367d547
[GitHub/mt8127/android_kernel_alcatel_ttab.git] /
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
174 16 for IP, 16 for IPX,
175 24 for IPv6,
176 about 80 for AX.25
177 must be at least one bigger than
178 the AF_UNIX size (see net/unix/af_unix.c
179 :unix_mkname()).
180 */
181
182 /**
183 * move_addr_to_kernel - copy a socket address into kernel space
184 * @uaddr: Address in user space
185 * @kaddr: Address in kernel space
186 * @ulen: Length in user space
187 *
188 * The address is copied into kernel space. If the provided address is
189 * too long an error code of -EINVAL is returned. If the copy gives
190 * invalid addresses -EFAULT is returned. On a success 0 is returned.
191 */
192
193 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
194 {
195 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
196 return -EINVAL;
197 if (ulen == 0)
198 return 0;
199 if (copy_from_user(kaddr, uaddr, ulen))
200 return -EFAULT;
201 return audit_sockaddr(ulen, kaddr);
202 }
203
204 /**
205 * move_addr_to_user - copy an address to user space
206 * @kaddr: kernel space address
207 * @klen: length of address in kernel
208 * @uaddr: user space address
209 * @ulen: pointer to user length field
210 *
211 * The value pointed to by ulen on entry is the buffer length available.
212 * This is overwritten with the buffer space used. -EINVAL is returned
213 * if an overlong buffer is specified or a negative buffer size. -EFAULT
214 * is returned if either the buffer or the length field are not
215 * accessible.
216 * After copying the data up to the limit the user specifies, the true
217 * length of the data is written over the length limit the user
218 * specified. Zero is returned for a success.
219 */
220
221 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
222 int __user *ulen)
223 {
224 int err;
225 int len;
226
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0 || len > sizeof(struct sockaddr_storage))
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
257 if (!ei->socket.wq) {
258 kmem_cache_free(sock_inode_cachep, ei);
259 return NULL;
260 }
261 init_waitqueue_head(&ei->socket.wq->wait);
262 ei->socket.wq->fasync_list = NULL;
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273
274 static void wq_free_rcu(struct rcu_head *head)
275 {
276 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
277
278 kfree(wq);
279 }
280
281 static void sock_destroy_inode(struct inode *inode)
282 {
283 struct socket_alloc *ei;
284
285 ei = container_of(inode, struct socket_alloc, vfs_inode);
286 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
287 kmem_cache_free(sock_inode_cachep, ei);
288 }
289
290 static void init_once(void *foo)
291 {
292 struct socket_alloc *ei = (struct socket_alloc *)foo;
293
294 inode_init_once(&ei->vfs_inode);
295 }
296
297 static int init_inodecache(void)
298 {
299 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
300 sizeof(struct socket_alloc),
301 0,
302 (SLAB_HWCACHE_ALIGN |
303 SLAB_RECLAIM_ACCOUNT |
304 SLAB_MEM_SPREAD),
305 init_once);
306 if (sock_inode_cachep == NULL)
307 return -ENOMEM;
308 return 0;
309 }
310
311 static const struct super_operations sockfs_ops = {
312 .alloc_inode = sock_alloc_inode,
313 .destroy_inode =sock_destroy_inode,
314 .statfs = simple_statfs,
315 };
316
317 static int sockfs_get_sb(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data,
319 struct vfsmount *mnt)
320 {
321 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
322 mnt);
323 }
324
325 static struct vfsmount *sock_mnt __read_mostly;
326
327 static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .get_sb = sockfs_get_sb,
330 .kill_sb = kill_anon_super,
331 };
332
333 /*
334 * sockfs_dname() is called from d_path().
335 */
336 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
337 {
338 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
339 dentry->d_inode->i_ino);
340 }
341
342 static const struct dentry_operations sockfs_dentry_operations = {
343 .d_dname = sockfs_dname,
344 };
345
346 /*
347 * Obtains the first available file descriptor and sets it up for use.
348 *
349 * These functions create file structures and maps them to fd space
350 * of the current process. On success it returns file descriptor
351 * and file struct implicitly stored in sock->file.
352 * Note that another thread may close file descriptor before we return
353 * from this function. We use the fact that now we do not refer
354 * to socket after mapping. If one day we will need it, this
355 * function will increment ref. count on file by 1.
356 *
357 * In any case returned fd MAY BE not valid!
358 * This race condition is unavoidable
359 * with shared fd spaces, we cannot solve it inside kernel,
360 * but we take care of internal coherence yet.
361 */
362
363 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
364 {
365 struct qstr name = { .name = "" };
366 struct path path;
367 struct file *file;
368 int fd;
369
370 fd = get_unused_fd_flags(flags);
371 if (unlikely(fd < 0))
372 return fd;
373
374 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
375 if (unlikely(!path.dentry)) {
376 put_unused_fd(fd);
377 return -ENOMEM;
378 }
379 path.mnt = mntget(sock_mnt);
380
381 path.dentry->d_op = &sockfs_dentry_operations;
382 d_instantiate(path.dentry, SOCK_INODE(sock));
383 SOCK_INODE(sock)->i_fop = &socket_file_ops;
384
385 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
386 &socket_file_ops);
387 if (unlikely(!file)) {
388 /* drop dentry, keep inode */
389 atomic_inc(&path.dentry->d_inode->i_count);
390 path_put(&path);
391 put_unused_fd(fd);
392 return -ENFILE;
393 }
394
395 sock->file = file;
396 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
397 file->f_pos = 0;
398 file->private_data = sock;
399
400 *f = file;
401 return fd;
402 }
403
404 int sock_map_fd(struct socket *sock, int flags)
405 {
406 struct file *newfile;
407 int fd = sock_alloc_file(sock, &newfile, flags);
408
409 if (likely(fd >= 0))
410 fd_install(fd, newfile);
411
412 return fd;
413 }
414
415 static struct socket *sock_from_file(struct file *file, int *err)
416 {
417 if (file->f_op == &socket_file_ops)
418 return file->private_data; /* set in sock_map_fd */
419
420 *err = -ENOTSOCK;
421 return NULL;
422 }
423
424 /**
425 * sockfd_lookup - Go from a file number to its socket slot
426 * @fd: file handle
427 * @err: pointer to an error code return
428 *
429 * The file handle passed in is locked and the socket it is bound
430 * too is returned. If an error occurs the err pointer is overwritten
431 * with a negative errno code and NULL is returned. The function checks
432 * for both invalid handles and passing a handle which is not a socket.
433 *
434 * On a success the socket object pointer is returned.
435 */
436
437 struct socket *sockfd_lookup(int fd, int *err)
438 {
439 struct file *file;
440 struct socket *sock;
441
442 file = fget(fd);
443 if (!file) {
444 *err = -EBADF;
445 return NULL;
446 }
447
448 sock = sock_from_file(file, err);
449 if (!sock)
450 fput(file);
451 return sock;
452 }
453
454 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
455 {
456 struct file *file;
457 struct socket *sock;
458
459 *err = -EBADF;
460 file = fget_light(fd, fput_needed);
461 if (file) {
462 sock = sock_from_file(file, err);
463 if (sock)
464 return sock;
465 fput_light(file, *fput_needed);
466 }
467 return NULL;
468 }
469
470 /**
471 * sock_alloc - allocate a socket
472 *
473 * Allocate a new inode and socket object. The two are bound together
474 * and initialised. The socket is then returned. If we are out of inodes
475 * NULL is returned.
476 */
477
478 static struct socket *sock_alloc(void)
479 {
480 struct inode *inode;
481 struct socket *sock;
482
483 inode = new_inode(sock_mnt->mnt_sb);
484 if (!inode)
485 return NULL;
486
487 sock = SOCKET_I(inode);
488
489 kmemcheck_annotate_bitfield(sock, type);
490 inode->i_mode = S_IFSOCK | S_IRWXUGO;
491 inode->i_uid = current_fsuid();
492 inode->i_gid = current_fsgid();
493
494 percpu_add(sockets_in_use, 1);
495 return sock;
496 }
497
498 /*
499 * In theory you can't get an open on this inode, but /proc provides
500 * a back door. Remember to keep it shut otherwise you'll let the
501 * creepy crawlies in.
502 */
503
504 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
505 {
506 return -ENXIO;
507 }
508
509 const struct file_operations bad_sock_fops = {
510 .owner = THIS_MODULE,
511 .open = sock_no_open,
512 };
513
514 /**
515 * sock_release - close a socket
516 * @sock: socket to close
517 *
518 * The socket is released from the protocol stack if it has a release
519 * callback, and the inode is then released if the socket is bound to
520 * an inode not a file.
