26bb78c
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] /
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222 }
223
224 /**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
230 void tty_free_file(struct file *file)
231 {
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290 #endif
291 return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315 #endif
316 return 0;
317 }
318
319 /**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444 {
445 return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450 {
451 return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462 {
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468 {
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
539 *
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
542 *
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
546 */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
552
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
562 }
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
566 }
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 }
578 read_unlock(&tasklist_lock);
579
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
584 }
585
586 return refs;
587 }
588
589 /**
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
592 *
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
596 *
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
601 *
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldiscs_lock from called functions
607 * termios_rwsem resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
610 */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
618
619 if (!tty)
620 return;
621
622
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
627 }
628 spin_unlock(&redirect_lock);
629
630 tty_lock(tty);
631
632 /* some functions below drop BTM, so we need this bit */
633 set_bit(TTY_HUPPING, &tty->flags);
634
635 /* inuse_filps is protected by the single tty lock,
636 this really needs to change if we want to flush the
637 workqueue with the lock held */
638 check_tty_count(tty, "tty_hangup");
639
640 spin_lock(&tty_files_lock);
641 /* This breaks for file handles being sent over AF_UNIX sockets ? */
642 list_for_each_entry(priv, &tty->tty_files, list) {
643 filp = priv->file;
644 if (filp->f_op->write == redirected_tty_write)
645 cons_filp = filp;
646 if (filp->f_op->write != tty_write)
647 continue;
648 closecount++;
649 __tty_fasync(-1, filp, 0); /* can't block */
650 filp->f_op = &hung_up_tty_fops;
651 }
652 spin_unlock(&tty_files_lock);
653
654 refs = tty_signal_session_leader(tty, exit_session);
655 /* Account for the p->signal references we killed */
656 while (refs--)
657 tty_kref_put(tty);
658
659 /*
660 * it drops BTM and thus races with reopen
661 * we protect the race by TTY_HUPPING
662 */
663 tty_ldisc_hangup(tty);
664
665 spin_lock_irq(&tty->ctrl_lock);
666 clear_bit(TTY_THROTTLED, &tty->flags);
667 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
668 put_pid(tty->session);
669 put_pid(tty->pgrp);
670 tty->session = NULL;
671 tty->pgrp = NULL;
672 tty->ctrl_status = 0;
673 spin_unlock_irq(&tty->ctrl_lock);
674
675 /*
676 * If one of the devices matches a console pointer, we
677 * cannot just call hangup() because that will cause
678 * tty->count and state->count to go out of sync.
679 * So we just call close() the right number of times.
680 */
681 if (cons_filp) {
682 if (tty->ops->close)
683 for (n = 0; n < closecount; n++)
684 tty->ops->close(tty, cons_filp);
685 } else if (tty->ops->hangup)
686 (tty->ops->hangup)(tty);
687 /*
688 * We don't want to have driver/ldisc interactions beyond
689 * the ones we did here. The driver layer expects no
690 * calls after ->hangup() from the ldisc side. However we
691 * can't yet guarantee all that.
692 */
693 set_bit(TTY_HUPPED, &tty->flags);
694 clear_bit(TTY_HUPPING, &tty->flags);
695
696 tty_unlock(tty);
697
698 if (f)
699 fput(f);
700 }
701
702 static void do_tty_hangup(struct work_struct *work)
703 {
704 struct tty_struct *tty =
705 container_of(work, struct tty_struct, hangup_work);
706
707 __tty_hangup(tty, 0);
708 }
709
710 /**
711 * tty_hangup - trigger a hangup event
712 * @tty: tty to hangup
713 *
714 * A carrier loss (virtual or otherwise) has occurred on this like
715 * schedule a hangup sequence to run after this event.
716 */
717
718 void tty_hangup(struct tty_struct *tty)
719 {
720 #ifdef TTY_DEBUG_HANGUP
721 char buf[64];
722 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
723 #endif
724 schedule_work(&tty->hangup_work);
725 }
726
727 EXPORT_SYMBOL(tty_hangup);
728
729 /**
730 * tty_vhangup - process vhangup
731 * @tty: tty to hangup
732 *
733 * The user has asked via system call for the terminal to be hung up.
734 * We do this synchronously so that when the syscall returns the process
735 * is complete. That guarantee is necessary for security reasons.
736 */
737
738 void tty_vhangup(struct tty_struct *tty)
739 {
740 #ifdef TTY_DEBUG_HANGUP
741 char buf[64];
742
743 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
744 #endif
745 __tty_hangup(tty, 0);
746 }
747
748 EXPORT_SYMBOL(tty_vhangup);
749
750
751 /**
752 * tty_vhangup_self - process vhangup for own ctty
753 *
754 * Perform a vhangup on the current controlling tty
755 */
756
757 void tty_vhangup_self(void)
758 {
759 struct tty_struct *tty;
760
761 tty = get_current_tty();
762 if (tty) {
763 tty_vhangup(tty);
764 tty_kref_put(tty);
765 }
766 }
767
768 /**
769 * tty_vhangup_session - hangup session leader exit
770 * @tty: tty to hangup
771 *
772 * The session leader is exiting and hanging up its controlling terminal.
773 * Every process in the foreground process group is signalled SIGHUP.
774 *
775 * We do this synchronously so that when the syscall returns the process
776 * is complete. That guarantee is necessary for security reasons.
777 */
778
779 static void tty_vhangup_session(struct tty_struct *tty)
780 {
781 #ifdef TTY_DEBUG_HANGUP
782 char buf[64];
783
784 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
785 #endif
786 __tty_hangup(tty, 1);
787 }
788
789 /**
790 * tty_hung_up_p - was tty hung up
791 * @filp: file pointer of tty
792 *
793 * Return true if the tty has been subject to a vhangup or a carrier
794 * loss
795 */
796
797 int tty_hung_up_p(struct file *filp)
798 {
799 return (filp->f_op == &hung_up_tty_fops);
800 }
801
802 EXPORT_SYMBOL(tty_hung_up_p);
803
804 static void session_clear_tty(struct pid *session)
805 {
806 struct task_struct *p;
807 do_each_pid_task(session, PIDTYPE_SID, p) {
808 proc_clear_tty(p);
809 } while_each_pid_task(session, PIDTYPE_SID, p);
810 }
811
812 /**
813 * disassociate_ctty - disconnect controlling tty
814 * @on_exit: true if exiting so need to "hang up" the session
815 *
816 * This function is typically called only by the session leader, when
817 * it wants to disassociate itself from its controlling tty.
818 *
819 * It performs the following functions:
820 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
821 * (2) Clears the tty from being controlling the session
822 * (3) Clears the controlling tty for all processes in the
823 * session group.
824 *
825 * The argument on_exit is set to 1 if called when a process is
826 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
827 *
828 * Locking:
829 * BTM is taken for hysterical raisins, and held when
830 * called from no_tty().
831 * tty_mutex is taken to protect tty
832 * ->siglock is taken to protect ->signal/->sighand
833 * tasklist_lock is taken to walk process list for sessions
834 * ->siglock is taken to protect ->signal/->sighand
835 */
836
837 void disassociate_ctty(int on_exit)
838 {
839 struct tty_struct *tty;
840
841 if (!current->signal->leader)
842 return;
843
844 tty = get_current_tty();
845 if (tty) {
846 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
847 tty_vhangup_session(tty);
848 } else {
849 struct pid *tty_pgrp = tty_get_pgrp(tty);
850 if (tty_pgrp) {
851 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
852 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
853 put_pid(tty_pgrp);
854 }
855 }
856 tty_kref_put(tty);
857
858 } else if (on_exit) {
859 struct pid *old_pgrp;
860 spin_lock_irq(&current->sighand->siglock);
861 old_pgrp = current->signal->tty_old_pgrp;
862 current->signal->tty_old_pgrp = NULL;
863 spin_unlock_irq(&current->sighand->siglock);
864 if (old_pgrp) {
865 kill_pgrp(old_pgrp, SIGHUP, on_exit);
866 kill_pgrp(old_pgrp, SIGCONT, on_exit);
867 put_pid(old_pgrp);
868 }
869 return;
870 }
871
872 spin_lock_irq(&current->sighand->siglock);
873 put_pid(current->signal->tty_old_pgrp);
874 current->signal->tty_old_pgrp = NULL;
875 spin_unlock_irq(&current->sighand->siglock);
876
877 tty = get_current_tty();
878 if (tty) {
879 unsigned long flags;
880 spin_lock_irqsave(&tty->ctrl_lock, flags);
881 put_pid(tty->session);
882 put_pid(tty->pgrp);
883 tty->session = NULL;
884 tty->pgrp = NULL;
885 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
886 tty_kref_put(tty);
887 } else {
888 #ifdef TTY_DEBUG_HANGUP
889 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
890 " = NULL", tty);
891 #endif
892 }
893
894 /* Now clear signal->tty under the lock */
895 read_lock(&tasklist_lock);
896 session_clear_tty(task_session(current));
897 read_unlock(&tasklist_lock);
898 }
899
900 /**
901 *
902 * no_tty - Ensure the current process does not have a controlling tty
903 */
904 void no_tty(void)
905 {
906 /* FIXME: Review locking here. The tty_lock never covered any race
907 between a new association and proc_clear_tty but possible we need
908 to protect against this anyway */
909 struct task_struct *tsk = current;
910 disassociate_ctty(0);
911 proc_clear_tty(tsk);
912 }
913
914
915 /**
916 * stop_tty - propagate flow control
917 * @tty: tty to stop
918 *
919 * Perform flow control to the driver. For PTY/TTY pairs we
920 * must also propagate the TIOCKPKT status. May be called
921 * on an already stopped device and will not re-call the driver
922 * method.
