, &len, sizeof(len));
167 if (IS_ERR(p))
168 return p;
169 q = (const void *)((const char *)p + len);
170 if (unlikely(q > end || q < p))
171 return ERR_PTR(-EFAULT);
172 dest->data = kmemdup(p, len, GFP_NOFS);
173 if (unlikely(dest->data == NULL))
174 return ERR_PTR(-ENOMEM);
175 dest->len = len;
176 return q;
177 }
178
179 static struct gss_cl_ctx *
180 gss_cred_get_ctx(struct rpc_cred *cred)
181 {
182 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
183 struct gss_cl_ctx *ctx = NULL;
184
185 rcu_read_lock();
186 ctx = rcu_dereference(gss_cred->gc_ctx);
187 if (ctx)
188 gss_get_ctx(ctx);
189 rcu_read_unlock();
190 return ctx;
191 }
192
193 static struct gss_cl_ctx *
194 gss_alloc_context(void)
195 {
196 struct gss_cl_ctx *ctx;
197
198 ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
199 if (ctx != NULL) {
200 ctx->gc_proc = RPC_GSS_PROC_DATA;
201 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
202 spin_lock_init(&ctx->gc_seq_lock);
203 atomic_set(&ctx->count,1);
204 }
205 return ctx;
206 }
207
208 #define GSSD_MIN_TIMEOUT (60 * 60)
209 static const void *
210 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
211 {
212 const void *q;
213 unsigned int seclen;
214 unsigned int timeout;
215 unsigned long now = jiffies;
216 u32 window_size;
217 int ret;
218
219 /* First unsigned int gives the remaining lifetime in seconds of the
220 * credential - e.g. the remaining TGT lifetime for Kerberos or
221 * the -t value passed to GSSD.
222 */
223 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
224 if (IS_ERR(p))
225 goto err;
226 if (timeout == 0)
227 timeout = GSSD_MIN_TIMEOUT;
228 ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
229 /* Sequence number window. Determines the maximum number of
230 * simultaneous requests
231 */
232 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
233 if (IS_ERR(p))
234 goto err;
235 ctx->gc_win = window_size;
236 /* gssd signals an error by passing ctx->gc_win = 0: */
237 if (ctx->gc_win == 0) {
238 /*
239 * in which case, p points to an error code. Anything other
240 * than -EKEYEXPIRED gets converted to -EACCES.
241 */
242 p = simple_get_bytes(p, end, &ret, sizeof(ret));
243 if (!IS_ERR(p))
244 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
245 ERR_PTR(-EACCES);
246 goto err;
247 }
248 /* copy the opaque wire context */
249 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
250 if (IS_ERR(p))
251 goto err;
252 /* import the opaque security context */
253 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
254 if (IS_ERR(p))
255 goto err;
256 q = (const void *)((const char *)p + seclen);
257 if (unlikely(q > end || q < p)) {
258 p = ERR_PTR(-EFAULT);
259 goto err;
260 }
261 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS);
262 if (ret < 0) {
263 p = ERR_PTR(ret);
264 goto err;
265 }
266
267 /* is there any trailing data? */
268 if (q == end) {
269 p = q;
270 goto done;
271 }
272
273 /* pull in acceptor name (if there is one) */
274 p = simple_get_netobj(q, end, &ctx->gc_acceptor);
275 if (IS_ERR(p))
276 goto err;
277 done:
278 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u acceptor %.*s\n",
279 __func__, ctx->gc_expiry, now, timeout, ctx->gc_acceptor.len,
280 ctx->gc_acceptor.data);
281 return p;
282 err:
283 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p));
284 return p;
285 }
286
287 #define UPCALL_BUF_LEN 128
288
289 struct gss_upcall_msg {
290 atomic_t count;
291 kuid_t uid;
292 struct rpc_pipe_msg msg;
293 struct list_head list;
294 struct gss_auth *auth;
295 struct rpc_pipe *pipe;
296 struct rpc_wait_queue rpc_waitqueue;
297 wait_queue_head_t waitqueue;
298 struct gss_cl_ctx *ctx;
299 char databuf[UPCALL_BUF_LEN];
300 };
301
302 static int get_pipe_version(struct net *net)
303 {
304 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
305 int ret;
306
307 spin_lock(&pipe_version_lock);
308 if (sn->pipe_version >= 0) {
309 atomic_inc(&sn->pipe_users);
310 ret = sn->pipe_version;
311 } else
312 ret = -EAGAIN;
313 spin_unlock(&pipe_version_lock);
314 return ret;
315 }
316
317 static void put_pipe_version(struct net *net)
318 {
319 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
320
321 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
322 sn->pipe_version = -1;
323 spin_unlock(&pipe_version_lock);
324 }
325 }
326
327 static void
328 gss_release_msg(struct gss_upcall_msg *gss_msg)
329 {
330 struct net *net = gss_msg->auth->net;
331 if (!atomic_dec_and_test(&gss_msg->count))
332 return;
333 put_pipe_version(net);
334 BUG_ON(!list_empty(&gss_msg->list));
335 if (gss_msg->ctx != NULL)
336 gss_put_ctx(gss_msg->ctx);
337 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
338 gss_put_auth(gss_msg->auth);
339 kfree(gss_msg);
340 }
341
342 static struct gss_upcall_msg *
343 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid)
344 {
345 struct gss_upcall_msg *pos;
346 list_for_each_entry(pos, &pipe->in_downcall, list) {
347 if (!uid_eq(pos->uid, uid))
348 continue;
349 atomic_inc(&pos->count);
350 dprintk("RPC: %s found msg %p\n", __func__, pos);
351 return pos;
352 }
353 dprintk("RPC: %s found nothing\n", __func__);
354 return NULL;
355 }
356
357 /* Try to add an upcall to the pipefs queue.
358 * If an upcall owned by our uid already exists, then we return a reference
359 * to that upcall instead of adding the new upcall.