521 */
522
523 void sock_release(struct socket *sock)
524 {
525 if (sock->ops) {
526 struct module *owner = sock->ops->owner;
527
528 sock->ops->release(sock);
529 sock->ops = NULL;
530 module_put(owner);
531 }
532
533 if (sock->wq->fasync_list)
534 printk(KERN_ERR "sock_release: fasync list not empty!\n");
535
536 percpu_sub(sockets_in_use, 1);
537 if (!sock->file) {
538 iput(SOCK_INODE(sock));
539 return;
540 }
541 sock->file = NULL;
542 }
543
544 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
545 union skb_shared_tx *shtx)
546 {
547 shtx->flags = 0;
548 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
549 shtx->hardware = 1;
550 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
551 shtx->software = 1;
552 return 0;
553 }
554 EXPORT_SYMBOL(sock_tx_timestamp);
555
556 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
557 struct msghdr *msg, size_t size)
558 {
559 struct sock_iocb *si = kiocb_to_siocb(iocb);
560 int err;
561
562 sock_update_classid(sock->sk);
563
564 si->sock = sock;
565 si->scm = NULL;
566 si->msg = msg;
567 si->size = size;
568
569 err = security_socket_sendmsg(sock, msg, size);
570 if (err)
571 return err;
572
573 return sock->ops->sendmsg(iocb, sock, msg, size);
574 }
575
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 struct kiocb iocb;
579 struct sock_iocb siocb;
580 int ret;
581
582 init_sync_kiocb(&iocb, NULL);
583 iocb.private = &siocb;
584 ret = __sock_sendmsg(&iocb, sock, msg, size);
585 if (-EIOCBQUEUED == ret)
586 ret = wait_on_sync_kiocb(&iocb);
587 return ret;
588 }
589
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 struct kvec *vec, size_t num, size_t size)
592 {
593 mm_segment_t oldfs = get_fs();
594 int result;
595
596 set_fs(KERNEL_DS);
597 /*
598 * the following is safe, since for compiler definitions of kvec and
599 * iovec are identical, yielding the same in-core layout and alignment
600 */
601 msg->msg_iov = (struct iovec *)vec;
602 msg->msg_iovlen = num;
603 result = sock_sendmsg(sock, msg, size);
604 set_fs(oldfs);
605 return result;
606 }
607
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 if (kt.tv64) {
611 *ts = ktime_to_timespec(kt);
612 return 1;
613 } else {
614 return 0;
615 }
616 }
617
618 /*
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620 */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 struct sk_buff *skb)
623 {
624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 struct timespec ts[3];
626 int empty = 1;
627 struct skb_shared_hwtstamps *shhwtstamps =
628 skb_hwtstamps(skb);
629
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 __net_timestamp(skb);
634
635 if (need_software_tstamp) {
636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 struct timeval tv;
638 skb_get_timestamp(skb, &tv);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 sizeof(tv), &tv);
641 } else {
642 skb_get_timestampns(skb, &ts[0]);
643 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
644 sizeof(ts[0]), &ts[0]);
645 }
646 }
647
648
649 memset(ts, 0, sizeof(ts));
650 if (skb->tstamp.tv64 &&
651 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
652 skb_get_timestampns(skb, ts + 0);
653 empty = 0;
654 }
655 if (shhwtstamps) {
656 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
657 ktime2ts(shhwtstamps->syststamp, ts + 1))
658 empty = 0;
659 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
660 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
661 empty = 0;
662 }
663 if (!empty)
664 put_cmsg(msg, SOL_SOCKET,
665 SCM_TIMESTAMPING, sizeof(ts), &ts);
666 }
667
668 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
669
670 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
671 {
672 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
673 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
674 sizeof(__u32), &skb->dropcount);
675 }
676
677 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
678 struct sk_buff *skb)
679 {
680 sock_recv_timestamp(msg, sk, skb);
681 sock_recv_drops(msg, sk, skb);
682 }
683 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
684
685 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
686 struct msghdr *msg, size_t size, int flags)
687 {
688 struct sock_iocb *si = kiocb_to_siocb(iocb);
689
690 sock_update_classid(sock->sk);
691
692 si->sock = sock;
693 si->scm = NULL;
694 si->msg = msg;
695 si->size = size;
696 si->flags = flags;
697
698 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
699 }
700
701 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
702 struct msghdr *msg, size_t size, int flags)
703 {
704 int err = security_socket_recvmsg(sock, msg, size, flags);
705
706 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
707 }
708
709 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
710 size_t size, int flags)
711 {
712 struct kiocb iocb;
713 struct sock_iocb siocb;
714 int ret;
715
716 init_sync_kiocb(&iocb, NULL);
717 iocb.private = &siocb;
718 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
719 if (-EIOCBQUEUED == ret)
720 ret = wait_on_sync_kiocb(&iocb);
721 return ret;
722 }
723
724 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
725 size_t size, int flags)
726 {
727 struct kiocb iocb;
728 struct sock_iocb siocb;
729 int ret;
730
731 init_sync_kiocb(&iocb, NULL);
732 iocb.private = &siocb;
733 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
734 if (-EIOCBQUEUED == ret)
735 ret = wait_on_sync_kiocb(&iocb);
736 return ret;
737 }
738
739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size, int flags)
741 {
742 mm_segment_t oldfs = get_fs();
743 int result;
744
745 set_fs(KERNEL_DS);
746 /*
747 * the following is safe, since for compiler definitions of kvec and
748 * iovec are identical, yielding the same in-core layout and alignment
749 */
750 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
751 result = sock_recvmsg(sock, msg, size, flags);
752 set_fs(oldfs);
753 return result;
754 }
755
756 static void sock_aio_dtor(struct kiocb *iocb)
757 {
758 kfree(iocb->private);
759 }
760
761 static ssize_t sock_sendpage(struct file *file, struct page *page,
762 int offset, size_t size, loff_t *ppos, int more)
763 {
764 struct socket *sock;
765 int flags;
766
767 sock = file->private_data;
768
769 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
770 if (more)
771 flags |= MSG_MORE;
772
773 return kernel_sendpage(sock, page, offset, size, flags);
774 }
775
776 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct socket *sock = file->private_data;
781
782 if (unlikely(!sock->ops->splice_read))
783 return -EINVAL;
784
785 sock_update_classid(sock->sk);
786
787 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
788 }
789
790 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
791 struct sock_iocb *siocb)
792 {
793 if (!is_sync_kiocb(iocb)) {
794 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
795 if (!siocb)
796 return NULL;
797 iocb->ki_dtor = sock_aio_dtor;
798 }
799
800 siocb->kiocb = iocb;
801 iocb->private = siocb;
802 return siocb;
803 }
804
805 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
806 struct file *file, const struct iovec *iov,
807 unsigned long nr_segs)
808 {
809 struct socket *sock = file->private_data;
810 size_t size = 0;
811 int i;
812
813 for (i = 0; i < nr_segs; i++)
814 size += iov[i].iov_len;
815
816 msg->msg_name = NULL;
817 msg->msg_namelen = 0;
818 msg->msg_control = NULL;
819 msg->msg_controllen = 0;
820 msg->msg_iov = (struct iovec *)iov;
821 msg->msg_iovlen = nr_segs;
822 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
823
824 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
825 }
826
827 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
828 unsigned long nr_segs, loff_t pos)
829 {
830 struct sock_iocb siocb, *x;
831
832 if (pos != 0)
833 return -ESPIPE;
834
835 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
836 return 0;
837
838
839 x = alloc_sock_iocb(iocb, &siocb);
840 if (!x)
841 return -ENOMEM;
842 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
843 }
844
845 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
846 struct file *file, const struct iovec *iov,
847 unsigned long nr_segs)
848 {
849 struct socket *sock = file->private_data;
850 size_t size = 0;
851 int i;
852
853 for (i = 0; i < nr_segs; i++)
854 size += iov[i].iov_len;
855
856 msg->msg_name = NULL;
857 msg->msg_namelen = 0;
858 msg->msg_control = NULL;
859 msg->msg_controllen = 0;
860 msg->msg_iov = (struct iovec *)iov;
861 msg->msg_iovlen = nr_segs;
862 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
863 if (sock->type == SOCK_SEQPACKET)
864 msg->msg_flags |= MSG_EOR;
865
866 return __sock_sendmsg(iocb, sock, msg, size);
867 }
868
869 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
870 unsigned long nr_segs, loff_t pos)
871 {
872 struct sock_iocb siocb, *x;
873
874 if (pos != 0)
875 return -ESPIPE;
876
877 x = alloc_sock_iocb(iocb, &siocb);
878 if (!x)
879 return -ENOMEM;
880
881 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
882 }
883
884 /*
885 * Atomic setting of ioctl hooks to avoid race
886 * with module unload.
887 */
888
889 static DEFINE_MUTEX(br_ioctl_mutex);
890 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
891
892 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
893 {
894 mutex_lock(&br_ioctl_mutex);
895 br_ioctl_hook = hook;
896 mutex_unlock(&br_ioctl_mutex);
897 }
898
899 EXPORT_SYMBOL(brioctl_set);
900
901 static DEFINE_MUTEX(vlan_ioctl_mutex);
902 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
903
904 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
905 {
906 mutex_lock(&vlan_ioctl_mutex);
907 vlan_ioctl_hook = hook;
908 mutex_unlock(&vlan_ioctl_mutex);
909 }
910
911 EXPORT_SYMBOL(vlan_ioctl_set);
912
913 static DEFINE_MUTEX(dlci_ioctl_mutex);
914 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
915
916 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
917 {
918 mutex_lock(&dlci_ioctl_mutex);
919 dlci_ioctl_hook = hook;
920 mutex_unlock(&dlci_ioctl_mutex);
921 }
922
923 EXPORT_SYMBOL(dlci_ioctl_set);
924
925 static long sock_do_ioctl(struct net *net, struct socket *sock,
926 unsigned int cmd, unsigned long arg)
927 {
928 int err;
929 void __user *argp = (void __user *)arg;
930
931 err = sock->ops->ioctl(sock, cmd, arg);
932
933 /*
934 * If this ioctl is unknown try to hand it down
935 * to the NIC driver.
936 */
937 if (err == -ENOIOCTLCMD)
938 err = dev_ioctl(net, cmd, argp);
939
940 return err;
941 }
942
943 /*
944 * With an ioctl, arg may well be a user mode pointer, but we don't know
945 * what to do with it - that's up to the protocol still.