923 *
924 * This functionality is used by both the line disciplines for
925 * halting incoming flow and by the driver. It may therefore be
926 * called from any context, may be under the tty atomic_write_lock
927 * but not always.
928 *
929 * Locking:
930 * Uses the tty control lock internally
931 */
932
933 void stop_tty(struct tty_struct *tty)
934 {
935 unsigned long flags;
936 spin_lock_irqsave(&tty->ctrl_lock, flags);
937 if (tty->stopped) {
938 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
939 return;
940 }
941 tty->stopped = 1;
942 if (tty->link && tty->link->packet) {
943 tty->ctrl_status &= ~TIOCPKT_START;
944 tty->ctrl_status |= TIOCPKT_STOP;
945 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
946 }
947 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
948 if (tty->ops->stop)
949 (tty->ops->stop)(tty);
950 }
951
952 EXPORT_SYMBOL(stop_tty);
953
954 /**
955 * start_tty - propagate flow control
956 * @tty: tty to start
957 *
958 * Start a tty that has been stopped if at all possible. Perform
959 * any necessary wakeups and propagate the TIOCPKT status. If this
960 * is the tty was previous stopped and is being started then the
961 * driver start method is invoked and the line discipline woken.
962 *
963 * Locking:
964 * ctrl_lock
965 */
966
967 void start_tty(struct tty_struct *tty)
968 {
969 unsigned long flags;
970 spin_lock_irqsave(&tty->ctrl_lock, flags);
971 if (!tty->stopped || tty->flow_stopped) {
972 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
973 return;
974 }
975 tty->stopped = 0;
976 if (tty->link && tty->link->packet) {
977 tty->ctrl_status &= ~TIOCPKT_STOP;
978 tty->ctrl_status |= TIOCPKT_START;
979 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
980 }
981 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
982 if (tty->ops->start)
983 (tty->ops->start)(tty);
984 /* If we have a running line discipline it may need kicking */
985 tty_wakeup(tty);
986 }
987
988 EXPORT_SYMBOL(start_tty);
989
990 /* We limit tty time update visibility to every 8 seconds or so. */
991 static void tty_update_time(struct timespec *time)
992 {
993 unsigned long sec = get_seconds() & ~7;
994 if ((long)(sec - time->tv_sec) > 0)
995 time->tv_sec = sec;
996 }
997
998 /**
999 * tty_read - read method for tty device files
1000 * @file: pointer to tty file
1001 * @buf: user buffer
1002 * @count: size of user buffer
1003 * @ppos: unused
1004 *
1005 * Perform the read system call function on this terminal device. Checks
1006 * for hung up devices before calling the line discipline method.
1007 *
1008 * Locking:
1009 * Locks the line discipline internally while needed. Multiple
1010 * read calls may be outstanding in parallel.
1011 */
1012
1013 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1014 loff_t *ppos)
1015 {
1016 int i;
1017 struct inode *inode = file_inode(file);
1018 struct tty_struct *tty = file_tty(file);
1019 struct tty_ldisc *ld;
1020
1021 if (tty_paranoia_check(tty, inode, "tty_read"))
1022 return -EIO;
1023 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1024 return -EIO;
1025
1026 /* We want to wait for the line discipline to sort out in this
1027 situation */
1028 ld = tty_ldisc_ref_wait(tty);
1029 if (ld->ops->read)
1030 i = (ld->ops->read)(tty, file, buf, count);
1031 else
1032 i = -EIO;
1033 tty_ldisc_deref(ld);
1034
1035 if (i > 0)
1036 tty_update_time(&inode->i_atime);
1037
1038 return i;
1039 }
1040
1041 void tty_write_unlock(struct tty_struct *tty)
1042 __releases(&tty->atomic_write_lock)
1043 {
1044 mutex_unlock(&tty->atomic_write_lock);
1045 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1046 }
1047
1048 int tty_write_lock(struct tty_struct *tty, int ndelay)
1049 __acquires(&tty->atomic_write_lock)
1050 {
1051 if (!mutex_trylock(&tty->atomic_write_lock)) {
1052 if (ndelay)
1053 return -EAGAIN;
1054 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1055 return -ERESTARTSYS;
1056 }
1057 return 0;
1058 }
1059
1060 /*
1061 * Split writes up in sane blocksizes to avoid
1062 * denial-of-service type attacks
1063 */
1064 static inline ssize_t do_tty_write(
1065 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1066 struct tty_struct *tty,
1067 struct file *file,
1068 const char __user *buf,
1069 size_t count)
1070 {
1071 ssize_t ret, written = 0;
1072 unsigned int chunk;
1073
1074 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1075 if (ret < 0)
1076 return ret;
1077
1078 /*
1079 * We chunk up writes into a temporary buffer. This
1080 * simplifies low-level drivers immensely, since they
1081 * don't have locking issues and user mode accesses.
1082 *
1083 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1084 * big chunk-size..
1085 *
1086 * The default chunk-size is 2kB, because the NTTY
1087 * layer has problems with bigger chunks. It will
1088 * claim to be able to handle more characters than
1089 * it actually does.
1090 *
1091 * FIXME: This can probably go away now except that 64K chunks
1092 * are too likely to fail unless switched to vmalloc...
1093 */
1094 chunk = 2048;
1095 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1096 chunk = 65536;
1097 if (count < chunk)
1098 chunk = count;
1099
1100 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1101 if (tty->write_cnt < chunk) {
1102 unsigned char *buf_chunk;
1103
1104 if (chunk < 1024)
1105 chunk = 1024;
1106
1107 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1108 if (!buf_chunk) {
1109 ret = -ENOMEM;
1110 goto out;
1111 }
1112 kfree(tty->write_buf);
1113 tty->write_cnt = chunk;
1114 tty->write_buf = buf_chunk;
1115 }
1116
1117 /* Do the write .. */
1118 for (;;) {
1119 size_t size = count;
1120 if (size > chunk)
1121 size = chunk;
1122 ret = -EFAULT;
1123 if (copy_from_user(tty->write_buf, buf, size))
1124 break;
1125 ret = write(tty, file, tty->write_buf, size);
1126 if (ret <= 0)
1127 break;
1128 written += ret;
1129 buf += ret;
1130 count -= ret;
1131 if (!count)
1132 break;
1133 ret = -ERESTARTSYS;
1134 if (signal_pending(current))
1135 break;
1136 cond_resched();
1137 }
1138 if (written) {
1139 tty_update_time(&file_inode(file)->i_mtime);
1140 ret = written;
1141 }
1142 out:
1143 tty_write_unlock(tty);
1144 return ret;
1145 }
1146
1147 /**
1148 * tty_write_message - write a message to a certain tty, not just the console.
1149 * @tty: the destination tty_struct
1150 * @msg: the message to write
1151 *
1152 * This is used for messages that need to be redirected to a specific tty.
1153 * We don't put it into the syslog queue right now maybe in the future if
1154 * really needed.
1155 *
1156 * We must still hold the BTM and test the CLOSING flag for the moment.