360 */
361 static inline struct gss_upcall_msg *
362 gss_add_msg(struct gss_upcall_msg *gss_msg)
363 {
364 struct rpc_pipe *pipe = gss_msg->pipe;
365 struct gss_upcall_msg *old;
366
367 spin_lock(&pipe->lock);
368 old = __gss_find_upcall(pipe, gss_msg->uid);
369 if (old == NULL) {
370 atomic_inc(&gss_msg->count);
371 list_add(&gss_msg->list, &pipe->in_downcall);
372 } else
373 gss_msg = old;
374 spin_unlock(&pipe->lock);
375 return gss_msg;
376 }
377
378 static void
379 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
380 {
381 list_del_init(&gss_msg->list);
382 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
383 wake_up_all(&gss_msg->waitqueue);
384 atomic_dec(&gss_msg->count);
385 }
386
387 static void
388 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
389 {
390 struct rpc_pipe *pipe = gss_msg->pipe;
391
392 if (list_empty(&gss_msg->list))
393 return;
394 spin_lock(&pipe->lock);
395 if (!list_empty(&gss_msg->list))
396 __gss_unhash_msg(gss_msg);
397 spin_unlock(&pipe->lock);
398 }
399
400 static void
401 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
402 {
403 switch (gss_msg->msg.errno) {
404 case 0:
405 if (gss_msg->ctx == NULL)
406 break;
407 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
408 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
409 break;
410 case -EKEYEXPIRED:
411 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
412 }
413 gss_cred->gc_upcall_timestamp = jiffies;
414 gss_cred->gc_upcall = NULL;
415 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
416 }
417
418 static void
419 gss_upcall_callback(struct rpc_task *task)
420 {
421 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
422 struct gss_cred, gc_base);
423 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
424 struct rpc_pipe *pipe = gss_msg->pipe;
425
426 spin_lock(&pipe->lock);
427 gss_handle_downcall_result(gss_cred, gss_msg);
428 spin_unlock(&pipe->lock);
429 task->tk_status = gss_msg->msg.errno;
430 gss_release_msg(gss_msg);
431 }
432
433 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
434 {
435 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid);
436 memcpy(gss_msg->databuf, &uid, sizeof(uid));
437 gss_msg->msg.data = gss_msg->databuf;
438 gss_msg->msg.len = sizeof(uid);
439
440 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
441 }
442
443 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
444 const char *service_name,
445 const char *target_name)
446 {
447 struct gss_api_mech *mech = gss_msg->auth->mech;
448 char *p = gss_msg->databuf;
449 size_t buflen = sizeof(gss_msg->databuf);
450 int len;
451
452 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name,
453 from_kuid(&init_user_ns, gss_msg->uid));
454 buflen -= len;
455 p += len;
456 gss_msg->msg.len = len;
457 if (target_name) {
458 len = scnprintf(p, buflen, "target=%s ", target_name);
459 buflen -= len;
460 p += len;
461 gss_msg->msg.len += len;
462 }
463 if (service_name != NULL) {
464 len = scnprintf(p, buflen, "service=%s ", service_name);
465 buflen -= len;
466 p += len;
467 gss_msg->msg.len += len;
468 }
469 if (mech->gm_upcall_enctypes) {
470 len = scnprintf(p, buflen, "enctypes=%s ",
471 mech->gm_upcall_enctypes);
472 buflen -= len;
473 p += len;
474 gss_msg->msg.len += len;
475 }
476 len = scnprintf(p, buflen, "\n");
477 if (len == 0)
478 goto out_overflow;
479 gss_msg->msg.len += len;
480
481 gss_msg->msg.data = gss_msg->databuf;
482 return 0;
483 out_overflow:
484 WARN_ON_ONCE(1);
485 return -ENOMEM;
486 }
487
488 static struct gss_upcall_msg *
489 gss_alloc_msg(struct gss_auth *gss_auth,
490 kuid_t uid, const char *service_name)
491 {
492 struct gss_upcall_msg *gss_msg;
493 int vers;
494 int err = -ENOMEM;
495
496 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
497 if (gss_msg == NULL)
498 goto err;
499 vers = get_pipe_version(gss_auth->net);
500 err = vers;
501 if (err < 0)
502 goto err_free_msg;
503 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
504 INIT_LIST_HEAD(&gss_msg->list);
505 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
506 init_waitqueue_head(&gss_msg->waitqueue);
507 atomic_set(&gss_msg->count, 1);
508 gss_msg->uid = uid;
509 gss_msg->auth = gss_auth;
510 switch (vers) {
511 case 0:
512 gss_encode_v0_msg(gss_msg);
513 break;
514 default:
515 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name);
516 if (err)
517 goto err_put_pipe_version;
518 };
519 kref_get(&gss_auth->kref);
520 return gss_msg;
521 err_put_pipe_version:
522 put_pipe_version(gss_auth->net);
523 err_free_msg:
524 kfree(gss_msg);
525 err:
526 return ERR_PTR(err);
527 }
528
529 static struct gss_upcall_msg *
530 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
531 {
532 struct gss_cred *gss_cred = container_of(cred,
533 struct gss_cred, gc_base);
534 struct gss_upcall_msg *gss_new, *gss_msg;
535 kuid_t uid = cred->cr_uid;
536
537 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
538 if (IS_ERR(gss_new))
539 return gss_new;
540 gss_msg = gss_add_msg(gss_new);
541 if (gss_msg == gss_new) {
542 int res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
543 if (res) {
544 gss_unhash_msg(gss_new);
545 gss_msg = ERR_PTR(res);
546 }
547 } else
548 gss_release_msg(gss_new);
549 return gss_msg;
550 }
551
552 static void warn_gssd(void)
553 {
554 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n");
555 }
556
557 static inline int
558 gss_refresh_upcall(struct rpc_task *task)
559 {
560 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
561 struct gss_auth *gss_auth = container_of(cred->cr_auth,
562 struct gss_auth, rpc_auth);
563 struct gss_cred *gss_cred = container_of(cred,
564 struct gss_cred, gc_base);
565 struct gss_upcall_msg *gss_msg;
566 struct rpc_pipe *pipe;
567 int err = 0;
568
569 dprintk("RPC: %5u %s for uid %u\n",
570 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid));
571 gss_msg = gss_setup_upcall(gss_auth, cred);
572 if (PTR_ERR(gss_msg) == -EAGAIN) {
573 /* XXX: warning on the first, under the assumption we
574 * shouldn't normally hit this case on a refresh. */
575 warn_gssd();
576 task->tk_timeout = 15*HZ;
577 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
578 return -EAGAIN;
579 }
580 if (IS_ERR(gss_msg)) {
581 err = PTR_ERR(gss_msg);
582 goto out;
583 }
584 pipe = gss_msg->pipe;
585 spin_lock(&pipe->lock);
586 if (gss_cred->gc_upcall != NULL)
587 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
588 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
589 task->tk_timeout = 0;
590 gss_cred->gc_upcall = gss_msg;
591 /* gss_upcall_callback will release the reference to gss_upcall_msg */
592 atomic_inc(&gss_msg->count);
593 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
594 } else {
595 gss_handle_downcall_result(gss_cred, gss_msg);