946 */
947
948 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
949 {
950 struct socket *sock;
951 struct sock *sk;
952 void __user *argp = (void __user *)arg;
953 int pid, err;
954 struct net *net;
955
956 sock = file->private_data;
957 sk = sock->sk;
958 net = sock_net(sk);
959 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
960 err = dev_ioctl(net, cmd, argp);
961 } else
962 #ifdef CONFIG_WEXT_CORE
963 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
964 err = dev_ioctl(net, cmd, argp);
965 } else
966 #endif
967 switch (cmd) {
968 case FIOSETOWN:
969 case SIOCSPGRP:
970 err = -EFAULT;
971 if (get_user(pid, (int __user *)argp))
972 break;
973 err = f_setown(sock->file, pid, 1);
974 break;
975 case FIOGETOWN:
976 case SIOCGPGRP:
977 err = put_user(f_getown(sock->file),
978 (int __user *)argp);
979 break;
980 case SIOCGIFBR:
981 case SIOCSIFBR:
982 case SIOCBRADDBR:
983 case SIOCBRDELBR:
984 err = -ENOPKG;
985 if (!br_ioctl_hook)
986 request_module("bridge");
987
988 mutex_lock(&br_ioctl_mutex);
989 if (br_ioctl_hook)
990 err = br_ioctl_hook(net, cmd, argp);
991 mutex_unlock(&br_ioctl_mutex);
992 break;
993 case SIOCGIFVLAN:
994 case SIOCSIFVLAN:
995 err = -ENOPKG;
996 if (!vlan_ioctl_hook)
997 request_module("8021q");
998
999 mutex_lock(&vlan_ioctl_mutex);
1000 if (vlan_ioctl_hook)
1001 err = vlan_ioctl_hook(net, argp);
1002 mutex_unlock(&vlan_ioctl_mutex);
1003 break;
1004 case SIOCADDDLCI:
1005 case SIOCDELDLCI:
1006 err = -ENOPKG;
1007 if (!dlci_ioctl_hook)
1008 request_module("dlci");
1009
1010 mutex_lock(&dlci_ioctl_mutex);
1011 if (dlci_ioctl_hook)
1012 err = dlci_ioctl_hook(cmd, argp);
1013 mutex_unlock(&dlci_ioctl_mutex);
1014 break;
1015 default:
1016 err = sock_do_ioctl(net, sock, cmd, arg);
1017 break;
1018 }
1019 return err;
1020 }
1021
1022 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1023 {
1024 int err;
1025 struct socket *sock = NULL;
1026
1027 err = security_socket_create(family, type, protocol, 1);
1028 if (err)
1029 goto out;
1030
1031 sock = sock_alloc();
1032 if (!sock) {
1033 err = -ENOMEM;
1034 goto out;
1035 }
1036
1037 sock->type = type;
1038 err = security_socket_post_create(sock, family, type, protocol, 1);
1039 if (err)
1040 goto out_release;
1041
1042 out:
1043 *res = sock;
1044 return err;
1045 out_release:
1046 sock_release(sock);
1047 sock = NULL;
1048 goto out;
1049 }
1050
1051 /* No kernel lock held - perfect */
1052 static unsigned int sock_poll(struct file *file, poll_table *wait)
1053 {
1054 struct socket *sock;
1055
1056 /*
1057 * We can't return errors to poll, so it's either yes or no.
1058 */
1059 sock = file->private_data;
1060 return sock->ops->poll(file, sock, wait);
1061 }
1062
1063 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1064 {
1065 struct socket *sock = file->private_data;
1066
1067 return sock->ops->mmap(file, sock, vma);
1068 }
1069
1070 static int sock_close(struct inode *inode, struct file *filp)
1071 {
1072 /*
1073 * It was possible the inode is NULL we were
1074 * closing an unfinished socket.
1075 */
1076
1077 if (!inode) {
1078 printk(KERN_DEBUG "sock_close: NULL inode\n");
1079 return 0;
1080 }
1081 sock_release(SOCKET_I(inode));
1082 return 0;
1083 }
1084
1085 /*
1086 * Update the socket async list
1087 *
1088 * Fasync_list locking strategy.
1089 *
1090 * 1. fasync_list is modified only under process context socket lock
1091 * i.e. under semaphore.
1092 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1093 * or under socket lock
1094 */
1095
1096 static int sock_fasync(int fd, struct file *filp, int on)
1097 {
1098 struct socket *sock = filp->private_data;
1099 struct sock *sk = sock->sk;
1100
1101 if (sk == NULL)
1102 return -EINVAL;
1103
1104 lock_sock(sk);
1105
1106 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1107
1108 if (!sock->wq->fasync_list)
1109 sock_reset_flag(sk, SOCK_FASYNC);
1110 else
1111 sock_set_flag(sk, SOCK_FASYNC);
1112
1113 release_sock(sk);
1114 return 0;
1115 }
1116
1117 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1118
1119 int sock_wake_async(struct socket *sock, int how, int band)
1120 {
1121 struct socket_wq *wq;
1122
1123 if (!sock)
1124 return -1;
1125 rcu_read_lock();
1126 wq = rcu_dereference(sock->wq);
1127 if (!wq || !wq->fasync_list) {
1128 rcu_read_unlock();
1129 return -1;
1130 }
1131 switch (how) {
1132 case SOCK_WAKE_WAITD:
1133 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1134 break;
1135 goto call_kill;
1136 case SOCK_WAKE_SPACE:
1137 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1138 break;
1139 /* fall through */
1140 case SOCK_WAKE_IO:
1141 call_kill:
1142 kill_fasync(&wq->fasync_list, SIGIO, band);
1143 break;
1144 case SOCK_WAKE_URG:
1145 kill_fasync(&wq->fasync_list, SIGURG, band);
1146 }
1147 rcu_read_unlock();
1148 return 0;
1149 }
1150
1151 static int __sock_create(struct net *net, int family, int type, int protocol,
1152 struct socket **res, int kern)
1153 {
1154 int err;
1155 struct socket *sock;
1156 const struct net_proto_family *pf;
1157
1158 /*
1159 * Check protocol is in range
1160 */
1161 if (family < 0 || family >= NPROTO)
1162 return -EAFNOSUPPORT;
1163 if (type < 0 || type >= SOCK_MAX)
1164 return -EINVAL;
1165
1166 /* Compatibility.
1167
1168 This uglymoron is moved from INET layer to here to avoid
1169 deadlock in module load.
1170 */
1171 if (family == PF_INET && type == SOCK_PACKET) {
1172 static int warned;
1173 if (!warned) {
1174 warned = 1;
1175 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1176 current->comm);
1177 }
1178 family = PF_PACKET;
1179 }
1180
1181 err = security_socket_create(family, type, protocol, kern);
1182 if (err)
1183 return err;
1184
1185 /*
1186 * Allocate the socket and allow the family to set things up. if
1187 * the protocol is 0, the family is instructed to select an appropriate
1188 * default.
1189 */
1190 sock = sock_alloc();
1191 if (!sock) {
1192 if (net_ratelimit())
1193 printk(KERN_WARNING "socket: no more sockets\n");
1194 return -ENFILE; /* Not exactly a match, but its the
1195 closest posix thing */
1196 }
1197
1198 sock->type = type;
1199
1200 #ifdef CONFIG_MODULES
1201 /* Attempt to load a protocol module if the find failed.
1202 *
1203 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1204 * requested real, full-featured networking support upon configuration.
1205 * Otherwise module support will break!
1206 */
1207 if (net_families[family] == NULL)
1208 request_module("net-pf-%d", family);
1209 #endif
1210
1211 rcu_read_lock();
1212 pf = rcu_dereference(net_families[family]);
1213 err = -EAFNOSUPPORT;
1214 if (!pf)
1215 goto out_release;
1216
1217 /*
1218 * We will call the ->create function, that possibly is in a loadable
1219 * module, so we have to bump that loadable module refcnt first.
1220 */
1221 if (!try_module_get(pf->owner))
1222 goto out_release;
1223
1224 /* Now protected by module ref count */
1225 rcu_read_unlock();
1226
1227 err = pf->create(net, sock, protocol, kern);
1228 if (err < 0)
1229 goto out_module_put;
1230
1231 /*
1232 * Now to bump the refcnt of the [loadable] module that owns this
1233 * socket at sock_release time we decrement its refcnt.
1234 */
1235 if (!try_module_get(sock->ops->owner))
1236 goto out_module_busy;
1237
1238 /*
1239 * Now that we're done with the ->create function, the [loadable]
1240 * module can have its refcnt decremented
1241 */
1242 module_put(pf->owner);
1243 err = security_socket_post_create(sock, family, type, protocol, kern);
1244 if (err)
1245 goto out_sock_release;
1246 *res = sock;
1247
1248 return 0;
1249
1250 out_module_busy:
1251 err = -EAFNOSUPPORT;
1252 out_module_put:
1253 sock->ops = NULL;
1254 module_put(pf->owner);
1255 out_sock_release:
1256 sock_release(sock);
1257 return err;
1258
1259 out_release:
1260 rcu_read_unlock();
1261 goto out_sock_release;
1262 }
1263
1264 int sock_create(int family, int type, int protocol, struct socket **res)
1265 {
1266 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1267 }
1268
1269 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1270 {
1271 return __sock_create(&init_net, family, type, protocol, res, 1);
1272 }
1273
1274 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1275 {
1276 int retval;
1277 struct socket *sock;
1278 int flags;
1279
1280 /* Check the SOCK_* constants for consistency. */
1281 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1282 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1283 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1284 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1285
1286 flags = type & ~SOCK_TYPE_MASK;
1287 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1288 return -EINVAL;
1289 type &= SOCK_TYPE_MASK;
1290
1291 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1292 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1293
1294 retval = sock_create(family, type, protocol, &sock);
1295 if (retval < 0)
1296 goto out;
1297
1298 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1299 if (retval < 0)
1300 goto out_release;
1301
1302 out:
1303 /* It may be already another descriptor 8) Not kernel problem. */
1304 return retval;
1305
1306 out_release:
1307 sock_release(sock);
1308 return retval;
1309 }
1310
1311 /*
1312 * Create a pair of connected sockets.
1313 */
1314
1315 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1316 int __user *, usockvec)
1317 {
1318 struct socket *sock1, *sock2;
1319 int fd1, fd2, err;
1320 struct file *newfile1, *newfile2;
1321 int flags;
1322
1323 flags = type & ~SOCK_TYPE_MASK;
1324 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1325 return -EINVAL;
1326 type &= SOCK_TYPE_MASK;
1327
1328 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1329 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1330
1331 /*
1332 * Obtain the first socket and check if the underlying protocol
1333 * supports the socketpair call.