1157 */
1158
1159 void tty_write_message(struct tty_struct *tty, char *msg)
1160 {
1161 if (tty) {
1162 mutex_lock(&tty->atomic_write_lock);
1163 tty_lock(tty);
1164 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1165 tty_unlock(tty);
1166 tty->ops->write(tty, msg, strlen(msg));
1167 } else
1168 tty_unlock(tty);
1169 tty_write_unlock(tty);
1170 }
1171 return;
1172 }
1173
1174
1175 /**
1176 * tty_write - write method for tty device file
1177 * @file: tty file pointer
1178 * @buf: user data to write
1179 * @count: bytes to write
1180 * @ppos: unused
1181 *
1182 * Write data to a tty device via the line discipline.
1183 *
1184 * Locking:
1185 * Locks the line discipline as required
1186 * Writes to the tty driver are serialized by the atomic_write_lock
1187 * and are then processed in chunks to the device. The line discipline
1188 * write method will not be invoked in parallel for each device.
1189 */
1190
1191 static ssize_t tty_write(struct file *file, const char __user *buf,
1192 size_t count, loff_t *ppos)
1193 {
1194 struct tty_struct *tty = file_tty(file);
1195 struct tty_ldisc *ld;
1196 ssize_t ret;
1197
1198 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1199 return -EIO;
1200 if (!tty || !tty->ops->write ||
1201 (test_bit(TTY_IO_ERROR, &tty->flags)))
1202 return -EIO;
1203 /* Short term debug to catch buggy drivers */
1204 if (tty->ops->write_room == NULL)
1205 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1206 tty->driver->name);
1207 ld = tty_ldisc_ref_wait(tty);
1208 if (!ld->ops->write)
1209 ret = -EIO;
1210 else
1211 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1212 tty_ldisc_deref(ld);
1213 return ret;
1214 }
1215
1216 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1217 size_t count, loff_t *ppos)
1218 {
1219 struct file *p = NULL;
1220
1221 spin_lock(&redirect_lock);
1222 if (redirect)
1223 p = get_file(redirect);
1224 spin_unlock(&redirect_lock);
1225
1226 if (p) {
1227 ssize_t res;
1228 res = vfs_write(p, buf, count, &p->f_pos);
1229 fput(p);
1230 return res;
1231 }
1232 return tty_write(file, buf, count, ppos);
1233 }
1234
1235 static char ptychar[] = "pqrstuvwxyzabcde";
1236
1237 /**
1238 * pty_line_name - generate name for a pty
1239 * @driver: the tty driver in use
1240 * @index: the minor number
1241 * @p: output buffer of at least 6 bytes
1242 *
1243 * Generate a name from a driver reference and write it to the output
1244 * buffer.
1245 *
1246 * Locking: None
1247 */
1248 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1249 {
1250 int i = index + driver->name_base;
1251 /* ->name is initialized to "ttyp", but "tty" is expected */
1252 sprintf(p, "%s%c%x",
1253 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1254 ptychar[i >> 4 & 0xf], i & 0xf);
1255 }
1256
1257 /**
1258 * tty_line_name - generate name for a tty
1259 * @driver: the tty driver in use
1260 * @index: the minor number
1261 * @p: output buffer of at least 7 bytes
1262 *
1263 * Generate a name from a driver reference and write it to the output
1264 * buffer.
1265 *
1266 * Locking: None
1267 */
1268 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1269 {
1270 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1271 strcpy(p, driver->name);
1272 else
1273 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1274 }
1275
1276 /**
1277 * tty_driver_lookup_tty() - find an existing tty, if any
1278 * @driver: the driver for the tty
1279 * @idx: the minor number
1280 *
1281 * Return the tty, if found or ERR_PTR() otherwise.
1282 *
1283 * Locking: tty_mutex must be held. If tty is found, the mutex must
1284 * be held until the 'fast-open' is also done. Will change once we
1285 * have refcounting in the driver and per driver locking
1286 */
1287 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1288 struct inode *inode, int idx)
1289 {
1290 if (driver->ops->lookup)
1291 return driver->ops->lookup(driver, inode, idx);
1292
1293 return driver->ttys[idx];
1294 }
1295
1296 /**
1297 * tty_init_termios - helper for termios setup
1298 * @tty: the tty to set up
1299 *
1300 * Initialise the termios structures for this tty. Thus runs under
1301 * the tty_mutex currently so we can be relaxed about ordering.
1302 */
1303
1304 int tty_init_termios(struct tty_struct *tty)
1305 {
1306 struct ktermios *tp;
1307 int idx = tty->index;
1308
1309 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1310 tty->termios = tty->driver->init_termios;
1311 else {
1312 /* Check for lazy saved data */
1313 tp = tty->driver->termios[idx];
1314 if (tp != NULL)
1315 tty->termios = *tp;
1316 else
1317 tty->termios = tty->driver->init_termios;
1318 }
1319 /* Compatibility until drivers always set this */
1320 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1321 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1322 return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(tty_init_termios);
1325
1326 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1327 {
1328 int ret = tty_init_termios(tty);
1329 if (ret)
1330 return ret;
1331
1332 tty_driver_kref_get(driver);
1333 tty->count++;
1334 driver->ttys[tty->index] = tty;
1335 return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(tty_standard_install);
1338
1339 /**
1340 * tty_driver_install_tty() - install a tty entry in the driver
1341 * @driver: the driver for the tty
1342 * @tty: the tty
1343 *
1344 * Install a tty object into the driver tables. The tty->index field
1345 * will be set by the time this is called. This method is responsible
1346 * for ensuring any need additional structures are allocated and
1347 * configured.
1348 *
1349 * Locking: tty_mutex for now
1350 */
1351 static int tty_driver_install_tty(struct tty_driver *driver,
1352 struct tty_struct *tty)
1353 {
1354 return driver->ops->install ? driver->ops->install(driver, tty) :
1355 tty_standard_install(driver, tty);
1356 }
1357
1358 /**
1359 * tty_driver_remove_tty() - remove a tty from the driver tables
1360 * @driver: the driver for the tty
1361 * @idx: the minor number
1362 *
1363 * Remvoe a tty object from the driver tables. The tty->index field
1364 * will be set by the time this is called.
1365 *
1366 * Locking: tty_mutex for now
1367 */
1368 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1369 {
1370 if (driver->ops->remove)
1371 driver->ops->remove(driver, tty);
1372 else
1373 driver->ttys[tty->index] = NULL;
1374 }
1375
1376 /*
1377 * tty_reopen() - fast re-open of an open tty
1378 * @tty - the tty to open
1379 *
1380 * Return 0 on success, -errno on error.
1381 *
1382 * Locking: tty_mutex must be held from the time the tty was found
1383 * till this open completes.
1384 */
1385 static int tty_reopen(struct tty_struct *tty)
1386 {
1387 struct tty_driver *driver = tty->driver;
1388
1389 if (test_bit(TTY_CLOSING, &tty->flags) ||
1390 test_bit(TTY_HUPPING, &tty->flags))
1391 return -EIO;
1392
1393 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1394 driver->subtype == PTY_TYPE_MASTER) {
1395 /*
1396 * special case for PTY masters: only one open permitted,
1397 * and the slave side open count is incremented as well.
1398 */
1399 if (tty->count)
1400 return -EIO;
1401
1402 tty->link->count++;
1403 }
1404 tty->count++;
1405
1406 WARN_ON(!tty->ldisc);
1407
1408 return 0;
1409 }
1410
1411 /**
1412 * tty_init_dev - initialise a tty device
1413 * @driver: tty driver we are opening a device on
1414 * @idx: device index
1415 * @ret_tty: returned tty structure
1416 *
1417 * Prepare a tty device. This may not be a "new" clean device but
1418 * could also be an active device. The pty drivers require special
1419 * handling because of this.
1420 *
1421 * Locking:
1422 * The function is called under the tty_mutex, which
1423 * protects us from the tty struct or driver itself going away.
1424 *
1425 * On exit the tty device has the line discipline attached and
1426 * a reference count of 1. If a pair was created for pty/tty use
1427 * and the other was a pty master then it too has a reference count of 1.
1428 *
1429 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1430 * failed open. The new code protects the open with a mutex, so it's
1431 * really quite straightforward. The mutex locking can probably be
1432 * relaxed for the (most common) case of reopening a tty.
1433 */
1434
1435 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1436 {
1437 struct tty_struct *tty;
1438 int retval;
1439
1440 /*
1441 * First time open is complex, especially for PTY devices.
1442 * This code guarantees that either everything succeeds and the
1443 * TTY is ready for operation, or else the table slots are vacated
1444 * and the allocated memory released. (Except that the termios
1445 * and locked termios may be retained.)