596 err = gss_msg->msg.errno;
597 }
598 spin_unlock(&pipe->lock);
599 gss_release_msg(gss_msg);
600 out:
601 dprintk("RPC: %5u %s for uid %u result %d\n",
602 task->tk_pid, __func__,
603 from_kuid(&init_user_ns, cred->cr_uid), err);
604 return err;
605 }
606
607 static inline int
608 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
609 {
610 struct net *net = gss_auth->net;
611 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
612 struct rpc_pipe *pipe;
613 struct rpc_cred *cred = &gss_cred->gc_base;
614 struct gss_upcall_msg *gss_msg;
615 DEFINE_WAIT(wait);
616 int err;
617
618 dprintk("RPC: %s for uid %u\n",
619 __func__, from_kuid(&init_user_ns, cred->cr_uid));
620 retry:
621 err = 0;
622 /* if gssd is down, just skip upcalling altogether */
623 if (!gssd_running(net)) {
624 warn_gssd();
625 return -EACCES;
626 }
627 gss_msg = gss_setup_upcall(gss_auth, cred);
628 if (PTR_ERR(gss_msg) == -EAGAIN) {
629 err = wait_event_interruptible_timeout(pipe_version_waitqueue,
630 sn->pipe_version >= 0, 15 * HZ);
631 if (sn->pipe_version < 0) {
632 warn_gssd();
633 err = -EACCES;
634 }
635 if (err < 0)
636 goto out;
637 goto retry;
638 }
639 if (IS_ERR(gss_msg)) {
640 err = PTR_ERR(gss_msg);
641 goto out;
642 }
643 pipe = gss_msg->pipe;
644 for (;;) {
645 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
646 spin_lock(&pipe->lock);
647 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
648 break;
649 }
650 spin_unlock(&pipe->lock);
651 if (fatal_signal_pending(current)) {
652 err = -ERESTARTSYS;
653 goto out_intr;
654 }
655 schedule();
656 }
657 if (gss_msg->ctx)
658 gss_cred_set_ctx(cred, gss_msg->ctx);
659 else
660 err = gss_msg->msg.errno;
661 spin_unlock(&pipe->lock);
662 out_intr:
663 finish_wait(&gss_msg->waitqueue, &wait);
664 gss_release_msg(gss_msg);
665 out:
666 dprintk("RPC: %s for uid %u result %d\n",
667 __func__, from_kuid(&init_user_ns, cred->cr_uid), err);
668 return err;
669 }
670
671 #define MSG_BUF_MAXSIZE 1024
672
673 static ssize_t
674 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
675 {
676 const void *p, *end;
677 void *buf;
678 struct gss_upcall_msg *gss_msg;
679 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
680 struct gss_cl_ctx *ctx;
681 uid_t id;
682 kuid_t uid;
683 ssize_t err = -EFBIG;
684
685 if (mlen > MSG_BUF_MAXSIZE)
686 goto out;
687 err = -ENOMEM;
688 buf = kmalloc(mlen, GFP_NOFS);
689 if (!buf)
690 goto out;
691
692 err = -EFAULT;
693 if (copy_from_user(buf, src, mlen))
694 goto err;
695
696 end = (const void *)((char *)buf + mlen);
697 p = simple_get_bytes(buf, end, &id, sizeof(id));
698 if (IS_ERR(p)) {
699 err = PTR_ERR(p);
700 goto err;
701 }
702
703 uid = make_kuid(&init_user_ns, id);
704 if (!uid_valid(uid)) {
705 err = -EINVAL;
706 goto err;
707 }
708
709 err = -ENOMEM;
710 ctx = gss_alloc_context();
711 if (ctx == NULL)
712 goto err;
713
714 err = -ENOENT;
715 /* Find a matching upcall */
716 spin_lock(&pipe->lock);
717 gss_msg = __gss_find_upcall(pipe, uid);
718 if (gss_msg == NULL) {
719 spin_unlock(&pipe->lock);
720 goto err_put_ctx;
721 }
722 list_del_init(&gss_msg->list);
723 spin_unlock(&pipe->lock);
724
725 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
726 if (IS_ERR(p)) {
727 err = PTR_ERR(p);
728 switch (err) {
729 case -EACCES:
730 case -EKEYEXPIRED:
731 gss_msg->msg.errno = err;
732 err = mlen;
733 break;
734 case -EFAULT:
735 case -ENOMEM:
736 case -EINVAL:
737 case -ENOSYS:
738 gss_msg->msg.errno = -EAGAIN;
739 break;
740 default:
741 printk(KERN_CRIT "%s: bad return from "
742 "gss_fill_context: %zd\n", __func__, err);
743 BUG();
744 }
745 goto err_release_msg;
746 }
747 gss_msg->ctx = gss_get_ctx(ctx);
748 err = mlen;
749
750 err_release_msg:
751 spin_lock(&pipe->lock);
752 __gss_unhash_msg(gss_msg);
753 spin_unlock(&pipe->lock);
754 gss_release_msg(gss_msg);
755 err_put_ctx:
756 gss_put_ctx(ctx);
757 err:
758 kfree(buf);
759 out:
760 dprintk("RPC: %s returning %Zd\n", __func__, err);
761 return err;
762 }
763
764 static int gss_pipe_open(struct inode *inode, int new_version)
765 {
766 struct net *net = inode->i_sb->s_fs_info;
767 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
768 int ret = 0;
769
770 spin_lock(&pipe_version_lock);
771 if (sn->pipe_version < 0) {
772 /* First open of any gss pipe determines the version: */
773 sn->pipe_version = new_version;
774 rpc_wake_up(&pipe_version_rpc_waitqueue);
775 wake_up(&pipe_version_waitqueue);
776 } else if (sn->pipe_version != new_version) {
777 /* Trying to open a pipe of a different version */
778 ret = -EBUSY;
779 goto out;
780 }
781 atomic_inc(&sn->pipe_users);
782 out:
783 spin_unlock(&pipe_version_lock);
784 return ret;
785
786 }
787
788 static int gss_pipe_open_v0(struct inode *inode)
789 {
790 return gss_pipe_open(inode, 0);
791 }
792
793 static int gss_pipe_open_v1(struct inode *inode)
794 {
795 return gss_pipe_open(inode, 1);
796 }
797
798 static void
799 gss_pipe_release(struct inode *inode)
800 {
801 struct net *net = inode->i_sb->s_fs_info;
802 struct rpc_pipe *pipe = RPC_I(inode)->pipe;
803 struct gss_upcall_msg *gss_msg;
804
805 restart:
806 spin_lock(&pipe->lock);
807 list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
808
809 if (!list_empty(&gss_msg->msg.list))
810 continue;
811 gss_msg->msg.errno = -EPIPE;
812 atomic_inc(&gss_msg->count);
813 __gss_unhash_msg(gss_msg);
814 spin_unlock(&pipe->lock);
815 gss_release_msg(gss_msg);
816 goto restart;
817 }
818 spin_unlock(&pipe->lock);
819
820 put_pipe_version(net);
821 }
822
823 static void
824 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
825 {
826 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
827
828 if (msg->errno < 0) {
829 dprintk("RPC: %s releasing msg %p\n",
830 __func__, gss_msg);
831 atomic_inc(&gss_msg->count);
832 gss_unhash_msg(gss_msg);
833 if (msg->errno == -ETIMEDOUT)
834 warn_gssd();
835 gss_release_msg(gss_msg);
836 }
837 }
838
839 static void gss_pipe_dentry_destroy(struct dentry *dir,
840 struct rpc_pipe_dir_object *pdo)
841 {
842 struct gss_pipe *gss_pipe = pdo->pdo_data;
843 struct rpc_pipe *pipe = gss_pipe->pipe;
844
845 if (pipe->dentry != NULL) {
846 rpc_unlink(pipe->dentry);
847 pipe->dentry = NULL;
848 }
849 }
850
851 static int gss_pipe_dentry_create(struct dentry *dir,
852 struct rpc_pipe_dir_object *pdo)
853 {
854 struct gss_pipe *p = pdo->pdo_data;
855 struct dentry *dentry;
856
857 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
858 if (IS_ERR(dentry))
859 return PTR_ERR(dentry);
860 p->pipe->dentry = dentry;
861 return 0;
862 }
863
864 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
865 .create = gss_pipe_dentry_create,
866 .destroy = gss_pipe_dentry_destroy,
867 };
868