1334 */
1335
1336 err = sock_create(family, type, protocol, &sock1);
1337 if (err < 0)
1338 goto out;
1339
1340 err = sock_create(family, type, protocol, &sock2);
1341 if (err < 0)
1342 goto out_release_1;
1343
1344 err = sock1->ops->socketpair(sock1, sock2);
1345 if (err < 0)
1346 goto out_release_both;
1347
1348 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1349 if (unlikely(fd1 < 0)) {
1350 err = fd1;
1351 goto out_release_both;
1352 }
1353
1354 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1355 if (unlikely(fd2 < 0)) {
1356 err = fd2;
1357 fput(newfile1);
1358 put_unused_fd(fd1);
1359 sock_release(sock2);
1360 goto out;
1361 }
1362
1363 audit_fd_pair(fd1, fd2);
1364 fd_install(fd1, newfile1);
1365 fd_install(fd2, newfile2);
1366 /* fd1 and fd2 may be already another descriptors.
1367 * Not kernel problem.
1368 */
1369
1370 err = put_user(fd1, &usockvec[0]);
1371 if (!err)
1372 err = put_user(fd2, &usockvec[1]);
1373 if (!err)
1374 return 0;
1375
1376 sys_close(fd2);
1377 sys_close(fd1);
1378 return err;
1379
1380 out_release_both:
1381 sock_release(sock2);
1382 out_release_1:
1383 sock_release(sock1);
1384 out:
1385 return err;
1386 }
1387
1388 /*
1389 * Bind a name to a socket. Nothing much to do here since it's
1390 * the protocol's responsibility to handle the local address.
1391 *
1392 * We move the socket address to kernel space before we call
1393 * the protocol layer (having also checked the address is ok).
1394 */
1395
1396 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1397 {
1398 struct socket *sock;
1399 struct sockaddr_storage address;
1400 int err, fput_needed;
1401
1402 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1403 if (sock) {
1404 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1405 if (err >= 0) {
1406 err = security_socket_bind(sock,
1407 (struct sockaddr *)&address,
1408 addrlen);
1409 if (!err)
1410 err = sock->ops->bind(sock,
1411 (struct sockaddr *)
1412 &address, addrlen);
1413 }
1414 fput_light(sock->file, fput_needed);
1415 }
1416 return err;
1417 }
1418
1419 /*
1420 * Perform a listen. Basically, we allow the protocol to do anything
1421 * necessary for a listen, and if that works, we mark the socket as
1422 * ready for listening.
1423 */
1424
1425 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1426 {
1427 struct socket *sock;
1428 int err, fput_needed;
1429 int somaxconn;
1430
1431 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1432 if (sock) {
1433 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1434 if ((unsigned)backlog > somaxconn)
1435 backlog = somaxconn;
1436
1437 err = security_socket_listen(sock, backlog);
1438 if (!err)
1439 err = sock->ops->listen(sock, backlog);
1440
1441 fput_light(sock->file, fput_needed);
1442 }
1443 return err;
1444 }
1445
1446 /*
1447 * For accept, we attempt to create a new socket, set up the link
1448 * with the client, wake up the client, then return the new
1449 * connected fd. We collect the address of the connector in kernel
1450 * space and move it to user at the very end. This is unclean because
1451 * we open the socket then return an error.
1452 *
1453 * 1003.1g adds the ability to recvmsg() to query connection pending
1454 * status to recvmsg. We need to add that support in a way thats
1455 * clean when we restucture accept also.
1456 */
1457
1458 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1459 int __user *, upeer_addrlen, int, flags)
1460 {
1461 struct socket *sock, *newsock;
1462 struct file *newfile;
1463 int err, len, newfd, fput_needed;
1464 struct sockaddr_storage address;
1465
1466 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1467 return -EINVAL;
1468
1469 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1470 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1471
1472 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1473 if (!sock)
1474 goto out;
1475
1476 err = -ENFILE;
1477 if (!(newsock = sock_alloc()))
1478 goto out_put;
1479
1480 newsock->type = sock->type;
1481 newsock->ops = sock->ops;
1482
1483 /*
1484 * We don't need try_module_get here, as the listening socket (sock)
1485 * has the protocol module (sock->ops->owner) held.
1486 */
1487 __module_get(newsock->ops->owner);
1488
1489 newfd = sock_alloc_file(newsock, &newfile, flags);
1490 if (unlikely(newfd < 0)) {
1491 err = newfd;
1492 sock_release(newsock);
1493 goto out_put;
1494 }
1495
1496 err = security_socket_accept(sock, newsock);
1497 if (err)
1498 goto out_fd;
1499
1500 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1501 if (err < 0)
1502 goto out_fd;
1503
1504 if (upeer_sockaddr) {
1505 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1506 &len, 2) < 0) {
1507 err = -ECONNABORTED;
1508 goto out_fd;
1509 }
1510 err = move_addr_to_user((struct sockaddr *)&address,
1511 len, upeer_sockaddr, upeer_addrlen);
1512 if (err < 0)
1513 goto out_fd;
1514 }
1515
1516 /* File flags are not inherited via accept() unlike another OSes. */
1517
1518 fd_install(newfd, newfile);
1519 err = newfd;
1520
1521 out_put:
1522 fput_light(sock->file, fput_needed);
1523 out:
1524 return err;
1525 out_fd:
1526 fput(newfile);
1527 put_unused_fd(newfd);
1528 goto out_put;
1529 }
1530
1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1532 int __user *, upeer_addrlen)
1533 {
1534 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1535 }
1536
1537 /*
1538 * Attempt to connect to a socket with the server address. The address
1539 * is in user space so we verify it is OK and move it to kernel space.
1540 *
1541 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1542 * break bindings
1543 *
1544 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1545 * other SEQPACKET protocols that take time to connect() as it doesn't
1546 * include the -EINPROGRESS status for such sockets.
1547 */
1548
1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1550 int, addrlen)
1551 {
1552 struct socket *sock;
1553 struct sockaddr_storage address;
1554 int err, fput_needed;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (!sock)
1558 goto out;
1559 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1560 if (err < 0)
1561 goto out_put;
1562
1563 err =
1564 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1565 if (err)
1566 goto out_put;
1567
1568 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1569 sock->file->f_flags);
1570 out_put:
1571 fput_light(sock->file, fput_needed);
1572 out:
1573 return err;
1574 }
1575
1576 /*
1577 * Get the local address ('name') of a socket object. Move the obtained
1578 * name to user space.
1579 */
1580
1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1582 int __user *, usockaddr_len)
1583 {
1584 struct socket *sock;
1585 struct sockaddr_storage address;
1586 int len, err, fput_needed;
1587
1588 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1589 if (!sock)
1590 goto out;
1591
1592 err = security_socket_getsockname(sock);
1593 if (err)
1594 goto out_put;
1595
1596 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1597 if (err)
1598 goto out_put;
1599 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1600
1601 out_put:
1602 fput_light(sock->file, fput_needed);
1603 out:
1604 return err;
1605 }
1606
1607 /*
1608 * Get the remote address ('name') of a socket object. Move the obtained
1609 * name to user space.
1610 */
1611
1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1613 int __user *, usockaddr_len)
1614 {
1615 struct socket *sock;
1616 struct sockaddr_storage address;
1617 int len, err, fput_needed;
1618
1619 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 if (sock != NULL) {
1621 err = security_socket_getpeername(sock);
1622 if (err) {
1623 fput_light(sock->file, fput_needed);
1624 return err;
1625 }
1626
1627 err =
1628 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1629 1);
1630 if (!err)
1631 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1632 usockaddr_len);
1633 fput_light(sock->file, fput_needed);
1634 }
1635 return err;
1636 }
1637
1638 /*
1639 * Send a datagram to a given address. We move the address into kernel
1640 * space and check the user space data area is readable before invoking
1641 * the protocol.
1642 */
1643
1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1645 unsigned, flags, struct sockaddr __user *, addr,
1646 int, addr_len)
1647 {
1648 struct socket *sock;
1649 struct sockaddr_storage address;
1650 int err;
1651 struct msghdr msg;
1652 struct iovec iov;
1653 int fput_needed;
1654
1655 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1656 if (!sock)
1657 goto out;
1658
1659 iov.iov_base = buff;
1660 iov.iov_len = len;
1661 msg.msg_name = NULL;
1662 msg.msg_iov = &iov;
1663 msg.msg_iovlen = 1;
1664 msg.msg_control = NULL;
1665 msg.msg_controllen = 0;
1666 msg.msg_namelen = 0;
1667 if (addr) {
1668 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1669 if (err < 0)
1670 goto out_put;
1671 msg.msg_name = (struct sockaddr *)&address;
1672 msg.msg_namelen = addr_len;
1673 }
1674 if (sock->file->f_flags & O_NONBLOCK)
1675 flags |= MSG_DONTWAIT;
1676 msg.msg_flags = flags;
1677 err = sock_sendmsg(sock, &msg, len);
1678
1679 out_put:
1680 fput_light(sock->file, fput_needed);
1681 out:
1682 return err;
1683 }
1684
1685 /*
1686 * Send a datagram down a socket.
1687 */
1688
1689 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1690 unsigned, flags)
1691 {
1692 return sys_sendto(fd, buff, len, flags, NULL, 0);
1693 }
1694
1695 /*
1696 * Receive a frame from the socket and optionally record the address of the
1697 * sender. We verify the buffers are writable and if needed move the
1698 * sender address from kernel to user space.
1699 */
1700
1701 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1702 unsigned, flags, struct sockaddr __user *, addr,
1703 int __user *, addr_len)
1704 {
1705 struct socket *sock;
1706 struct iovec iov;
1707 struct msghdr msg;
1708 struct sockaddr_storage address;
1709 int err, err2;
1710 int fput_needed;
1711
1712 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1713 if (!sock)
1714 goto out;
1715
1716 msg.msg_control = NULL;
1717 msg.msg_controllen = 0;
1718 msg.msg_iovlen = 1;
1719 msg.msg_iov = &iov;
1720 iov.iov_len = size;
1721 iov.iov_base = ubuf;
1722 msg.msg_name = (struct sockaddr *)&address;
1723 msg.msg_namelen = sizeof(address);
1724 if (sock->file->f_flags & O_NONBLOCK)
1725 flags |= MSG_DONTWAIT;
1726 err = sock_recvmsg(sock, &msg, size, flags);
1727
1728 if (err >= 0 && addr != NULL) {
1729 err2 = move_addr_to_user((struct sockaddr *)&address,
1730 msg.msg_namelen, addr, addr_len);
1731 if (err2 < 0)
1732 err = err2;
1733 }
1734
1735 fput_light(sock->file, fput_needed);
1736 out:
1737 return err;
1738 }
1739
1740 /*
1741 * Receive a datagram from a socket.