1446 */
1447
1448 if (!try_module_get(driver->owner))
1449 return ERR_PTR(-ENODEV);
1450
1451 tty = alloc_tty_struct();
1452 if (!tty) {
1453 retval = -ENOMEM;
1454 goto err_module_put;
1455 }
1456 initialize_tty_struct(tty, driver, idx);
1457
1458 tty_lock(tty);
1459 retval = tty_driver_install_tty(driver, tty);
1460 if (retval < 0)
1461 goto err_deinit_tty;
1462
1463 if (!tty->port)
1464 tty->port = driver->ports[idx];
1465
1466 WARN_RATELIMIT(!tty->port,
1467 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1468 __func__, tty->driver->name);
1469
1470 tty->port->itty = tty;
1471
1472 /*
1473 * Structures all installed ... call the ldisc open routines.
1474 * If we fail here just call release_tty to clean up. No need
1475 * to decrement the use counts, as release_tty doesn't care.
1476 */
1477 retval = tty_ldisc_setup(tty, tty->link);
1478 if (retval)
1479 goto err_release_tty;
1480 /* Return the tty locked so that it cannot vanish under the caller */
1481 return tty;
1482
1483 err_deinit_tty:
1484 tty_unlock(tty);
1485 deinitialize_tty_struct(tty);
1486 free_tty_struct(tty);
1487 err_module_put:
1488 module_put(driver->owner);
1489 return ERR_PTR(retval);
1490
1491 /* call the tty release_tty routine to clean out this slot */
1492 err_release_tty:
1493 tty_unlock(tty);
1494 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1495 "clearing slot %d\n", idx);
1496 release_tty(tty, idx);
1497 return ERR_PTR(retval);
1498 }
1499
1500 void tty_free_termios(struct tty_struct *tty)
1501 {
1502 struct ktermios *tp;
1503 int idx = tty->index;
1504
1505 /* If the port is going to reset then it has no termios to save */
1506 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1507 return;
1508
1509 /* Stash the termios data */
1510 tp = tty->driver->termios[idx];
1511 if (tp == NULL) {
1512 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1513 if (tp == NULL) {
1514 pr_warn("tty: no memory to save termios state.\n");
1515 return;
1516 }
1517 tty->driver->termios[idx] = tp;
1518 }
1519 *tp = tty->termios;
1520 }
1521 EXPORT_SYMBOL(tty_free_termios);
1522
1523 /**
1524 * tty_flush_works - flush all works of a tty
1525 * @tty: tty device to flush works for
1526 *
1527 * Sync flush all works belonging to @tty.
1528 */
1529 static void tty_flush_works(struct tty_struct *tty)
1530 {
1531 flush_work(&tty->SAK_work);
1532 flush_work(&tty->hangup_work);
1533 }
1534
1535 /**
1536 * release_one_tty - release tty structure memory
1537 * @kref: kref of tty we are obliterating
1538 *
1539 * Releases memory associated with a tty structure, and clears out the
1540 * driver table slots. This function is called when a device is no longer
1541 * in use. It also gets called when setup of a device fails.
1542 *
1543 * Locking:
1544 * takes the file list lock internally when working on the list
1545 * of ttys that the driver keeps.
1546 *
1547 * This method gets called from a work queue so that the driver private
1548 * cleanup ops can sleep (needed for USB at least)
1549 */
1550 static void release_one_tty(struct work_struct *work)
1551 {
1552 struct tty_struct *tty =
1553 container_of(work, struct tty_struct, hangup_work);
1554 struct tty_driver *driver = tty->driver;
1555
1556 if (tty->ops->cleanup)
1557 tty->ops->cleanup(tty);
1558
1559 tty->magic = 0;
1560 tty_driver_kref_put(driver);
1561 module_put(driver->owner);
1562
1563 spin_lock(&tty_files_lock);
1564 list_del_init(&tty->tty_files);
1565 spin_unlock(&tty_files_lock);
1566
1567 put_pid(tty->pgrp);
1568 put_pid(tty->session);
1569 free_tty_struct(tty);
1570 }
1571
1572 static void queue_release_one_tty(struct kref *kref)
1573 {
1574 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1575
1576 /* The hangup queue is now free so we can reuse it rather than
1577 waste a chunk of memory for each port */
1578 INIT_WORK(&tty->hangup_work, release_one_tty);
1579 schedule_work(&tty->hangup_work);
1580 }
1581
1582 /**
1583 * tty_kref_put - release a tty kref
1584 * @tty: tty device
1585 *
1586 * Release a reference to a tty device and if need be let the kref
1587 * layer destruct the object for us
1588 */
1589
1590 void tty_kref_put(struct tty_struct *tty)
1591 {
1592 if (tty)
1593 kref_put(&tty->kref, queue_release_one_tty);
1594 }
1595 EXPORT_SYMBOL(tty_kref_put);
1596
1597 /**
1598 * release_tty - release tty structure memory
1599 *
1600 * Release both @tty and a possible linked partner (think pty pair),
1601 * and decrement the refcount of the backing module.
1602 *
1603 * Locking:
1604 * tty_mutex
1605 * takes the file list lock internally when working on the list
1606 * of ttys that the driver keeps.
1607 *
1608 */
1609 static void release_tty(struct tty_struct *tty, int idx)
1610 {
1611 /* This should always be true but check for the moment */
1612 WARN_ON(tty->index != idx);
1613 WARN_ON(!mutex_is_locked(&tty_mutex));
1614 if (tty->ops->shutdown)
1615 tty->ops->shutdown(tty);
1616 tty_free_termios(tty);
1617 tty_driver_remove_tty(tty->driver, tty);
1618 tty->port->itty = NULL;
1619 if (tty->link)
1620 tty->link->port->itty = NULL;
1621 cancel_work_sync(&tty->port->buf.work);
1622
1623 if (tty->link)
1624 tty_kref_put(tty->link);
1625 tty_kref_put(tty);
1626 }
1627
1628 /**
1629 * tty_release_checks - check a tty before real release
1630 * @tty: tty to check
1631 * @o_tty: link of @tty (if any)
1632 * @idx: index of the tty
1633 *
1634 * Performs some paranoid checking before true release of the @tty.
1635 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1636 */
1637 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1638 int idx)
1639 {
1640 #ifdef TTY_PARANOIA_CHECK
1641 if (idx < 0 || idx >= tty->driver->num) {
1642 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1643 __func__, tty->name);
1644 return -1;
1645 }
1646
1647 /* not much to check for devpts */
1648 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1649 return 0;
1650
1651 if (tty != tty->driver->ttys[idx]) {
1652 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1653 __func__, idx, tty->name);
1654 return -1;
1655 }
1656 if (tty->driver->other) {
1657 if (o_tty != tty->driver->other->ttys[idx]) {
1658 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1659 __func__, idx, tty->name);
1660 return -1;
1661 }
1662 if (o_tty->link != tty) {
1663 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1664 return -1;
1665 }
1666 }
1667 #endif
1668 return 0;
1669 }
1670
1671 /**
1672 * tty_release - vfs callback for close
1673 * @inode: inode of tty
1674 * @filp: file pointer for handle to tty
1675 *
1676 * Called the last time each file handle is closed that references
1677 * this tty. There may however be several such references.
1678 *
1679 * Locking:
1680 * Takes bkl. See tty_release_dev
1681 *
1682 * Even releasing the tty structures is a tricky business.. We have
1683 * to be very careful that the structures are all released at the
1684 * same time, as interrupts might otherwise get the wrong pointers.
1685 *
1686 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1687 * lead to double frees or releasing memory still in use.
1688 */
1689
1690 int tty_release(struct inode *inode, struct file *filp)
1691 {
1692 struct tty_struct *tty = file_tty(filp);
1693 struct tty_struct *o_tty;
1694 int pty_master, tty_closing, o_tty_closing, do_sleep;
1695 int idx;
1696 char buf[64];
1697
1698 if (tty_paranoia_check(tty, inode, __func__))
1699 return 0;
1700
1701 tty_lock(tty);
1702 check_tty_count(tty, __func__);
1703
1704 __tty_fasync(-1, filp, 0);
1705
1706 idx = tty->index;
1707 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1708 tty->driver->subtype == PTY_TYPE_MASTER);
1709 /* Review: parallel close */
1710 o_tty = tty->link;
1711
1712 if (tty_release_checks(tty, o_tty, idx)) {
1713 tty_unlock(tty);
1714 return 0;
1715 }
1716
1717 #ifdef TTY_DEBUG_HANGUP
1718 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1719 tty_name(tty, buf), tty->count);
1720 #endif
1721
1722 if (tty->ops->close)
1723 tty->ops->close(tty, filp);
1724
1725 tty_unlock(tty);
1726 /*
1727 * Sanity check: if tty->count is going to zero, there shouldn't be
1728 * any waiters on tty->read_wait or tty->write_wait. We test the
1729 * wait queues and kick everyone out _before_ actually starting to
1730 * close. This ensures that we won't block while releasing the tty
1731 * structure.