869 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
870 const char *name,
871 const struct rpc_pipe_ops *upcall_ops)
872 {
873 struct gss_pipe *p;
874 int err = -ENOMEM;
875
876 p = kmalloc(sizeof(*p), GFP_KERNEL);
877 if (p == NULL)
878 goto err;
879 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
880 if (IS_ERR(p->pipe)) {
881 err = PTR_ERR(p->pipe);
882 goto err_free_gss_pipe;
883 }
884 p->name = name;
885 p->clnt = clnt;
886 kref_init(&p->kref);
887 rpc_init_pipe_dir_object(&p->pdo,
888 &gss_pipe_dir_object_ops,
889 p);
890 return p;
891 err_free_gss_pipe:
892 kfree(p);
893 err:
894 return ERR_PTR(err);
895 }
896
897 struct gss_alloc_pdo {
898 struct rpc_clnt *clnt;
899 const char *name;
900 const struct rpc_pipe_ops *upcall_ops;
901 };
902
903 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
904 {
905 struct gss_pipe *gss_pipe;
906 struct gss_alloc_pdo *args = data;
907
908 if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
909 return 0;
910 gss_pipe = container_of(pdo, struct gss_pipe, pdo);
911 if (strcmp(gss_pipe->name, args->name) != 0)
912 return 0;
913 if (!kref_get_unless_zero(&gss_pipe->kref))
914 return 0;
915 return 1;
916 }
917
918 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
919 {
920 struct gss_pipe *gss_pipe;
921 struct gss_alloc_pdo *args = data;
922
923 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
924 if (!IS_ERR(gss_pipe))
925 return &gss_pipe->pdo;
926 return NULL;
927 }
928
929 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
930 const char *name,
931 const struct rpc_pipe_ops *upcall_ops)
932 {
933 struct net *net = rpc_net_ns(clnt);
934 struct rpc_pipe_dir_object *pdo;
935 struct gss_alloc_pdo args = {
936 .clnt = clnt,
937 .name = name,
938 .upcall_ops = upcall_ops,
939 };
940
941 pdo = rpc_find_or_alloc_pipe_dir_object(net,
942 &clnt->cl_pipedir_objects,
943 gss_pipe_match_pdo,
944 gss_pipe_alloc_pdo,
945 &args);
946 if (pdo != NULL)
947 return container_of(pdo, struct gss_pipe, pdo);
948 return ERR_PTR(-ENOMEM);
949 }
950
951 static void __gss_pipe_free(struct gss_pipe *p)
952 {
953 struct rpc_clnt *clnt = p->clnt;
954 struct net *net = rpc_net_ns(clnt);
955
956 rpc_remove_pipe_dir_object(net,
957 &clnt->cl_pipedir_objects,
958 &p->pdo);
959 rpc_destroy_pipe_data(p->pipe);
960 kfree(p);
961 }
962
963 static void __gss_pipe_release(struct kref *kref)
964 {
965 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
966
967 __gss_pipe_free(p);
968 }
969
970 static void gss_pipe_free(struct gss_pipe *p)
971 {
972 if (p != NULL)
973 kref_put(&p->kref, __gss_pipe_release);
974 }
975
976 /*
977 * NOTE: we have the opportunity to use different
978 * parameters based on the input flavor (which must be a pseudoflavor)
979 */
980 static struct gss_auth *
981 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
982 {
983 rpc_authflavor_t flavor = args->pseudoflavor;
984 struct gss_auth *gss_auth;
985 struct gss_pipe *gss_pipe;
986 struct rpc_auth * auth;
987 int err = -ENOMEM; /* XXX? */
988
989 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
990
991 if (!try_module_get(THIS_MODULE))
992 return ERR_PTR(err);
993 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
994 goto out_dec;
995 INIT_HLIST_NODE(&gss_auth->hash);
996 gss_auth->target_name = NULL;
997 if (args->target_name) {
998 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
999 if (gss_auth->target_name == NULL)
1000 goto err_free;
1001 }
1002 gss_auth->client = clnt;
1003 gss_auth->net = get_net(rpc_net_ns(clnt));
1004 err = -EINVAL;
1005 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
1006 if (!gss_auth->mech) {
1007 dprintk("RPC: Pseudoflavor %d not found!\n", flavor);
1008 goto err_put_net;
1009 }
1010 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
1011 if (gss_auth->service == 0)
1012 goto err_put_mech;
1013 if (!gssd_running(gss_auth->net))
1014 goto err_put_mech;
1015 auth = &gss_auth->rpc_auth;
1016 auth->au_cslack = GSS_CRED_SLACK >> 2;
1017 auth->au_rslack = GSS_VERF_SLACK >> 2;
1018 auth->au_ops = &authgss_ops;
1019 auth->au_flavor = flavor;
1020 atomic_set(&auth->au_count, 1);
1021 kref_init(&gss_auth->kref);
1022
1023 err = rpcauth_init_credcache(auth);
1024 if (err)
1025 goto err_put_mech;
1026 /*
1027 * Note: if we created the old pipe first, then someone who
1028 * examined the directory at the right moment might conclude
1029 * that we supported only the old pipe. So we instead create
1030 * the new pipe first.
1031 */
1032 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1033 if (IS_ERR(gss_pipe)) {
1034 err = PTR_ERR(gss_pipe);
1035 goto err_destroy_credcache;
1036 }
1037 gss_auth->gss_pipe[1] = gss_pipe;
1038
1039 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1040 &gss_upcall_ops_v0);
1041 if (IS_ERR(gss_pipe)) {
1042 err = PTR_ERR(gss_pipe);
1043 goto err_destroy_pipe_1;
1044 }
1045 gss_auth->gss_pipe[0] = gss_pipe;
1046
1047 return gss_auth;
1048 err_destroy_pipe_1:
1049 gss_pipe_free(gss_auth->gss_pipe[1]);
1050 err_destroy_credcache:
1051 rpcauth_destroy_credcache(auth);
1052 err_put_mech:
1053 gss_mech_put(gss_auth->mech);
1054 err_put_net:
1055 put_net(gss_auth->net);
1056 err_free:
1057 kfree(gss_auth->target_name);
1058 kfree(gss_auth);
1059 out_dec:
1060 module_put(THIS_MODULE);
1061 return ERR_PTR(err);
1062 }
1063
1064 static void
1065 gss_free(struct gss_auth *gss_auth)
1066 {
1067 gss_pipe_free(gss_auth->gss_pipe[0]);
1068 gss_pipe_free(gss_auth->gss_pipe[1]);
1069 gss_mech_put(gss_auth->mech);
1070 put_net(gss_auth->net);
1071 kfree(gss_auth->target_name);
1072
1073 kfree(gss_auth);
1074 module_put(THIS_MODULE);
1075 }
1076
1077 static void
1078 gss_free_callback(struct kref *kref)
1079 {
1080 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1081
1082 gss_free(gss_auth);
1083 }
1084
1085 static void
1086 gss_put_auth(struct gss_auth *gss_auth)
1087 {
1088 kref_put(&gss_auth->kref, gss_free_callback);
1089 }
1090
1091 static void
1092 gss_destroy(struct rpc_auth *auth)
1093 {
1094 struct gss_auth *gss_auth = container_of(auth,
1095 struct gss_auth, rpc_auth);
1096
1097 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
1098 auth, auth->au_flavor);
1099
1100 if (hash_hashed(&gss_auth->hash)) {
1101 spin_lock(&gss_auth_hash_lock);
1102 hash_del(&gss_auth->hash);
1103 spin_unlock(&gss_auth_hash_lock);
1104 }
1105
1106 gss_pipe_free(gss_auth->gss_pipe[0]);
1107 gss_auth->gss_pipe[0] = NULL;
1108 gss_pipe_free(gss_auth->gss_pipe[1]);
1109 gss_auth->gss_pipe[1] = NULL;
1110 rpcauth_destroy_credcache(auth);
1111
1112 gss_put_auth(gss_auth);
1113 }
1114
1115 /*
1116 * Auths may be shared between rpc clients that were cloned from a
1117 * common client with the same xprt, if they also share the flavor and
1118 * target_name.