1742 */
1743
1744 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1745 unsigned flags)
1746 {
1747 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1748 }
1749
1750 /*
1751 * Set a socket option. Because we don't know the option lengths we have
1752 * to pass the user mode parameter for the protocols to sort out.
1753 */
1754
1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1756 char __user *, optval, int, optlen)
1757 {
1758 int err, fput_needed;
1759 struct socket *sock;
1760
1761 if (optlen < 0)
1762 return -EINVAL;
1763
1764 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 if (sock != NULL) {
1766 err = security_socket_setsockopt(sock, level, optname);
1767 if (err)
1768 goto out_put;
1769
1770 if (level == SOL_SOCKET)
1771 err =
1772 sock_setsockopt(sock, level, optname, optval,
1773 optlen);
1774 else
1775 err =
1776 sock->ops->setsockopt(sock, level, optname, optval,
1777 optlen);
1778 out_put:
1779 fput_light(sock->file, fput_needed);
1780 }
1781 return err;
1782 }
1783
1784 /*
1785 * Get a socket option. Because we don't know the option lengths we have
1786 * to pass a user mode parameter for the protocols to sort out.
1787 */
1788
1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1790 char __user *, optval, int __user *, optlen)
1791 {
1792 int err, fput_needed;
1793 struct socket *sock;
1794
1795 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 if (sock != NULL) {
1797 err = security_socket_getsockopt(sock, level, optname);
1798 if (err)
1799 goto out_put;
1800
1801 if (level == SOL_SOCKET)
1802 err =
1803 sock_getsockopt(sock, level, optname, optval,
1804 optlen);
1805 else
1806 err =
1807 sock->ops->getsockopt(sock, level, optname, optval,
1808 optlen);
1809 out_put:
1810 fput_light(sock->file, fput_needed);
1811 }
1812 return err;
1813 }
1814
1815 /*
1816 * Shutdown a socket.
1817 */
1818
1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1820 {
1821 int err, fput_needed;
1822 struct socket *sock;
1823
1824 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1825 if (sock != NULL) {
1826 err = security_socket_shutdown(sock, how);
1827 if (!err)
1828 err = sock->ops->shutdown(sock, how);
1829 fput_light(sock->file, fput_needed);
1830 }
1831 return err;
1832 }
1833
1834 /* A couple of helpful macros for getting the address of the 32/64 bit
1835 * fields which are the same type (int / unsigned) on our platforms.
1836 */
1837 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1838 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1839 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1840
1841 /*
1842 * BSD sendmsg interface
1843 */
1844
1845 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1846 {
1847 struct compat_msghdr __user *msg_compat =
1848 (struct compat_msghdr __user *)msg;
1849 struct socket *sock;
1850 struct sockaddr_storage address;
1851 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1852 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1853 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1854 /* 20 is size of ipv6_pktinfo */
1855 unsigned char *ctl_buf = ctl;
1856 struct msghdr msg_sys;
1857 int err, ctl_len, iov_size, total_len;
1858 int fput_needed;
1859
1860 err = -EFAULT;
1861 if (MSG_CMSG_COMPAT & flags) {
1862 if (get_compat_msghdr(&msg_sys, msg_compat))
1863 return -EFAULT;
1864 }
1865 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1866 return -EFAULT;
1867
1868 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1869 if (!sock)
1870 goto out;
1871
1872 /* do not move before msg_sys is valid */
1873 err = -EMSGSIZE;
1874 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1875 goto out_put;
1876
1877 /* Check whether to allocate the iovec area */
1878 err = -ENOMEM;
1879 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1880 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1881 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1882 if (!iov)
1883 goto out_put;
1884 }
1885
1886 /* This will also move the address data into kernel space */
1887 if (MSG_CMSG_COMPAT & flags) {
1888 err = verify_compat_iovec(&msg_sys, iov,
1889 (struct sockaddr *)&address,
1890 VERIFY_READ);
1891 } else
1892 err = verify_iovec(&msg_sys, iov,
1893 (struct sockaddr *)&address,
1894 VERIFY_READ);
1895 if (err < 0)
1896 goto out_freeiov;
1897 total_len = err;
1898
1899 err = -ENOBUFS;
1900
1901 if (msg_sys.msg_controllen > INT_MAX)
1902 goto out_freeiov;
1903 ctl_len = msg_sys.msg_controllen;
1904 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1905 err =
1906 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1907 sizeof(ctl));
1908 if (err)
1909 goto out_freeiov;
1910 ctl_buf = msg_sys.msg_control;
1911 ctl_len = msg_sys.msg_controllen;
1912 } else if (ctl_len) {
1913 if (ctl_len > sizeof(ctl)) {
1914 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1915 if (ctl_buf == NULL)
1916 goto out_freeiov;
1917 }
1918 err = -EFAULT;
1919 /*
1920 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1921 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1922 * checking falls down on this.
1923 */
1924 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1925 ctl_len))
1926 goto out_freectl;
1927 msg_sys.msg_control = ctl_buf;
1928 }
1929 msg_sys.msg_flags = flags;
1930
1931 if (sock->file->f_flags & O_NONBLOCK)
1932 msg_sys.msg_flags |= MSG_DONTWAIT;
1933 err = sock_sendmsg(sock, &msg_sys, total_len);
1934
1935 out_freectl:
1936 if (ctl_buf != ctl)
1937 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1938 out_freeiov:
1939 if (iov != iovstack)
1940 sock_kfree_s(sock->sk, iov, iov_size);
1941 out_put:
1942 fput_light(sock->file, fput_needed);
1943 out:
1944 return err;
1945 }
1946
1947 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1948 struct msghdr *msg_sys, unsigned flags, int nosec)
1949 {
1950 struct compat_msghdr __user *msg_compat =
1951 (struct compat_msghdr __user *)msg;
1952 struct iovec iovstack[UIO_FASTIOV];
1953 struct iovec *iov = iovstack;
1954 unsigned long cmsg_ptr;
1955 int err, iov_size, total_len, len;
1956
1957 /* kernel mode address */
1958 struct sockaddr_storage addr;
1959
1960 /* user mode address pointers */
1961 struct sockaddr __user *uaddr;
1962 int __user *uaddr_len;
1963
1964 if (MSG_CMSG_COMPAT & flags) {
1965 if (get_compat_msghdr(msg_sys, msg_compat))
1966 return -EFAULT;
1967 }
1968 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1969 return -EFAULT;
1970
1971 err = -EMSGSIZE;
1972 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1973 goto out;
1974
1975 /* Check whether to allocate the iovec area */
1976 err = -ENOMEM;
1977 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1978 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1979 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1980 if (!iov)
1981 goto out;
1982 }
1983
1984 /*
1985 * Save the user-mode address (verify_iovec will change the
1986 * kernel msghdr to use the kernel address space)
1987 */
1988
1989 uaddr = (__force void __user *)msg_sys->msg_name;
1990 uaddr_len = COMPAT_NAMELEN(msg);
1991 if (MSG_CMSG_COMPAT & flags) {
1992 err = verify_compat_iovec(msg_sys, iov,
1993 (struct sockaddr *)&addr,
1994 VERIFY_WRITE);
1995 } else
1996 err = verify_iovec(msg_sys, iov,
1997 (struct sockaddr *)&addr,
1998 VERIFY_WRITE);
1999 if (err < 0)
2000 goto out_freeiov;
2001 total_len = err;
2002
2003 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2004 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2005
2006 if (sock->file->f_flags & O_NONBLOCK)
2007 flags |= MSG_DONTWAIT;
2008 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2009 total_len, flags);
2010 if (err < 0)
2011 goto out_freeiov;
2012 len = err;
2013
2014 if (uaddr != NULL) {
2015 err = move_addr_to_user((struct sockaddr *)&addr,
2016 msg_sys->msg_namelen, uaddr,
2017 uaddr_len);
2018 if (err < 0)
2019 goto out_freeiov;
2020 }
2021 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2022 COMPAT_FLAGS(msg));
2023 if (err)
2024 goto out_freeiov;
2025 if (MSG_CMSG_COMPAT & flags)
2026 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2027 &msg_compat->msg_controllen);
2028 else
2029 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2030 &msg->msg_controllen);
2031 if (err)
2032 goto out_freeiov;
2033 err = len;
2034
2035 out_freeiov:
2036 if (iov != iovstack)
2037 sock_kfree_s(sock->sk, iov, iov_size);
2038 out:
2039 return err;
2040 }
2041
2042 /*
2043 * BSD recvmsg interface
2044 */
2045
2046 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2047 unsigned int, flags)
2048 {
2049 int fput_needed, err;
2050 struct msghdr msg_sys;
2051 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052
2053 if (!sock)
2054 goto out;
2055
2056 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2057
2058 fput_light(sock->file, fput_needed);
2059 out:
2060 return err;
2061 }
2062
2063 /*
2064 * Linux recvmmsg interface
2065 */
2066
2067 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2068 unsigned int flags, struct timespec *timeout)
2069 {
2070 int fput_needed, err, datagrams;
2071 struct socket *sock;
2072 struct mmsghdr __user *entry;
2073 struct compat_mmsghdr __user *compat_entry;
2074 struct msghdr msg_sys;
2075 struct timespec end_time;
2076
2077 if (timeout &&
2078 poll_select_set_timeout(&end_time, timeout->tv_sec,
2079 timeout->tv_nsec))
2080 return -EINVAL;
2081
2082 datagrams = 0;
2083
2084 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2085 if (!sock)
2086 return err;
2087
2088 err = sock_error(sock->sk);
2089 if (err)
2090 goto out_put;
2091
2092 entry = mmsg;
2093 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2094
2095 while (datagrams < vlen) {
2096 /*
2097 * No need to ask LSM for more than the first datagram.