1732 *
1733 * The test for the o_tty closing is necessary, since the master and
1734 * slave sides may close in any order. If the slave side closes out
1735 * first, its count will be one, since the master side holds an open.
1736 * Thus this test wouldn't be triggered at the time the slave closes,
1737 * so we do it now.
1738 *
1739 * Note that it's possible for the tty to be opened again while we're
1740 * flushing out waiters. By recalculating the closing flags before
1741 * each iteration we avoid any problems.
1742 */
1743 while (1) {
1744 /* Guard against races with tty->count changes elsewhere and
1745 opens on /dev/tty */
1746
1747 mutex_lock(&tty_mutex);
1748 tty_lock_pair(tty, o_tty);
1749 tty_closing = tty->count <= 1;
1750 o_tty_closing = o_tty &&
1751 (o_tty->count <= (pty_master ? 1 : 0));
1752 do_sleep = 0;
1753
1754 if (tty_closing) {
1755 if (waitqueue_active(&tty->read_wait)) {
1756 wake_up_poll(&tty->read_wait, POLLIN);
1757 do_sleep++;
1758 }
1759 if (waitqueue_active(&tty->write_wait)) {
1760 wake_up_poll(&tty->write_wait, POLLOUT);
1761 do_sleep++;
1762 }
1763 }
1764 if (o_tty_closing) {
1765 if (waitqueue_active(&o_tty->read_wait)) {
1766 wake_up_poll(&o_tty->read_wait, POLLIN);
1767 do_sleep++;
1768 }
1769 if (waitqueue_active(&o_tty->write_wait)) {
1770 wake_up_poll(&o_tty->write_wait, POLLOUT);
1771 do_sleep++;
1772 }
1773 }
1774 if (!do_sleep)
1775 break;
1776
1777 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1778 __func__, tty_name(tty, buf));
1779 tty_unlock_pair(tty, o_tty);
1780 mutex_unlock(&tty_mutex);
1781 schedule();
1782 }
1783
1784 /*
1785 * The closing flags are now consistent with the open counts on
1786 * both sides, and we've completed the last operation that could
1787 * block, so it's safe to proceed with closing.
1788 *
1789 * We must *not* drop the tty_mutex until we ensure that a further
1790 * entry into tty_open can not pick up this tty.
1791 */
1792 if (pty_master) {
1793 if (--o_tty->count < 0) {
1794 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1795 __func__, o_tty->count, tty_name(o_tty, buf));
1796 o_tty->count = 0;
1797 }
1798 }
1799 if (--tty->count < 0) {
1800 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1801 __func__, tty->count, tty_name(tty, buf));
1802 tty->count = 0;
1803 }
1804
1805 /*
1806 * We've decremented tty->count, so we need to remove this file
1807 * descriptor off the tty->tty_files list; this serves two
1808 * purposes:
1809 * - check_tty_count sees the correct number of file descriptors
1810 * associated with this tty.
1811 * - do_tty_hangup no longer sees this file descriptor as
1812 * something that needs to be handled for hangups.
1813 */
1814 tty_del_file(filp);
1815
1816 /*
1817 * Perform some housekeeping before deciding whether to return.
1818 *
1819 * Set the TTY_CLOSING flag if this was the last open. In the
1820 * case of a pty we may have to wait around for the other side
1821 * to close, and TTY_CLOSING makes sure we can't be reopened.
1822 */
1823 if (tty_closing)
1824 set_bit(TTY_CLOSING, &tty->flags);
1825 if (o_tty_closing)
1826 set_bit(TTY_CLOSING, &o_tty->flags);
1827
1828 /*
1829 * If _either_ side is closing, make sure there aren't any
1830 * processes that still think tty or o_tty is their controlling
1831 * tty.
1832 */
1833 if (tty_closing || o_tty_closing) {
1834 read_lock(&tasklist_lock);
1835 session_clear_tty(tty->session);
1836 if (o_tty)
1837 session_clear_tty(o_tty->session);
1838 read_unlock(&tasklist_lock);
1839 }
1840
1841 mutex_unlock(&tty_mutex);
1842 tty_unlock_pair(tty, o_tty);
1843 /* At this point the TTY_CLOSING flag should ensure a dead tty
1844 cannot be re-opened by a racing opener */
1845
1846 /* check whether both sides are closing ... */
1847 if (!tty_closing || (o_tty && !o_tty_closing))
1848 return 0;
1849
1850 #ifdef TTY_DEBUG_HANGUP
1851 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1852 #endif
1853 /*
1854 * Ask the line discipline code to release its structures
1855 */
1856 tty_ldisc_release(tty, o_tty);
1857
1858 /* Wait for pending work before tty destruction commmences */
1859 tty_flush_works(tty);
1860 if (o_tty)
1861 tty_flush_works(o_tty);
1862
1863 #ifdef TTY_DEBUG_HANGUP
1864 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1865 #endif
1866 /*
1867 * The release_tty function takes care of the details of clearing
1868 * the slots and preserving the termios structure. The tty_unlock_pair
1869 * should be safe as we keep a kref while the tty is locked (so the
1870 * unlock never unlocks a freed tty).
1871 */
1872 mutex_lock(&tty_mutex);
1873 release_tty(tty, idx);
1874 mutex_unlock(&tty_mutex);
1875
1876 return 0;
1877 }
1878
1879 /**
1880 * tty_open_current_tty - get tty of current task for open
1881 * @device: device number
1882 * @filp: file pointer to tty
1883 * @return: tty of the current task iff @device is /dev/tty
1884 *
1885 * We cannot return driver and index like for the other nodes because
1886 * devpts will not work then. It expects inodes to be from devpts FS.
1887 *
1888 * We need to move to returning a refcounted object from all the lookup
1889 * paths including this one.
1890 */
1891 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1892 {
1893 struct tty_struct *tty;
1894
1895 if (device != MKDEV(TTYAUX_MAJOR, 0))
1896 return NULL;
1897
1898 tty = get_current_tty();
1899 if (!tty)
1900 return ERR_PTR(-ENXIO);
1901
1902 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1903 /* noctty = 1; */
1904 tty_kref_put(tty);
1905 /* FIXME: we put a reference and return a TTY! */
1906 /* This is only safe because the caller holds tty_mutex */
1907 return tty;
1908 }
1909
1910 /**
1911 * tty_lookup_driver - lookup a tty driver for a given device file
1912 * @device: device number
1913 * @filp: file pointer to tty
1914 * @noctty: set if the device should not become a controlling tty
1915 * @index: index for the device in the @return driver
1916 * @return: driver for this inode (with increased refcount)
1917 *
1918 * If @return is not erroneous, the caller is responsible to decrement the
1919 * refcount by tty_driver_kref_put.
1920 *
1921 * Locking: tty_mutex protects get_tty_driver
1922 */
1923 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1924 int *noctty, int *index)
1925 {
1926 struct tty_driver *driver;
1927
1928 switch (device) {
1929 #ifdef CONFIG_VT
1930 case MKDEV(TTY_MAJOR, 0): {
1931 extern struct tty_driver *console_driver;
1932 driver = tty_driver_kref_get(console_driver);
1933 *index = fg_console;
1934 *noctty = 1;
1935 break;
1936 }
1937 #endif
1938 case MKDEV(TTYAUX_MAJOR, 1): {
1939 struct tty_driver *console_driver = console_device(index);
1940 if (console_driver) {
1941 driver = tty_driver_kref_get(console_driver);
1942 if (driver) {
1943 /* Don't let /dev/console block */
1944 filp->f_flags |= O_NONBLOCK;
1945 *noctty = 1;
1946 break;
1947 }
1948 }
1949 return ERR_PTR(-ENODEV);
1950 }
1951 default:
1952 driver = get_tty_driver(device, index);
1953 if (!driver)
1954 return ERR_PTR(-ENODEV);
1955 break;
1956 }
1957 return driver;
1958 }
1959
1960 /**
1961 * tty_open - open a tty device
1962 * @inode: inode of device file
1963 * @filp: file pointer to tty
1964 *
1965 * tty_open and tty_release keep up the tty count that contains the
1966 * number of opens done on a tty. We cannot use the inode-count, as
1967 * different inodes might point to the same tty.