1119 *
1120 * The auth is looked up from the oldest parent sharing the same
1121 * cl_xprt, and the auth itself references only that common parent
1122 * (which is guaranteed to last as long as any of its descendants).
1123 */
1124 static struct gss_auth *
1125 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args,
1126 struct rpc_clnt *clnt,
1127 struct gss_auth *new)
1128 {
1129 struct gss_auth *gss_auth;
1130 unsigned long hashval = (unsigned long)clnt;
1131
1132 spin_lock(&gss_auth_hash_lock);
1133 hash_for_each_possible(gss_auth_hash_table,
1134 gss_auth,
1135 hash,
1136 hashval) {
1137 if (gss_auth->client != clnt)
1138 continue;
1139 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1140 continue;
1141 if (gss_auth->target_name != args->target_name) {
1142 if (gss_auth->target_name == NULL)
1143 continue;
1144 if (args->target_name == NULL)
1145 continue;
1146 if (strcmp(gss_auth->target_name, args->target_name))
1147 continue;
1148 }
1149 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count))
1150 continue;
1151 goto out;
1152 }
1153 if (new)
1154 hash_add(gss_auth_hash_table, &new->hash, hashval);
1155 gss_auth = new;
1156 out:
1157 spin_unlock(&gss_auth_hash_lock);
1158 return gss_auth;
1159 }
1160
1161 static struct gss_auth *
1162 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1163 {
1164 struct gss_auth *gss_auth;
1165 struct gss_auth *new;
1166
1167 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1168 if (gss_auth != NULL)
1169 goto out;
1170 new = gss_create_new(args, clnt);
1171 if (IS_ERR(new))
1172 return new;
1173 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1174 if (gss_auth != new)
1175 gss_destroy(&new->rpc_auth);
1176 out:
1177 return gss_auth;
1178 }
1179
1180 static struct rpc_auth *
1181 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1182 {
1183 struct gss_auth *gss_auth;
1184 struct rpc_xprt *xprt = rcu_access_pointer(clnt->cl_xprt);
1185
1186 while (clnt != clnt->cl_parent) {
1187 struct rpc_clnt *parent = clnt->cl_parent;
1188 /* Find the original parent for this transport */
1189 if (rcu_access_pointer(parent->cl_xprt) != xprt)
1190 break;
1191 clnt = parent;
1192 }
1193
1194 gss_auth = gss_create_hashed(args, clnt);
1195 if (IS_ERR(gss_auth))
1196 return ERR_CAST(gss_auth);
1197 return &gss_auth->rpc_auth;
1198 }
1199
1200 /*
1201 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
1202 * to the server with the GSS control procedure field set to
1203 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1204 * all RPCSEC_GSS state associated with that context.
1205 */
1206 static int
1207 gss_destroying_context(struct rpc_cred *cred)
1208 {
1209 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1210 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1211 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1212 struct rpc_task *task;
1213
1214 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
1215 return 0;
1216
1217 ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1218 cred->cr_ops = &gss_nullops;
1219
1220 /* Take a reference to ensure the cred will be destroyed either
1221 * by the RPC call or by the put_rpccred() below */
1222 get_rpccred(cred);
1223
1224 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
1225 if (!IS_ERR(task))
1226 rpc_put_task(task);
1227
1228 put_rpccred(cred);
1229 return 1;
1230 }
1231
1232 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1233 * to create a new cred or context, so they check that things have been
1234 * allocated before freeing them. */
1235 static void
1236 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1237 {
1238 dprintk("RPC: %s\n", __func__);
1239
1240 gss_delete_sec_context(&ctx->gc_gss_ctx);
1241 kfree(ctx->gc_wire_ctx.data);
1242 kfree(ctx->gc_acceptor.data);
1243 kfree(ctx);
1244 }
1245
1246 static void
1247 gss_free_ctx_callback(struct rcu_head *head)
1248 {
1249 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1250 gss_do_free_ctx(ctx);
1251 }
1252
1253 static void
1254 gss_free_ctx(struct gss_cl_ctx *ctx)
1255 {
1256 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1257 }
1258
1259 static void
1260 gss_free_cred(struct gss_cred *gss_cred)
1261 {
1262 dprintk("RPC: %s cred=%p\n", __func__, gss_cred);
1263 kfree(gss_cred);
1264 }
1265
1266 static void
1267 gss_free_cred_callback(struct rcu_head *head)
1268 {
1269 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1270 gss_free_cred(gss_cred);
1271 }
1272
1273 static void
1274 gss_destroy_nullcred(struct rpc_cred *cred)
1275 {
1276 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1277 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1278 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1279
1280 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1281 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1282 if (ctx)
1283 gss_put_ctx(ctx);
1284 gss_put_auth(gss_auth);
1285 }
1286
1287 static void
1288 gss_destroy_cred(struct rpc_cred *cred)
1289 {
1290
1291 if (gss_destroying_context(cred))
1292 return;
1293 gss_destroy_nullcred(cred);
1294 }
1295
1296 /*
1297 * Lookup RPCSEC_GSS cred for the current process
1298 */
1299 static struct rpc_cred *
1300 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1301 {
1302 return rpcauth_lookup_credcache(auth, acred, flags);
1303 }
1304
1305 static struct rpc_cred *
1306 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1307 {
1308 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1309 struct gss_cred *cred = NULL;
1310 int err = -ENOMEM;
1311
1312 dprintk("RPC: %s for uid %d, flavor %d\n",
1313 __func__, from_kuid(&init_user_ns, acred->uid),
1314 auth->au_flavor);
1315
1316 if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
1317 goto out_err;
1318
1319 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1320 /*
1321 * Note: in order to force a call to call_refresh(), we deliberately
1322 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1323 */
1324 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1325 cred->gc_service = gss_auth->service;
1326 cred->gc_principal = NULL;
1327 if (acred->machine_cred)
1328 cred->gc_principal = acred->principal;
1329 kref_get(&gss_auth->kref);
1330 return &cred->gc_base;
1331
1332 out_err:
1333 dprintk("RPC: %s failed with error %d\n", __func__, err);
1334 return ERR_PTR(err);
1335 }
1336
1337 static int
1338 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1339 {
1340 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1341 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1342 int err;
1343
1344 do {
1345 err = gss_create_upcall(gss_auth, gss_cred);
1346 } while (err == -EAGAIN);
1347 return err;
1348 }
1349
1350 static char *
1351 gss_stringify_acceptor(struct rpc_cred *cred)
1352 {
1353 char *string = NULL;
1354 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1355 struct gss_cl_ctx *ctx;
1356 unsigned int len;
1357 struct xdr_netobj *acceptor;
1358
1359 rcu_read_lock();
1360 ctx = rcu_dereference(gss_cred->gc_ctx);
1361 if (!ctx)
1362 goto out;
1363
1364 len = ctx->gc_acceptor.len;
1365 rcu_read_unlock();
1366
1367 /* no point if there's no string */
1368 if (!len)
1369 return NULL;
1370 realloc:
1371 string = kmalloc(len + 1, GFP_KERNEL);
1372 if (!string)
1373 return NULL;
1374
1375 rcu_read_lock();
1376 ctx = rcu_dereference(gss_cred->gc_ctx);
1377
1378 /* did the ctx disappear or was it replaced by one with no acceptor? */
1379 if (!ctx || !ctx->gc_acceptor.len) {
1380 kfree(string);
1381 string = NULL;
1382 goto out;
1383 }
1384
1385 acceptor = &ctx->gc_acceptor;
1386
1387 /*
1388 * Did we find a new acceptor that's longer than the original? Allocate
1389 * a longer buffer and try again.