2098 */
2099 if (MSG_CMSG_COMPAT & flags) {
2100 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2101 &msg_sys, flags, datagrams);
2102 if (err < 0)
2103 break;
2104 err = __put_user(err, &compat_entry->msg_len);
2105 ++compat_entry;
2106 } else {
2107 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2108 &msg_sys, flags, datagrams);
2109 if (err < 0)
2110 break;
2111 err = put_user(err, &entry->msg_len);
2112 ++entry;
2113 }
2114
2115 if (err)
2116 break;
2117 ++datagrams;
2118
2119 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2120 if (flags & MSG_WAITFORONE)
2121 flags |= MSG_DONTWAIT;
2122
2123 if (timeout) {
2124 ktime_get_ts(timeout);
2125 *timeout = timespec_sub(end_time, *timeout);
2126 if (timeout->tv_sec < 0) {
2127 timeout->tv_sec = timeout->tv_nsec = 0;
2128 break;
2129 }
2130
2131 /* Timeout, return less than vlen datagrams */
2132 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2133 break;
2134 }
2135
2136 /* Out of band data, return right away */
2137 if (msg_sys.msg_flags & MSG_OOB)
2138 break;
2139 }
2140
2141 out_put:
2142 fput_light(sock->file, fput_needed);
2143
2144 if (err == 0)
2145 return datagrams;
2146
2147 if (datagrams != 0) {
2148 /*
2149 * We may return less entries than requested (vlen) if the
2150 * sock is non block and there aren't enough datagrams...
2151 */
2152 if (err != -EAGAIN) {
2153 /*
2154 * ... or if recvmsg returns an error after we
2155 * received some datagrams, where we record the
2156 * error to return on the next call or if the
2157 * app asks about it using getsockopt(SO_ERROR).
2158 */
2159 sock->sk->sk_err = -err;
2160 }
2161
2162 return datagrams;
2163 }
2164
2165 return err;
2166 }
2167
2168 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2169 unsigned int, vlen, unsigned int, flags,
2170 struct timespec __user *, timeout)
2171 {
2172 int datagrams;
2173 struct timespec timeout_sys;
2174
2175 if (!timeout)
2176 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2177
2178 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2179 return -EFAULT;
2180
2181 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2182
2183 if (datagrams > 0 &&
2184 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2185 datagrams = -EFAULT;
2186
2187 return datagrams;
2188 }
2189
2190 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2191 /* Argument list sizes for sys_socketcall */
2192 #define AL(x) ((x) * sizeof(unsigned long))
2193 static const unsigned char nargs[20] = {
2194 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2195 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2196 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2197 AL(4),AL(5)
2198 };
2199
2200 #undef AL
2201
2202 /*
2203 * System call vectors.
2204 *
2205 * Argument checking cleaned up. Saved 20% in size.
2206 * This function doesn't need to set the kernel lock because
2207 * it is set by the callees.
2208 */
2209
2210 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2211 {
2212 unsigned long a[6];
2213 unsigned long a0, a1;
2214 int err;
2215 unsigned int len;
2216
2217 if (call < 1 || call > SYS_RECVMMSG)
2218 return -EINVAL;
2219
2220 len = nargs[call];
2221 if (len > sizeof(a))
2222 return -EINVAL;
2223
2224 /* copy_from_user should be SMP safe. */
2225 if (copy_from_user(a, args, len))
2226 return -EFAULT;
2227
2228 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2229
2230 a0 = a[0];
2231 a1 = a[1];
2232
2233 switch (call) {
2234 case SYS_SOCKET:
2235 err = sys_socket(a0, a1, a[2]);
2236 break;
2237 case SYS_BIND:
2238 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2239 break;
2240 case SYS_CONNECT:
2241 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2242 break;
2243 case SYS_LISTEN:
2244 err = sys_listen(a0, a1);
2245 break;
2246 case SYS_ACCEPT:
2247 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2248 (int __user *)a[2], 0);
2249 break;
2250 case SYS_GETSOCKNAME:
2251 err =
2252 sys_getsockname(a0, (struct sockaddr __user *)a1,
2253 (int __user *)a[2]);
2254 break;
2255 case SYS_GETPEERNAME:
2256 err =
2257 sys_getpeername(a0, (struct sockaddr __user *)a1,
2258 (int __user *)a[2]);
2259 break;
2260 case SYS_SOCKETPAIR:
2261 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2262 break;
2263 case SYS_SEND:
2264 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2265 break;
2266 case SYS_SENDTO:
2267 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2268 (struct sockaddr __user *)a[4], a[5]);
2269 break;
2270 case SYS_RECV:
2271 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2272 break;
2273 case SYS_RECVFROM:
2274 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2275 (struct sockaddr __user *)a[4],
2276 (int __user *)a[5]);
2277 break;
2278 case SYS_SHUTDOWN:
2279 err = sys_shutdown(a0, a1);
2280 break;
2281 case SYS_SETSOCKOPT:
2282 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2283 break;
2284 case SYS_GETSOCKOPT:
2285 err =
2286 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2287 (int __user *)a[4]);
2288 break;
2289 case SYS_SENDMSG:
2290 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2291 break;
2292 case SYS_RECVMSG:
2293 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2294 break;
2295 case SYS_RECVMMSG:
2296 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2297 (struct timespec __user *)a[4]);
2298 break;
2299 case SYS_ACCEPT4:
2300 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2301 (int __user *)a[2], a[3]);
2302 break;
2303 default:
2304 err = -EINVAL;
2305 break;
2306 }
2307 return err;
2308 }
2309
2310 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2311
2312 /**
2313 * sock_register - add a socket protocol handler
2314 * @ops: description of protocol
2315 *
2316 * This function is called by a protocol handler that wants to
2317 * advertise its address family, and have it linked into the
2318 * socket interface. The value ops->family coresponds to the
2319 * socket system call protocol family.
2320 */
2321 int sock_register(const struct net_proto_family *ops)
2322 {
2323 int err;
2324
2325 if (ops->family >= NPROTO) {
2326 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2327 NPROTO);
2328 return -ENOBUFS;
2329 }
2330
2331 spin_lock(&net_family_lock);
2332 if (net_families[ops->family])
2333 err = -EEXIST;
2334 else {
2335 net_families[ops->family] = ops;
2336 err = 0;
2337 }
2338 spin_unlock(&net_family_lock);
2339
2340 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2341 return err;
2342 }
2343
2344 /**
2345 * sock_unregister - remove a protocol handler
2346 * @family: protocol family to remove
2347 *
2348 * This function is called by a protocol handler that wants to
2349 * remove its address family, and have it unlinked from the
2350 * new socket creation.
2351 *
2352 * If protocol handler is a module, then it can use module reference
2353 * counts to protect against new references. If protocol handler is not
2354 * a module then it needs to provide its own protection in
2355 * the ops->create routine.
2356 */
2357 void sock_unregister(int family)
2358 {
2359 BUG_ON(family < 0 || family >= NPROTO);
2360
2361 spin_lock(&net_family_lock);
2362 net_families[family] = NULL;
2363 spin_unlock(&net_family_lock);
2364
2365 synchronize_rcu();
2366
2367 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2368 }
2369
2370 static int __init sock_init(void)
2371 {
2372 /*
2373 * Initialize sock SLAB cache.
2374 */
2375
2376 sk_init();
2377
2378 /*
2379 * Initialize skbuff SLAB cache
2380 */
2381 skb_init();
2382
2383 /*
2384 * Initialize the protocols module.
2385 */
2386
2387 init_inodecache();
2388 register_filesystem(&sock_fs_type);
2389 sock_mnt = kern_mount(&sock_fs_type);
2390
2391 /* The real protocol initialization is performed in later initcalls.
2392 */
2393
2394 #ifdef CONFIG_NETFILTER
2395 netfilter_init();
2396 #endif
2397
2398 return 0;
2399 }
2400
2401 core_initcall(sock_init); /* early initcall */
2402
2403 #ifdef CONFIG_PROC_FS
2404 void socket_seq_show(struct seq_file *seq)
2405 {
2406 int cpu;
2407 int counter = 0;
2408
2409 for_each_possible_cpu(cpu)
2410 counter += per_cpu(sockets_in_use, cpu);
2411
2412 /* It can be negative, by the way. 8) */
2413 if (counter < 0)
2414 counter = 0;
2415
2416 seq_printf(seq, "sockets: used %d\n", counter);
2417 }
2418 #endif /* CONFIG_PROC_FS */
2419
2420 #ifdef CONFIG_COMPAT
2421 static int do_siocgstamp(struct net *net, struct socket *sock,
2422 unsigned int cmd, struct compat_timeval __user *up)
2423 {
2424 mm_segment_t old_fs = get_fs();
2425 struct timeval ktv;
2426 int err;
2427
2428 set_fs(KERNEL_DS);
2429 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2430 set_fs(old_fs);
2431 if (!err) {
2432 err = put_user(ktv.tv_sec, &up->tv_sec);
2433 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2434 }
2435 return err;
2436 }
2437
2438 static int do_siocgstampns(struct net *net, struct socket *sock,
2439 unsigned int cmd, struct compat_timespec __user *up)
2440 {
2441 mm_segment_t old_fs = get_fs();
2442 struct timespec kts;
2443 int err;
2444
2445 set_fs(KERNEL_DS);
2446 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2447 set_fs(old_fs);
2448 if (!err) {
2449 err = put_user(kts.tv_sec, &up->tv_sec);
2450 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2451 }
2452 return err;
2453 }
2454
2455 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2456 {
2457 struct ifreq __user *uifr;
2458 int err;
2459
2460 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2461 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2462 return -EFAULT;
2463
2464 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2465 if (err)
2466 return err;
2467
2468 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2469 return -EFAULT;
2470
2471 return 0;
2472 }
2473
2474 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2475 {
2476 struct compat_ifconf ifc32;
2477 struct ifconf ifc;
2478 struct ifconf __user *uifc;
2479 struct compat_ifreq __user *ifr32;
2480 struct ifreq __user *ifr;
2481 unsigned int i, j;
2482 int err;
2483
2484 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2485 return -EFAULT;
2486
2487 if (ifc32.ifcbuf == 0) {
2488 ifc32.ifc_len = 0;
2489 ifc.ifc_len = 0;
2490 ifc.ifc_req = NULL;
2491 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2492 } else {
2493 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2494 sizeof (struct ifreq);
2495 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2496 ifc.ifc_len = len;
2497 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2498 ifr32 = compat_ptr(ifc32.ifcbuf);
2499 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2500 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2501 return -EFAULT;
2502 ifr++;
2503 ifr32++;
2504 }
2505 }
2506 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2507 return -EFAULT;
2508
2509 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2510 if (err)
2511 return err;
2512
2513 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2514 return -EFAULT;
2515
2516 ifr = ifc.ifc_req;
2517 ifr32 = compat_ptr(ifc32.ifcbuf);
2518 for (i = 0, j = 0;
2519 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2520 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2521 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2522 return -EFAULT;
2523 ifr32++;
2524 ifr++;
2525 }
2526
2527 if (ifc32.ifcbuf == 0) {
2528 /* Translate from 64-bit structure multiple to
2529 * a 32-bit one.