1968 *
1969 * Open-counting is needed for pty masters, as well as for keeping
1970 * track of serial lines: DTR is dropped when the last close happens.
1971 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1972 *
1973 * The termios state of a pty is reset on first open so that
1974 * settings don't persist across reuse.
1975 *
1976 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1977 * tty->count should protect the rest.
1978 * ->siglock protects ->signal/->sighand
1979 *
1980 * Note: the tty_unlock/lock cases without a ref are only safe due to
1981 * tty_mutex
1982 */
1983
1984 static int tty_open(struct inode *inode, struct file *filp)
1985 {
1986 struct tty_struct *tty;
1987 int noctty, retval;
1988 struct tty_driver *driver = NULL;
1989 int index;
1990 dev_t device = inode->i_rdev;
1991 unsigned saved_flags = filp->f_flags;
1992
1993 nonseekable_open(inode, filp);
1994
1995 retry_open:
1996 retval = tty_alloc_file(filp);
1997 if (retval)
1998 return -ENOMEM;
1999
2000 noctty = filp->f_flags & O_NOCTTY;
2001 index = -1;
2002 retval = 0;
2003
2004 mutex_lock(&tty_mutex);
2005 /* This is protected by the tty_mutex */
2006 tty = tty_open_current_tty(device, filp);
2007 if (IS_ERR(tty)) {
2008 retval = PTR_ERR(tty);
2009 goto err_unlock;
2010 } else if (!tty) {
2011 driver = tty_lookup_driver(device, filp, &noctty, &index);
2012 if (IS_ERR(driver)) {
2013 retval = PTR_ERR(driver);
2014 goto err_unlock;
2015 }
2016
2017 /* check whether we're reopening an existing tty */
2018 tty = tty_driver_lookup_tty(driver, inode, index);
2019 if (IS_ERR(tty)) {
2020 retval = PTR_ERR(tty);
2021 goto err_unlock;
2022 }
2023 }
2024
2025 if (tty) {
2026 tty_lock(tty);
2027 retval = tty_reopen(tty);
2028 if (retval < 0) {
2029 tty_unlock(tty);
2030 tty = ERR_PTR(retval);
2031 }
2032 } else /* Returns with the tty_lock held for now */
2033 tty = tty_init_dev(driver, index);
2034
2035 mutex_unlock(&tty_mutex);
2036 if (driver)
2037 tty_driver_kref_put(driver);
2038 if (IS_ERR(tty)) {
2039 retval = PTR_ERR(tty);
2040 goto err_file;
2041 }
2042
2043 tty_add_file(tty, filp);
2044
2045 check_tty_count(tty, __func__);
2046 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2047 tty->driver->subtype == PTY_TYPE_MASTER)
2048 noctty = 1;
2049 #ifdef TTY_DEBUG_HANGUP
2050 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2051 #endif
2052 if (tty->ops->open)
2053 retval = tty->ops->open(tty, filp);
2054 else
2055 retval = -ENODEV;
2056 filp->f_flags = saved_flags;
2057
2058 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2059 !capable(CAP_SYS_ADMIN))
2060 retval = -EBUSY;
2061
2062 if (retval) {
2063 #ifdef TTY_DEBUG_HANGUP
2064 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2065 retval, tty->name);
2066 #endif
2067 tty_unlock(tty); /* need to call tty_release without BTM */
2068 tty_release(inode, filp);
2069 if (retval != -ERESTARTSYS)
2070 return retval;
2071
2072 if (signal_pending(current))
2073 return retval;
2074
2075 schedule();
2076 /*
2077 * Need to reset f_op in case a hangup happened.
2078 */
2079 if (filp->f_op == &hung_up_tty_fops)
2080 filp->f_op = &tty_fops;
2081 goto retry_open;
2082 }
2083 tty_unlock(tty);
2084
2085
2086 mutex_lock(&tty_mutex);
2087 tty_lock(tty);
2088 spin_lock_irq(&current->sighand->siglock);
2089 if (!noctty &&
2090 current->signal->leader &&
2091 !current->signal->tty &&
2092 tty->session == NULL)
2093 __proc_set_tty(current, tty);
2094 spin_unlock_irq(&current->sighand->siglock);
2095 tty_unlock(tty);
2096 mutex_unlock(&tty_mutex);
2097 return 0;
2098 err_unlock:
2099 mutex_unlock(&tty_mutex);
2100 /* after locks to avoid deadlock */
2101 if (!IS_ERR_OR_NULL(driver))
2102 tty_driver_kref_put(driver);
2103 err_file:
2104 tty_free_file(filp);
2105 return retval;
2106 }
2107
2108
2109
2110 /**
2111 * tty_poll - check tty status
2112 * @filp: file being polled
2113 * @wait: poll wait structures to update
2114 *
2115 * Call the line discipline polling method to obtain the poll
2116 * status of the device.
2117 *
2118 * Locking: locks called line discipline but ldisc poll method
2119 * may be re-entered freely by other callers.
2120 */
2121
2122 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2123 {
2124 struct tty_struct *tty = file_tty(filp);
2125 struct tty_ldisc *ld;
2126 int ret = 0;
2127
2128 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2129 return 0;
2130
2131 ld = tty_ldisc_ref_wait(tty);
2132 if (ld->ops->poll)
2133 ret = (ld->ops->poll)(tty, filp, wait);
2134 tty_ldisc_deref(ld);
2135 return ret;
2136 }
2137
2138 static int __tty_fasync(int fd, struct file *filp, int on)
2139 {
2140 struct tty_struct *tty = file_tty(filp);
2141 struct tty_ldisc *ldisc;
2142 unsigned long flags;
2143 int retval = 0;
2144
2145 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2146 goto out;
2147
2148 retval = fasync_helper(fd, filp, on, &tty->fasync);
2149 if (retval <= 0)
2150 goto out;
2151
2152 ldisc = tty_ldisc_ref(tty);
2153 if (ldisc) {
2154 if (ldisc->ops->fasync)
2155 ldisc->ops->fasync(tty, on);
2156 tty_ldisc_deref(ldisc);
2157 }
2158
2159 if (on) {
2160 enum pid_type type;
2161 struct pid *pid;
2162
2163 spin_lock_irqsave(&tty->ctrl_lock, flags);
2164 if (tty->pgrp) {
2165 pid = tty->pgrp;
2166 type = PIDTYPE_PGID;
2167 } else {
2168 pid = task_pid(current);
2169 type = PIDTYPE_PID;
2170 }
2171 get_pid(pid);
2172 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2173 retval = __f_setown(filp, pid, type, 0);
2174 put_pid(pid);
2175 }
2176 out:
2177 return retval;
2178 }
2179
2180 static int tty_fasync(int fd, struct file *filp, int on)
2181 {
2182 struct tty_struct *tty = file_tty(filp);
2183 int retval;
2184
2185 tty_lock(tty);
2186 retval = __tty_fasync(fd, filp, on);
2187 tty_unlock(tty);
2188
2189 return retval;
2190 }
2191
2192 /**
2193 * tiocsti - fake input character
2194 * @tty: tty to fake input into
2195 * @p: pointer to character
2196 *
2197 * Fake input to a tty device. Does the necessary locking and
2198 * input management.
2199 *
2200 * FIXME: does not honour flow control ??
2201 *
2202 * Locking:
2203 * Called functions take tty_ldiscs_lock
2204 * current->signal->tty check is safe without locks
2205 *
2206 * FIXME: may race normal receive processing
2207 */
2208
2209 static int tiocsti(struct tty_struct *tty, char __user *p)
2210 {
2211 char ch, mbz = 0;
2212 struct tty_ldisc *ld;
2213
2214 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2215 return -EPERM;
2216 if (get_user(ch, p))
2217 return -EFAULT;
2218 tty_audit_tiocsti(tty, ch);
2219 ld = tty_ldisc_ref_wait(tty);
2220 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2221 tty_ldisc_deref(ld);
2222 return 0;
2223 }
2224
2225 /**
2226 * tiocgwinsz - implement window query ioctl
2227 * @tty; tty
2228 * @arg: user buffer for result
2229 *
2230 * Copies the kernel idea of the window size into the user buffer.
2231 *
2232 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2233 * is consistent.