1390 */
1391 if (len < acceptor->len) {
1392 len = acceptor->len;
1393 rcu_read_unlock();
1394 kfree(string);
1395 goto realloc;
1396 }
1397
1398 memcpy(string, acceptor->data, acceptor->len);
1399 string[acceptor->len] = '\0';
1400 out:
1401 rcu_read_unlock();
1402 return string;
1403 }
1404
1405 /*
1406 * Returns -EACCES if GSS context is NULL or will expire within the
1407 * timeout (miliseconds)
1408 */
1409 static int
1410 gss_key_timeout(struct rpc_cred *rc)
1411 {
1412 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1413 struct gss_cl_ctx *ctx;
1414 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ);
1415 int ret = 0;
1416
1417 rcu_read_lock();
1418 ctx = rcu_dereference(gss_cred->gc_ctx);
1419 if (!ctx || time_after(timeout, ctx->gc_expiry))
1420 ret = -EACCES;
1421 rcu_read_unlock();
1422
1423 return ret;
1424 }
1425
1426 static int
1427 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1428 {
1429 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1430 struct gss_cl_ctx *ctx;
1431 int ret;
1432
1433 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1434 goto out;
1435 /* Don't match with creds that have expired. */
1436 rcu_read_lock();
1437 ctx = rcu_dereference(gss_cred->gc_ctx);
1438 if (!ctx || time_after(jiffies, ctx->gc_expiry)) {
1439 rcu_read_unlock();
1440 return 0;
1441 }
1442 rcu_read_unlock();
1443 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1444 return 0;
1445 out:
1446 if (acred->principal != NULL) {
1447 if (gss_cred->gc_principal == NULL)
1448 return 0;
1449 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1450 goto check_expire;
1451 }
1452 if (gss_cred->gc_principal != NULL)
1453 return 0;
1454 ret = uid_eq(rc->cr_uid, acred->uid);
1455
1456 check_expire:
1457 if (ret == 0)
1458 return ret;
1459
1460 /* Notify acred users of GSS context expiration timeout */
1461 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) &&
1462 (gss_key_timeout(rc) != 0)) {
1463 /* test will now be done from generic cred */
1464 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags);
1465 /* tell NFS layer that key will expire soon */
1466 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags);
1467 }
1468 return ret;
1469 }
1470
1471 /*
1472 * Marshal credentials.
1473 * Maybe we should keep a cached credential for performance reasons.
1474 */
1475 static __be32 *
1476 gss_marshal(struct rpc_task *task, __be32 *p)
1477 {
1478 struct rpc_rqst *req = task->tk_rqstp;
1479 struct rpc_cred *cred = req->rq_cred;
1480 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1481 gc_base);
1482 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1483 __be32 *cred_len;
1484 u32 maj_stat = 0;
1485 struct xdr_netobj mic;
1486 struct kvec iov;
1487 struct xdr_buf verf_buf;
1488
1489 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1490
1491 *p++ = htonl(RPC_AUTH_GSS);
1492 cred_len = p++;
1493
1494 spin_lock(&ctx->gc_seq_lock);
1495 req->rq_seqno = ctx->gc_seq++;
1496 spin_unlock(&ctx->gc_seq_lock);
1497
1498 *p++ = htonl((u32) RPC_GSS_VERSION);
1499 *p++ = htonl((u32) ctx->gc_proc);
1500 *p++ = htonl((u32) req->rq_seqno);
1501 *p++ = htonl((u32) gss_cred->gc_service);
1502 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1503 *cred_len = htonl((p - (cred_len + 1)) << 2);
1504
1505 /* We compute the checksum for the verifier over the xdr-encoded bytes
1506 * starting with the xid and ending at the end of the credential: */
1507 iov.iov_base = xprt_skip_transport_header(req->rq_xprt,
1508 req->rq_snd_buf.head[0].iov_base);
1509 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1510 xdr_buf_from_iov(&iov, &verf_buf);
1511
1512 /* set verifier flavor*/
1513 *p++ = htonl(RPC_AUTH_GSS);
1514
1515 mic.data = (u8 *)(p + 1);
1516 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1517 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1518 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1519 } else if (maj_stat != 0) {
1520 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1521 goto out_put_ctx;
1522 }
1523 p = xdr_encode_opaque(p, NULL, mic.len);
1524 gss_put_ctx(ctx);
1525 return p;
1526 out_put_ctx:
1527 gss_put_ctx(ctx);
1528 return NULL;
1529 }
1530
1531 static int gss_renew_cred(struct rpc_task *task)
1532 {
1533 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1534 struct gss_cred *gss_cred = container_of(oldcred,
1535 struct gss_cred,
1536 gc_base);
1537 struct rpc_auth *auth = oldcred->cr_auth;
1538 struct auth_cred acred = {
1539 .uid = oldcred->cr_uid,
1540 .principal = gss_cred->gc_principal,
1541 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1542 };
1543 struct rpc_cred *new;
1544
1545 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1546 if (IS_ERR(new))
1547 return PTR_ERR(new);
1548 task->tk_rqstp->rq_cred = new;
1549 put_rpccred(oldcred);
1550 return 0;
1551 }
1552
1553 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1554 {
1555 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1556 unsigned long now = jiffies;
1557 unsigned long begin, expire;
1558 struct gss_cred *gss_cred;
1559
1560 gss_cred = container_of(cred, struct gss_cred, gc_base);
1561 begin = gss_cred->gc_upcall_timestamp;
1562 expire = begin + gss_expired_cred_retry_delay * HZ;
1563
1564 if (time_in_range_open(now, begin, expire))
1565 return 1;
1566 }
1567 return 0;
1568 }
1569
1570 /*
1571 * Refresh credentials. XXX - finish
1572 */
1573 static int
1574 gss_refresh(struct rpc_task *task)
1575 {
1576 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1577 int ret = 0;
1578
1579 if (gss_cred_is_negative_entry(cred))
1580 return -EKEYEXPIRED;
1581
1582 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1583 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1584 ret = gss_renew_cred(task);
1585 if (ret < 0)
1586 goto out;
1587 cred = task->tk_rqstp->rq_cred;
1588 }
1589
1590 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1591 ret = gss_refresh_upcall(task);
1592 out:
1593 return ret;
1594 }
1595
1596 /* Dummy refresh routine: used only when destroying the context */
1597 static int
1598 gss_refresh_null(struct rpc_task *task)
1599 {
1600 return 0;
1601 }
1602
1603 static __be32 *
1604 gss_validate(struct rpc_task *task, __be32 *p)
1605 {
1606 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1607 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1608 __be32 seq;
1609 struct kvec iov;
1610 struct xdr_buf verf_buf;
1611 struct xdr_netobj mic;
1612 u32 flav,len;
1613 u32 maj_stat;
1614 __be32 *ret = ERR_PTR(-EIO);
1615
1616 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1617
1618 flav = ntohl(*p++);
1619 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1620 goto out_bad;
1621 if (flav != RPC_AUTH_GSS)
1622 goto out_bad;