2530 */
2531 i = ifc.ifc_len;
2532 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2533 ifc32.ifc_len = i;
2534 } else {
2535 ifc32.ifc_len = i;
2536 }
2537 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2538 return -EFAULT;
2539
2540 return 0;
2541 }
2542
2543 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2544 {
2545 struct ifreq __user *ifr;
2546 u32 data;
2547 void __user *datap;
2548
2549 ifr = compat_alloc_user_space(sizeof(*ifr));
2550
2551 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2552 return -EFAULT;
2553
2554 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2555 return -EFAULT;
2556
2557 datap = compat_ptr(data);
2558 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2559 return -EFAULT;
2560
2561 return dev_ioctl(net, SIOCETHTOOL, ifr);
2562 }
2563
2564 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2565 {
2566 void __user *uptr;
2567 compat_uptr_t uptr32;
2568 struct ifreq __user *uifr;
2569
2570 uifr = compat_alloc_user_space(sizeof (*uifr));
2571 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2572 return -EFAULT;
2573
2574 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2575 return -EFAULT;
2576
2577 uptr = compat_ptr(uptr32);
2578
2579 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2580 return -EFAULT;
2581
2582 return dev_ioctl(net, SIOCWANDEV, uifr);
2583 }
2584
2585 static int bond_ioctl(struct net *net, unsigned int cmd,
2586 struct compat_ifreq __user *ifr32)
2587 {
2588 struct ifreq kifr;
2589 struct ifreq __user *uifr;
2590 mm_segment_t old_fs;
2591 int err;
2592 u32 data;
2593 void __user *datap;
2594
2595 switch (cmd) {
2596 case SIOCBONDENSLAVE:
2597 case SIOCBONDRELEASE:
2598 case SIOCBONDSETHWADDR:
2599 case SIOCBONDCHANGEACTIVE:
2600 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2601 return -EFAULT;
2602
2603 old_fs = get_fs();
2604 set_fs (KERNEL_DS);
2605 err = dev_ioctl(net, cmd, &kifr);
2606 set_fs (old_fs);
2607
2608 return err;
2609 case SIOCBONDSLAVEINFOQUERY:
2610 case SIOCBONDINFOQUERY:
2611 uifr = compat_alloc_user_space(sizeof(*uifr));
2612 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2613 return -EFAULT;
2614
2615 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2616 return -EFAULT;
2617
2618 datap = compat_ptr(data);
2619 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2620 return -EFAULT;
2621
2622 return dev_ioctl(net, cmd, uifr);
2623 default:
2624 return -EINVAL;
2625 }
2626 }
2627
2628 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2629 struct compat_ifreq __user *u_ifreq32)
2630 {
2631 struct ifreq __user *u_ifreq64;
2632 char tmp_buf[IFNAMSIZ];
2633 void __user *data64;
2634 u32 data32;
2635
2636 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2637 IFNAMSIZ))
2638 return -EFAULT;
2639 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2640 return -EFAULT;
2641 data64 = compat_ptr(data32);
2642
2643 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2644
2645 /* Don't check these user accesses, just let that get trapped
2646 * in the ioctl handler instead.
2647 */
2648 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2649 IFNAMSIZ))
2650 return -EFAULT;
2651 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2652 return -EFAULT;
2653
2654 return dev_ioctl(net, cmd, u_ifreq64);
2655 }
2656
2657 static int dev_ifsioc(struct net *net, struct socket *sock,
2658 unsigned int cmd, struct compat_ifreq __user *uifr32)
2659 {
2660 struct ifreq __user *uifr;
2661 int err;
2662
2663 uifr = compat_alloc_user_space(sizeof(*uifr));
2664 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2665 return -EFAULT;
2666
2667 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2668
2669 if (!err) {
2670 switch (cmd) {
2671 case SIOCGIFFLAGS:
2672 case SIOCGIFMETRIC:
2673 case SIOCGIFMTU:
2674 case SIOCGIFMEM:
2675 case SIOCGIFHWADDR:
2676 case SIOCGIFINDEX:
2677 case SIOCGIFADDR:
2678 case SIOCGIFBRDADDR:
2679 case SIOCGIFDSTADDR:
2680 case SIOCGIFNETMASK:
2681 case SIOCGIFPFLAGS:
2682 case SIOCGIFTXQLEN:
2683 case SIOCGMIIPHY:
2684 case SIOCGMIIREG:
2685 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2686 err = -EFAULT;
2687 break;
2688 }
2689 }
2690 return err;
2691 }
2692
2693 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2694 struct compat_ifreq __user *uifr32)
2695 {
2696 struct ifreq ifr;
2697 struct compat_ifmap __user *uifmap32;
2698 mm_segment_t old_fs;
2699 int err;
2700
2701 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2702 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2703 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2704 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2705 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2706 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2707 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2708 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2709 if (err)
2710 return -EFAULT;
2711
2712 old_fs = get_fs();
2713 set_fs (KERNEL_DS);
2714 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2715 set_fs (old_fs);
2716
2717 if (cmd == SIOCGIFMAP && !err) {
2718 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2719 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2720 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2721 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2722 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2723 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2724 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2725 if (err)
2726 err = -EFAULT;
2727 }
2728 return err;
2729 }
2730
2731 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2732 {
2733 void __user *uptr;
2734 compat_uptr_t uptr32;
2735 struct ifreq __user *uifr;
2736
2737 uifr = compat_alloc_user_space(sizeof (*uifr));
2738 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2739 return -EFAULT;
2740
2741 if (get_user(uptr32, &uifr32->ifr_data))
2742 return -EFAULT;
2743
2744 uptr = compat_ptr(uptr32);
2745
2746 if (put_user(uptr, &uifr->ifr_data))
2747 return -EFAULT;
2748
2749 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2750 }
2751
2752 struct rtentry32 {
2753 u32 rt_pad1;
2754 struct sockaddr rt_dst; /* target address */
2755 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2756 struct sockaddr rt_genmask; /* target network mask (IP) */
2757 unsigned short rt_flags;
2758 short rt_pad2;
2759 u32 rt_pad3;
2760 unsigned char rt_tos;
2761 unsigned char rt_class;
2762 short rt_pad4;
2763 short rt_metric; /* +1 for binary compatibility! */
2764 /* char * */ u32 rt_dev; /* forcing the device at add */
2765 u32 rt_mtu; /* per route MTU/Window */
2766 u32 rt_window; /* Window clamping */
2767 unsigned short rt_irtt; /* Initial RTT */
2768 };
2769
2770 struct in6_rtmsg32 {
2771 struct in6_addr rtmsg_dst;
2772 struct in6_addr rtmsg_src;
2773 struct in6_addr rtmsg_gateway;
2774 u32 rtmsg_type;
2775 u16 rtmsg_dst_len;
2776 u16 rtmsg_src_len;
2777 u32 rtmsg_metric;
2778 u32 rtmsg_info;
2779 u32 rtmsg_flags;
2780 s32 rtmsg_ifindex;
2781 };
2782
2783 static int routing_ioctl(struct net *net, struct socket *sock,
2784 unsigned int cmd, void __user *argp)
2785 {
2786 int ret;
2787 void *r = NULL;
2788 struct in6_rtmsg r6;
2789 struct rtentry r4;
2790 char devname[16];
2791 u32 rtdev;
2792 mm_segment_t old_fs = get_fs();
2793
2794 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2795 struct in6_rtmsg32 __user *ur6 = argp;
2796 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2797 3 * sizeof(struct in6_addr));
2798 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2799 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2800 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2801 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2802 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2803 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2804 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2805
2806 r = (void *) &r6;
2807 } else { /* ipv4 */
2808 struct rtentry32 __user *ur4 = argp;
2809 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2810 3 * sizeof(struct sockaddr));