2234 */
2235
2236 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2237 {
2238 int err;
2239
2240 mutex_lock(&tty->winsize_mutex);
2241 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2242 mutex_unlock(&tty->winsize_mutex);
2243
2244 return err ? -EFAULT: 0;
2245 }
2246
2247 /**
2248 * tty_do_resize - resize event
2249 * @tty: tty being resized
2250 * @rows: rows (character)
2251 * @cols: cols (character)
2252 *
2253 * Update the termios variables and send the necessary signals to
2254 * peform a terminal resize correctly
2255 */
2256
2257 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2258 {
2259 struct pid *pgrp;
2260 unsigned long flags;
2261
2262 /* Lock the tty */
2263 mutex_lock(&tty->winsize_mutex);
2264 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2265 goto done;
2266 /* Get the PID values and reference them so we can
2267 avoid holding the tty ctrl lock while sending signals */
2268 spin_lock_irqsave(&tty->ctrl_lock, flags);
2269 pgrp = get_pid(tty->pgrp);
2270 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2271
2272 if (pgrp)
2273 kill_pgrp(pgrp, SIGWINCH, 1);
2274 put_pid(pgrp);
2275
2276 tty->winsize = *ws;
2277 done:
2278 mutex_unlock(&tty->winsize_mutex);
2279 return 0;
2280 }
2281 EXPORT_SYMBOL(tty_do_resize);
2282
2283 /**
2284 * tiocswinsz - implement window size set ioctl
2285 * @tty; tty side of tty
2286 * @arg: user buffer for result
2287 *
2288 * Copies the user idea of the window size to the kernel. Traditionally
2289 * this is just advisory information but for the Linux console it
2290 * actually has driver level meaning and triggers a VC resize.
2291 *
2292 * Locking:
2293 * Driver dependent. The default do_resize method takes the
2294 * tty termios mutex and ctrl_lock. The console takes its own lock
2295 * then calls into the default method.
2296 */
2297
2298 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2299 {
2300 struct winsize tmp_ws;
2301 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2302 return -EFAULT;
2303
2304 if (tty->ops->resize)
2305 return tty->ops->resize(tty, &tmp_ws);
2306 else
2307 return tty_do_resize(tty, &tmp_ws);
2308 }
2309
2310 /**
2311 * tioccons - allow admin to move logical console
2312 * @file: the file to become console
2313 *
2314 * Allow the administrator to move the redirected console device
2315 *
2316 * Locking: uses redirect_lock to guard the redirect information
2317 */
2318
2319 static int tioccons(struct file *file)
2320 {
2321 if (!capable(CAP_SYS_ADMIN))
2322 return -EPERM;
2323 if (file->f_op->write == redirected_tty_write) {
2324 struct file *f;
2325 spin_lock(&redirect_lock);
2326 f = redirect;
2327 redirect = NULL;
2328 spin_unlock(&redirect_lock);
2329 if (f)
2330 fput(f);
2331 return 0;
2332 }
2333 spin_lock(&redirect_lock);
2334 if (redirect) {
2335 spin_unlock(&redirect_lock);
2336 return -EBUSY;
2337 }
2338 redirect = get_file(file);
2339 spin_unlock(&redirect_lock);
2340 return 0;
2341 }
2342
2343 /**
2344 * fionbio - non blocking ioctl
2345 * @file: file to set blocking value
2346 * @p: user parameter
2347 *
2348 * Historical tty interfaces had a blocking control ioctl before
2349 * the generic functionality existed. This piece of history is preserved
2350 * in the expected tty API of posix OS's.
2351 *
2352 * Locking: none, the open file handle ensures it won't go away.
2353 */
2354
2355 static int fionbio(struct file *file, int __user *p)
2356 {
2357 int nonblock;
2358
2359 if (get_user(nonblock, p))
2360 return -EFAULT;
2361
2362 spin_lock(&file->f_lock);
2363 if (nonblock)
2364 file->f_flags |= O_NONBLOCK;
2365 else
2366 file->f_flags &= ~O_NONBLOCK;
2367 spin_unlock(&file->f_lock);
2368 return 0;
2369 }
2370
2371 /**
2372 * tiocsctty - set controlling tty
2373 * @tty: tty structure
2374 * @arg: user argument
2375 *
2376 * This ioctl is used to manage job control. It permits a session
2377 * leader to set this tty as the controlling tty for the session.
2378 *
2379 * Locking:
2380 * Takes tty_mutex() to protect tty instance
2381 * Takes tasklist_lock internally to walk sessions
2382 * Takes ->siglock() when updating signal->tty
2383 */
2384
2385 static int tiocsctty(struct tty_struct *tty, int arg)
2386 {
2387 int ret = 0;
2388 if (current->signal->leader && (task_session(current) == tty->session))
2389 return ret;
2390
2391 mutex_lock(&tty_mutex);
2392 /*
2393 * The process must be a session leader and
2394 * not have a controlling tty already.
2395 */
2396 if (!current->signal->leader || current->signal->tty) {
2397 ret = -EPERM;
2398 goto unlock;
2399 }
2400
2401 if (tty->session) {
2402 /*
2403 * This tty is already the controlling
2404 * tty for another session group!
2405 */
2406 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2407 /*
2408 * Steal it away
2409 */
2410 read_lock(&tasklist_lock);
2411 session_clear_tty(tty->session);
2412 read_unlock(&tasklist_lock);
2413 } else {
2414 ret = -EPERM;
2415 goto unlock;
2416 }
2417 }
2418 proc_set_tty(current, tty);
2419 unlock:
2420 mutex_unlock(&tty_mutex);
2421 return ret;
2422 }
2423
2424 /**
2425 * tty_get_pgrp - return a ref counted pgrp pid
2426 * @tty: tty to read
2427 *
2428 * Returns a refcounted instance of the pid struct for the process
2429 * group controlling the tty.
2430 */
2431
2432 struct pid *tty_get_pgrp(struct tty_struct *tty)
2433 {
2434 unsigned long flags;
2435 struct pid *pgrp;
2436
2437 spin_lock_irqsave(&tty->ctrl_lock, flags);
2438 pgrp = get_pid(tty->pgrp);
2439 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2440
2441 return pgrp;
2442 }
2443 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2444
2445 /**
2446 * tiocgpgrp - get process group
2447 * @tty: tty passed by user
2448 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2449 * @p: returned pid
2450 *
2451 * Obtain the process group of the tty. If there is no process group
2452 * return an error.
2453 *
2454 * Locking: none. Reference to current->signal->tty is safe.
2455 */
2456
2457 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2458 {
2459 struct pid *pid;
2460 int ret;
2461 /*
2462 * (tty == real_tty) is a cheap way of
2463 * testing if the tty is NOT a master pty.
2464 */
2465 if (tty == real_tty && current->signal->tty != real_tty)
2466 return -ENOTTY;
2467 pid = tty_get_pgrp(real_tty);
2468 ret = put_user(pid_vnr(pid), p);
2469 put_pid(pid);
2470 return ret;
2471 }
2472
2473 /**
2474 * tiocspgrp - attempt to set process group
2475 * @tty: tty passed by user
2476 * @real_tty: tty side device matching tty passed by user
2477 * @p: pid pointer
2478 *
2479 * Set the process group of the tty to the session passed. Only
2480 * permitted where the tty session is our session.
2481 *
2482 * Locking: RCU, ctrl lock
2483 */
2484
2485 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2486 {
2487 struct pid *pgrp;
2488 pid_t pgrp_nr;
2489 int retval = tty_check_change(real_tty);
2490 unsigned long flags;
2491
2492 if (retval == -EIO)
2493 return -ENOTTY;
2494 if (retval)
2495 return retval;
2496 if (!current->signal->tty ||
2497 (current->signal->tty != real_tty) ||
2498 (real_tty->session != task_session(current)))
2499 return -ENOTTY;
2500 if (get_user(pgrp_nr, p))
2501 return -EFAULT;
2502 if (pgrp_nr < 0)
2503 return -EINVAL;
2504 rcu_read_lock();
2505 pgrp = find_vpid(pgrp_nr);
2506 retval = -ESRCH;
2507 if (!pgrp)
2508 goto out_unlock;
2509 retval = -EPERM;
2510 if (session_of_pgrp(pgrp) != task_session(current))
2511 goto out_unlock;
2512 retval = 0;
2513 spin_lock_irqsave(&tty->ctrl_lock, flags);
2514 put_pid(real_tty->pgrp);
2515 real_tty->pgrp = get_pid(pgrp);
2516 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2517 out_unlock:
2518 rcu_read_unlock();
2519 return retval;
2520 }
2521
2522 /**
2523 * tiocgsid - get session id
2524 * @tty: tty passed by user
2525 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2526 * @p: pointer to returned session id
2527 *
2528 * Obtain the session id of the tty. If there is no session
2529 * return an error.