1623 seq = htonl(task->tk_rqstp->rq_seqno);
1624 iov.iov_base = &seq;
1625 iov.iov_len = sizeof(seq);
1626 xdr_buf_from_iov(&iov, &verf_buf);
1627 mic.data = (u8 *)p;
1628 mic.len = len;
1629
1630 ret = ERR_PTR(-EACCES);
1631 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1632 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1633 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1634 if (maj_stat) {
1635 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n",
1636 task->tk_pid, __func__, maj_stat);
1637 goto out_bad;
1638 }
1639 /* We leave it to unwrap to calculate au_rslack. For now we just
1640 * calculate the length of the verifier: */
1641 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1642 gss_put_ctx(ctx);
1643 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n",
1644 task->tk_pid, __func__);
1645 return p + XDR_QUADLEN(len);
1646 out_bad:
1647 gss_put_ctx(ctx);
1648 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__,
1649 PTR_ERR(ret));
1650 return ret;
1651 }
1652
1653 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1654 __be32 *p, void *obj)
1655 {
1656 struct xdr_stream xdr;
1657
1658 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1659 encode(rqstp, &xdr, obj);
1660 }
1661
1662 static inline int
1663 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1664 kxdreproc_t encode, struct rpc_rqst *rqstp,
1665 __be32 *p, void *obj)
1666 {
1667 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1668 struct xdr_buf integ_buf;
1669 __be32 *integ_len = NULL;
1670 struct xdr_netobj mic;
1671 u32 offset;
1672 __be32 *q;
1673 struct kvec *iov;
1674 u32 maj_stat = 0;
1675 int status = -EIO;
1676
1677 integ_len = p++;
1678 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1679 *p++ = htonl(rqstp->rq_seqno);
1680
1681 gss_wrap_req_encode(encode, rqstp, p, obj);
1682
1683 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1684 offset, snd_buf->len - offset))
1685 return status;
1686 *integ_len = htonl(integ_buf.len);
1687
1688 /* guess whether we're in the head or the tail: */
1689 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1690 iov = snd_buf->tail;
1691 else
1692 iov = snd_buf->head;
1693 p = iov->iov_base + iov->iov_len;
1694 mic.data = (u8 *)(p + 1);
1695
1696 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1697 status = -EIO; /* XXX? */
1698 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1699 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1700 else if (maj_stat)
1701 return status;
1702 q = xdr_encode_opaque(p, NULL, mic.len);
1703
1704 offset = (u8 *)q - (u8 *)p;
1705 iov->iov_len += offset;
1706 snd_buf->len += offset;
1707 return 0;
1708 }
1709
1710 static void
1711 priv_release_snd_buf(struct rpc_rqst *rqstp)
1712 {
1713 int i;
1714
1715 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1716 __free_page(rqstp->rq_enc_pages[i]);
1717 kfree(rqstp->rq_enc_pages);
1718 }
1719
1720 static int
1721 alloc_enc_pages(struct rpc_rqst *rqstp)
1722 {
1723 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1724 int first, last, i;
1725
1726 if (snd_buf->page_len == 0) {
1727 rqstp->rq_enc_pages_num = 0;
1728 return 0;
1729 }
1730
1731 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1732 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1733 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1734 rqstp->rq_enc_pages
1735 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1736 GFP_NOFS);
1737 if (!rqstp->rq_enc_pages)
1738 goto out;
1739 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1740 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1741 if (rqstp->rq_enc_pages[i] == NULL)
1742 goto out_free;
1743 }
1744 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1745 return 0;
1746 out_free:
1747 rqstp->rq_enc_pages_num = i;
1748 priv_release_snd_buf(rqstp);
1749 out:
1750 return -EAGAIN;
1751 }
1752
1753 static inline int
1754 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1755 kxdreproc_t encode, struct rpc_rqst *rqstp,
1756 __be32 *p, void *obj)
1757 {
1758 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1759 u32 offset;
1760 u32 maj_stat;
1761 int status;
1762 __be32 *opaque_len;
1763 struct page **inpages;
1764 int first;
1765 int pad;
1766 struct kvec *iov;
1767 char *tmp;
1768
1769 opaque_len = p++;
1770 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1771 *p++ = htonl(rqstp->rq_seqno);
1772
1773 gss_wrap_req_encode(encode, rqstp, p, obj);
1774
1775 status = alloc_enc_pages(rqstp);
1776 if (status)
1777 return status;
1778 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1779 inpages = snd_buf->pages + first;
1780 snd_buf->pages = rqstp->rq_enc_pages;
1781 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1782 /*
1783 * Give the tail its own page, in case we need extra space in the
1784 * head when wrapping:
1785 *
1786 * call_allocate() allocates twice the slack space required
1787 * by the authentication flavor to rq_callsize.
1788 * For GSS, slack is GSS_CRED_SLACK.
1789 */
1790 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1791 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1792 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1793 snd_buf->tail[0].iov_base = tmp;
1794 }
1795 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1796 /* slack space should prevent this ever happening: */
1797 BUG_ON(snd_buf->len > snd_buf->buflen);
1798 status = -EIO;
1799 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1800 * done anyway, so it's safe to put the request on the wire: */
1801 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1802 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1803 else if (maj_stat)
1804 return status;
1805
1806 *opaque_len = htonl(snd_buf->len - offset);
1807 /* guess whether we're in the head or the tail: */
1808 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1809 iov = snd_buf->tail;
1810 else
1811 iov = snd_buf->head;
1812 p = iov->iov_base + iov->iov_len;
1813 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1814 memset(p, 0, pad);
1815 iov->iov_len += pad;
1816 snd_buf->len += pad;
1817
1818 return 0;
1819 }
1820
1821 static int
1822 gss_wrap_req(struct rpc_task *task,
1823 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1824 {
1825 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1826 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1827 gc_base);
1828 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1829 int status = -EIO;
1830
1831 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1832 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1833 /* The spec seems a little ambiguous here, but I think that not
1834 * wrapping context destruction requests makes the most sense.