2811 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2812 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2813 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2814 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2815 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2816 ret |= __get_user (rtdev, &(ur4->rt_dev));
2817 if (rtdev) {
2818 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2819 r4.rt_dev = devname; devname[15] = 0;
2820 } else
2821 r4.rt_dev = NULL;
2822
2823 r = (void *) &r4;
2824 }
2825
2826 if (ret) {
2827 ret = -EFAULT;
2828 goto out;
2829 }
2830
2831 set_fs (KERNEL_DS);
2832 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2833 set_fs (old_fs);
2834
2835 out:
2836 return ret;
2837 }
2838
2839 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2840 * for some operations; this forces use of the newer bridge-utils that
2841 * use compatiable ioctls
2842 */
2843 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2844 {
2845 compat_ulong_t tmp;
2846
2847 if (get_user(tmp, argp))
2848 return -EFAULT;
2849 if (tmp == BRCTL_GET_VERSION)
2850 return BRCTL_VERSION + 1;
2851 return -EINVAL;
2852 }
2853
2854 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2855 unsigned int cmd, unsigned long arg)
2856 {
2857 void __user *argp = compat_ptr(arg);
2858 struct sock *sk = sock->sk;
2859 struct net *net = sock_net(sk);
2860
2861 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2862 return siocdevprivate_ioctl(net, cmd, argp);
2863
2864 switch (cmd) {
2865 case SIOCSIFBR:
2866 case SIOCGIFBR:
2867 return old_bridge_ioctl(argp);
2868 case SIOCGIFNAME:
2869 return dev_ifname32(net, argp);
2870 case SIOCGIFCONF:
2871 return dev_ifconf(net, argp);
2872 case SIOCETHTOOL:
2873 return ethtool_ioctl(net, argp);
2874 case SIOCWANDEV:
2875 return compat_siocwandev(net, argp);
2876 case SIOCGIFMAP:
2877 case SIOCSIFMAP:
2878 return compat_sioc_ifmap(net, cmd, argp);
2879 case SIOCBONDENSLAVE:
2880 case SIOCBONDRELEASE:
2881 case SIOCBONDSETHWADDR:
2882 case SIOCBONDSLAVEINFOQUERY:
2883 case SIOCBONDINFOQUERY:
2884 case SIOCBONDCHANGEACTIVE:
2885 return bond_ioctl(net, cmd, argp);
2886 case SIOCADDRT:
2887 case SIOCDELRT:
2888 return routing_ioctl(net, sock, cmd, argp);
2889 case SIOCGSTAMP:
2890 return do_siocgstamp(net, sock, cmd, argp);
2891 case SIOCGSTAMPNS:
2892 return do_siocgstampns(net, sock, cmd, argp);
2893 case SIOCSHWTSTAMP:
2894 return compat_siocshwtstamp(net, argp);
2895
2896 case FIOSETOWN:
2897 case SIOCSPGRP:
2898 case FIOGETOWN:
2899 case SIOCGPGRP:
2900 case SIOCBRADDBR:
2901 case SIOCBRDELBR:
2902 case SIOCGIFVLAN:
2903 case SIOCSIFVLAN:
2904 case SIOCADDDLCI:
2905 case SIOCDELDLCI:
2906 return sock_ioctl(file, cmd, arg);
2907
2908 case SIOCGIFFLAGS:
2909 case SIOCSIFFLAGS:
2910 case SIOCGIFMETRIC:
2911 case SIOCSIFMETRIC:
2912 case SIOCGIFMTU:
2913 case SIOCSIFMTU:
2914 case SIOCGIFMEM:
2915 case SIOCSIFMEM:
2916 case SIOCGIFHWADDR:
2917 case SIOCSIFHWADDR:
2918 case SIOCADDMULTI:
2919 case SIOCDELMULTI:
2920 case SIOCGIFINDEX:
2921 case SIOCGIFADDR:
2922 case SIOCSIFADDR:
2923 case SIOCSIFHWBROADCAST:
2924 case SIOCDIFADDR:
2925 case SIOCGIFBRDADDR:
2926 case SIOCSIFBRDADDR:
2927 case SIOCGIFDSTADDR:
2928 case SIOCSIFDSTADDR:
2929 case SIOCGIFNETMASK:
2930 case SIOCSIFNETMASK:
2931 case SIOCSIFPFLAGS:
2932 case SIOCGIFPFLAGS:
2933 case SIOCGIFTXQLEN:
2934 case SIOCSIFTXQLEN:
2935 case SIOCBRADDIF:
2936 case SIOCBRDELIF:
2937 case SIOCSIFNAME:
2938 case SIOCGMIIPHY:
2939 case SIOCGMIIREG:
2940 case SIOCSMIIREG:
2941 return dev_ifsioc(net, sock, cmd, argp);
2942
2943 case SIOCSARP:
2944 case SIOCGARP:
2945 case SIOCDARP:
2946 case SIOCATMARK:
2947 return sock_do_ioctl(net, sock, cmd, arg);
2948 }
2949
2950 /* Prevent warning from compat_sys_ioctl, these always
2951 * result in -EINVAL in the native case anyway. */
2952 switch (cmd) {
2953 case SIOCRTMSG:
2954 case SIOCGIFCOUNT:
2955 case SIOCSRARP:
2956 case SIOCGRARP:
2957 case SIOCDRARP:
2958 case SIOCSIFLINK:
2959 case SIOCGIFSLAVE:
2960 case SIOCSIFSLAVE:
2961 return -EINVAL;
2962 }
2963
2964 return -ENOIOCTLCMD;
2965 }
2966
2967 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2968 unsigned long arg)
2969 {
2970 struct socket *sock = file->private_data;
2971 int ret = -ENOIOCTLCMD;
2972 struct sock *sk;
2973 struct net *net;
2974
2975 sk = sock->sk;
2976 net = sock_net(sk);
2977
2978 if (sock->ops->compat_ioctl)
2979 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2980
2981 if (ret == -ENOIOCTLCMD &&
2982 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2983 ret = compat_wext_handle_ioctl(net, cmd, arg);
2984
2985 if (ret == -ENOIOCTLCMD)
2986 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2987
2988 return ret;
2989 }
2990 #endif
2991
2992 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2993 {
2994 return sock->ops->bind(sock, addr, addrlen);
2995 }
2996
2997 int kernel_listen(struct socket *sock, int backlog)
2998 {
2999 return sock->ops->listen(sock, backlog);
3000 }
3001
3002 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3003 {
3004 struct sock *sk = sock->sk;
3005 int err;
3006
3007 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3008 newsock);
3009 if (err < 0)
3010 goto done;
3011
3012 err = sock->ops->accept(sock, *newsock, flags);
3013 if (err < 0) {
3014 sock_release(*newsock);
3015 *newsock = NULL;
3016 goto done;
3017 }
3018
3019 (*newsock)->ops = sock->ops;
3020 __module_get((*newsock)->ops->owner);
3021
3022 done:
3023 return err;
3024 }
3025
3026 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3027 int flags)
3028 {
3029 return sock->ops->connect(sock, addr, addrlen, flags);
3030 }
3031
3032 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3033 int *addrlen)
3034 {
3035 return sock->ops->getname(sock, addr, addrlen, 0);
3036 }
3037
3038 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3039 int *addrlen)
3040 {
3041 return sock->ops->getname(sock, addr, addrlen, 1);
3042 }
3043
3044 int kernel_getsockopt(struct socket *sock, int level, int optname,
3045 char *optval, int *optlen)
3046 {
3047 mm_segment_t oldfs = get_fs();
3048 int err;
3049
3050 set_fs(KERNEL_DS);
3051 if (level == SOL_SOCKET)
3052 err = sock_getsockopt(sock, level, optname, optval, optlen);
3053 else
3054 err = sock->ops->getsockopt(sock, level, optname, optval,
3055 optlen);
3056 set_fs(oldfs);
3057 return err;
3058 }
3059
3060 int kernel_setsockopt(struct socket *sock, int level, int optname,
3061 char *optval, unsigned int optlen)
3062 {
3063 mm_segment_t oldfs = get_fs();
3064 int err;
3065
3066 set_fs(KERNEL_DS);
3067 if (level == SOL_SOCKET)
3068 err = sock_setsockopt(sock, level, optname, optval, optlen);
3069 else
3070 err = sock->ops->setsockopt(sock, level, optname, optval,
3071 optlen);
3072 set_fs(oldfs);
3073 return err;
3074 }
3075
3076 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3077 size_t size, int flags)
3078 {
3079 sock_update_classid(sock->sk);
3080
3081 if (sock->ops->sendpage)
3082 return sock->ops->sendpage(sock, page, offset, size, flags);
3083
3084 return sock_no_sendpage(sock, page, offset, size, flags);
3085 }
3086
3087 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3088 {
3089 mm_segment_t oldfs = get_fs();
3090 int err;
3091
3092 set_fs(KERNEL_DS);
3093 err = sock->ops->ioctl(sock, cmd, arg);
3094 set_fs(oldfs);
3095
3096 return err;
3097 }
3098
3099 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3100 {
3101 return sock->ops->shutdown(sock, how);
3102 }
3103
3104 EXPORT_SYMBOL(sock_create);
3105 EXPORT_SYMBOL(sock_create_kern);
3106 EXPORT_SYMBOL(sock_create_lite);
3107 EXPORT_SYMBOL(sock_map_fd);
3108 EXPORT_SYMBOL(sock_recvmsg);
3109 EXPORT_SYMBOL(sock_register);
3110 EXPORT_SYMBOL(sock_release);
3111 EXPORT_SYMBOL(sock_sendmsg);
3112 EXPORT_SYMBOL(sock_unregister);
3113 EXPORT_SYMBOL(sock_wake_async);
3114 EXPORT_SYMBOL(sockfd_lookup);
3115 EXPORT_SYMBOL(kernel_sendmsg);
3116 EXPORT_SYMBOL(kernel_recvmsg);
3117 EXPORT_SYMBOL(kernel_bind);
3118 EXPORT_SYMBOL(kernel_listen);
3119 EXPORT_SYMBOL(kernel_accept);
3120 EXPORT_SYMBOL(kernel_connect);
3121 EXPORT_SYMBOL(kernel_getsockname);
3122 EXPORT_SYMBOL(kernel_getpeername);
3123 EXPORT_SYMBOL(kernel_getsockopt);
3124 EXPORT_SYMBOL(kernel_setsockopt);
3125 EXPORT_SYMBOL(kernel_sendpage);
3126 EXPORT_SYMBOL(kernel_sock_ioctl);
3127 EXPORT_SYMBOL(kernel_sock_shutdown);