1835 */
1836 gss_wrap_req_encode(encode, rqstp, p, obj);
1837 status = 0;
1838 goto out;
1839 }
1840 switch (gss_cred->gc_service) {
1841 case RPC_GSS_SVC_NONE:
1842 gss_wrap_req_encode(encode, rqstp, p, obj);
1843 status = 0;
1844 break;
1845 case RPC_GSS_SVC_INTEGRITY:
1846 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1847 break;
1848 case RPC_GSS_SVC_PRIVACY:
1849 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1850 break;
1851 }
1852 out:
1853 gss_put_ctx(ctx);
1854 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status);
1855 return status;
1856 }
1857
1858 static inline int
1859 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1860 struct rpc_rqst *rqstp, __be32 **p)
1861 {
1862 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1863 struct xdr_buf integ_buf;
1864 struct xdr_netobj mic;
1865 u32 data_offset, mic_offset;
1866 u32 integ_len;
1867 u32 maj_stat;
1868 int status = -EIO;
1869
1870 integ_len = ntohl(*(*p)++);
1871 if (integ_len & 3)
1872 return status;
1873 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1874 mic_offset = integ_len + data_offset;
1875 if (mic_offset > rcv_buf->len)
1876 return status;
1877 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1878 return status;
1879
1880 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1881 mic_offset - data_offset))
1882 return status;
1883
1884 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1885 return status;
1886
1887 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1888 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1889 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1890 if (maj_stat != GSS_S_COMPLETE)
1891 return status;
1892 return 0;
1893 }
1894
1895 static inline int
1896 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1897 struct rpc_rqst *rqstp, __be32 **p)
1898 {
1899 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1900 u32 offset;
1901 u32 opaque_len;
1902 u32 maj_stat;
1903 int status = -EIO;
1904
1905 opaque_len = ntohl(*(*p)++);
1906 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1907 if (offset + opaque_len > rcv_buf->len)
1908 return status;
1909 /* remove padding: */
1910 rcv_buf->len = offset + opaque_len;
1911
1912 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1913 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1914 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1915 if (maj_stat != GSS_S_COMPLETE)
1916 return status;
1917 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1918 return status;
1919
1920 return 0;
1921 }
1922
1923 static int
1924 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1925 __be32 *p, void *obj)
1926 {
1927 struct xdr_stream xdr;
1928
1929 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1930 return decode(rqstp, &xdr, obj);
1931 }
1932
1933 static int
1934 gss_unwrap_resp(struct rpc_task *task,
1935 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1936 {
1937 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1938 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1939 gc_base);
1940 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1941 __be32 *savedp = p;
1942 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1943 int savedlen = head->iov_len;
1944 int status = -EIO;
1945
1946 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1947 goto out_decode;
1948 switch (gss_cred->gc_service) {
1949 case RPC_GSS_SVC_NONE:
1950 break;
1951 case RPC_GSS_SVC_INTEGRITY:
1952 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1953 if (status)
1954 goto out;
1955 break;
1956 case RPC_GSS_SVC_PRIVACY:
1957 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1958 if (status)
1959 goto out;
1960 break;
1961 }
1962 /* take into account extra slack for integrity and privacy cases: */
1963 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1964 + (savedlen - head->iov_len);
1965 out_decode:
1966 status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1967 out:
1968 gss_put_ctx(ctx);
1969 dprintk("RPC: %5u %s returning %d\n",
1970 task->tk_pid, __func__, status);
1971 return status;
1972 }
1973
1974 static const struct rpc_authops authgss_ops = {
1975 .owner = THIS_MODULE,
1976 .au_flavor = RPC_AUTH_GSS,
1977 .au_name = "RPCSEC_GSS",
1978 .create = gss_create,
1979 .destroy = gss_destroy,
1980 .lookup_cred = gss_lookup_cred,
1981 .crcreate = gss_create_cred,
1982 .list_pseudoflavors = gss_mech_list_pseudoflavors,
1983 .info2flavor = gss_mech_info2flavor,
1984 .flavor2info = gss_mech_flavor2info,
1985 };
1986
1987 static const struct rpc_credops gss_credops = {
1988 .cr_name = "AUTH_GSS",
1989 .crdestroy = gss_destroy_cred,
1990 .cr_init = gss_cred_init,
1991 .crbind = rpcauth_generic_bind_cred,
1992 .crmatch = gss_match,
1993 .crmarshal = gss_marshal,
1994 .crrefresh = gss_refresh,
1995 .crvalidate = gss_validate,
1996 .crwrap_req = gss_wrap_req,
1997 .crunwrap_resp = gss_unwrap_resp,
1998 .crkey_timeout = gss_key_timeout,
1999 .crstringify_acceptor = gss_stringify_acceptor,
2000 };
2001
2002 static const struct rpc_credops gss_nullops = {
2003 .cr_name = "AUTH_GSS",
2004 .crdestroy = gss_destroy_nullcred,
2005 .crbind = rpcauth_generic_bind_cred,
2006 .crmatch = gss_match,
2007 .crmarshal = gss_marshal,
2008 .crrefresh = gss_refresh_null,
2009 .crvalidate = gss_validate,
2010 .crwrap_req = gss_wrap_req,
2011 .crunwrap_resp = gss_unwrap_resp,
2012 .crstringify_acceptor = gss_stringify_acceptor,
2013 };
2014
2015 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
2016 .upcall = rpc_pipe_generic_upcall,
2017 .downcall = gss_pipe_downcall,
2018 .destroy_msg = gss_pipe_destroy_msg,
2019 .open_pipe = gss_pipe_open_v0,
2020 .release_pipe = gss_pipe_release,
2021 };
2022
2023 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
2024 .upcall = rpc_pipe_generic_upcall,
2025 .downcall = gss_pipe_downcall,
2026 .destroy_msg = gss_pipe_destroy_msg,
2027 .open_pipe = gss_pipe_open_v1,
2028 .release_pipe = gss_pipe_release,
2029 };
2030
2031 static __net_init int rpcsec_gss_init_net(struct net *net)
2032 {
2033 return gss_svc_init_net(net);
2034 }
2035
2036 static __net_exit void rpcsec_gss_exit_net(struct net *net)
2037 {
2038 gss_svc_shutdown_net(net);
2039 }
2040
2041 static struct pernet_operations rpcsec_gss_net_ops = {
2042 .init = rpcsec_gss_init_net,
2043 .exit = rpcsec_gss_exit_net,
2044 };
2045
2046 /*
2047 * Initialize RPCSEC_GSS module
2048 */
2049 static int __init init_rpcsec_gss(void)
2050 {
2051 int err = 0;
2052
2053 err = rpcauth_register(&authgss_ops);
2054 if (err)
2055 goto out;
2056 err = gss_svc_init();
2057 if (err)
2058 goto out_unregister;
2059 err = register_pernet_subsys(&rpcsec_gss_net_ops);
2060 if (err)
2061 goto out_svc_exit;
2062 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
2063 return 0;
2064 out_svc_exit:
2065 gss_svc_shutdown();
2066 out_unregister:
2067 rpcauth_unregister(&authgss_ops);
2068 out:
2069 return err;
2070 }
2071
2072 static void __exit exit_rpcsec_gss(void)
2073 {
2074 unregister_pernet_subsys(&rpcsec_gss_net_ops);
2075 gss_svc_shutdown();
2076 rpcauth_unregister(&authgss_ops);
2077 rcu_barrier(); /* Wait for completion of call_rcu()'s */
2078 }
2079
2080 MODULE_ALIAS("rpc-auth-6");
2081 MODULE_LICENSE("GPL");
2082 module_param_named(expired_cred_retry_delay,
2083 gss_expired_cred_retry_delay,
2084 uint, 0644);
2085 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
2086 "the RPC engine retries an expired credential");
2087
2088 module_param_named(key_expire_timeo,
2089 gss_key_expire_timeo,
2090 uint, 0644);
2091 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2092 "credential keys lifetime where the NFS layer cleans up "
2093 "prior to key expiration");
2094
2095 module_init(init_rpcsec_gss)
2096 module_exit(exit_rpcsec_gss)