2530 *
2531 * Locking: none. Reference to current->signal->tty is safe.
2532 */
2533
2534 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2535 {
2536 /*
2537 * (tty == real_tty) is a cheap way of
2538 * testing if the tty is NOT a master pty.
2539 */
2540 if (tty == real_tty && current->signal->tty != real_tty)
2541 return -ENOTTY;
2542 if (!real_tty->session)
2543 return -ENOTTY;
2544 return put_user(pid_vnr(real_tty->session), p);
2545 }
2546
2547 /**
2548 * tiocsetd - set line discipline
2549 * @tty: tty device
2550 * @p: pointer to user data
2551 *
2552 * Set the line discipline according to user request.
2553 *
2554 * Locking: see tty_set_ldisc, this function is just a helper
2555 */
2556
2557 static int tiocsetd(struct tty_struct *tty, int __user *p)
2558 {
2559 int ldisc;
2560 int ret;
2561
2562 if (get_user(ldisc, p))
2563 return -EFAULT;
2564
2565 ret = tty_set_ldisc(tty, ldisc);
2566
2567 return ret;
2568 }
2569
2570 /**
2571 * send_break - performed time break
2572 * @tty: device to break on
2573 * @duration: timeout in mS
2574 *
2575 * Perform a timed break on hardware that lacks its own driver level
2576 * timed break functionality.
2577 *
2578 * Locking:
2579 * atomic_write_lock serializes
2580 *
2581 */
2582
2583 static int send_break(struct tty_struct *tty, unsigned int duration)
2584 {
2585 int retval;
2586
2587 if (tty->ops->break_ctl == NULL)
2588 return 0;
2589
2590 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2591 retval = tty->ops->break_ctl(tty, duration);
2592 else {
2593 /* Do the work ourselves */
2594 if (tty_write_lock(tty, 0) < 0)
2595 return -EINTR;
2596 retval = tty->ops->break_ctl(tty, -1);
2597 if (retval)
2598 goto out;
2599 if (!signal_pending(current))
2600 msleep_interruptible(duration);
2601 retval = tty->ops->break_ctl(tty, 0);
2602 out:
2603 tty_write_unlock(tty);
2604 if (signal_pending(current))
2605 retval = -EINTR;
2606 }
2607 return retval;
2608 }
2609
2610 /**
2611 * tty_tiocmget - get modem status
2612 * @tty: tty device
2613 * @file: user file pointer
2614 * @p: pointer to result
2615 *
2616 * Obtain the modem status bits from the tty driver if the feature
2617 * is supported. Return -EINVAL if it is not available.
2618 *
2619 * Locking: none (up to the driver)
2620 */
2621
2622 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2623 {
2624 int retval = -EINVAL;
2625
2626 if (tty->ops->tiocmget) {
2627 retval = tty->ops->tiocmget(tty);
2628
2629 if (retval >= 0)
2630 retval = put_user(retval, p);
2631 }
2632 return retval;
2633 }
2634
2635 /**
2636 * tty_tiocmset - set modem status
2637 * @tty: tty device
2638 * @cmd: command - clear bits, set bits or set all
2639 * @p: pointer to desired bits
2640 *
2641 * Set the modem status bits from the tty driver if the feature
2642 * is supported. Return -EINVAL if it is not available.
2643 *
2644 * Locking: none (up to the driver)
2645 */
2646
2647 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2648 unsigned __user *p)
2649 {
2650 int retval;
2651 unsigned int set, clear, val;
2652
2653 if (tty->ops->tiocmset == NULL)
2654 return -EINVAL;
2655
2656 retval = get_user(val, p);
2657 if (retval)
2658 return retval;
2659 set = clear = 0;
2660 switch (cmd) {
2661 case TIOCMBIS:
2662 set = val;
2663 break;
2664 case TIOCMBIC:
2665 clear = val;
2666 break;
2667 case TIOCMSET:
2668 set = val;
2669 clear = ~val;
2670 break;
2671 }
2672 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2673 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2674 return tty->ops->tiocmset(tty, set, clear);
2675 }
2676
2677 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2678 {
2679 int retval = -EINVAL;
2680 struct serial_icounter_struct icount;
2681 memset(&icount, 0, sizeof(icount));
2682 if (tty->ops->get_icount)
2683 retval = tty->ops->get_icount(tty, &icount);
2684 if (retval != 0)
2685 return retval;
2686 if (copy_to_user(arg, &icount, sizeof(icount)))
2687 return -EFAULT;
2688 return 0;
2689 }
2690
2691 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2692 {
2693 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2694 tty->driver->subtype == PTY_TYPE_MASTER)
2695 tty = tty->link;
2696 return tty;
2697 }
2698 EXPORT_SYMBOL(tty_pair_get_tty);
2699
2700 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2701 {
2702 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2703 tty->driver->subtype == PTY_TYPE_MASTER)
2704 return tty;
2705 return tty->link;
2706 }
2707 EXPORT_SYMBOL(tty_pair_get_pty);
2708
2709 /*
2710 * Split this up, as gcc can choke on it otherwise..
2711 */
2712 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2713 {
2714 struct tty_struct *tty = file_tty(file);
2715 struct tty_struct *real_tty;
2716 void __user *p = (void __user *)arg;
2717 int retval;
2718 struct tty_ldisc *ld;
2719
2720 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2721 return -EINVAL;
2722
2723 real_tty = tty_pair_get_tty(tty);
2724
2725 /*
2726 * Factor out some common prep work
2727 */
2728 switch (cmd) {
2729 case TIOCSETD:
2730 case TIOCSBRK:
2731 case TIOCCBRK:
2732 case TCSBRK:
2733 case TCSBRKP:
2734 retval = tty_check_change(tty);
2735 if (retval)
2736 return retval;
2737 if (cmd != TIOCCBRK) {
2738 tty_wait_until_sent(tty, 0);
2739 if (signal_pending(current))
2740 return -EINTR;
2741 }
2742 break;
2743 }
2744
2745 /*
2746 * Now do the stuff.
2747 */
2748 switch (cmd) {
2749 case TIOCSTI:
2750 return tiocsti(tty, p);
2751 case TIOCGWINSZ:
2752 return tiocgwinsz(real_tty, p);
2753 case TIOCSWINSZ:
2754 return tiocswinsz(real_tty, p);
2755 case TIOCCONS:
2756 return real_tty != tty ? -EINVAL : tioccons(file);
2757 case FIONBIO:
2758 return fionbio(file, p);
2759 case TIOCEXCL:
2760 set_bit(TTY_EXCLUSIVE, &tty->flags);
2761 return 0;
2762 case TIOCNXCL:
2763 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2764 return 0;
2765 case TIOCGEXCL:
2766 {
2767 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2768 return put_user(excl, (int __user *)p);
2769 }
2770 case TIOCNOTTY:
2771 if (current->signal->tty != tty)
2772 return -ENOTTY;
2773 no_tty();
2774 return 0;
2775 case TIOCSCTTY:
2776 return tiocsctty(tty, arg);
2777 case TIOCGPGRP:
2778 return tiocgpgrp(tty, real_tty, p);
2779 case TIOCSPGRP:
2780 return tiocspgrp(tty, real_tty, p);
2781 case TIOCGSID:
2782 return tiocgsid(tty, real_tty, p);
2783 case TIOCGETD:
2784 return put_user(tty->ldisc->ops->num, (int __user *)p);
2785 case TIOCSETD:
2786 return tiocsetd(tty, p);
2787 case TIOCVHANGUP:
2788 if (!capable(CAP_SYS_ADMIN))
2789 return -EPERM;
2790 tty_vhangup(tty);
2791 return 0;
2792 case TIOCGDEV:
2793 {
2794 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2795 return put_user(ret, (unsigned int __user *)p);
2796 }
2797 /*
2798 * Break handling
2799 */
2800 case TIOCSBRK: /* Turn break on, unconditionally */
2801 if (tty->ops->break_ctl)
2802 return tty->ops->break_ctl(tty, -1);
2803 return 0;
2804 case TIOCCBRK: /* Turn break off, unconditionally */
2805 if (tty->ops->break_ctl)
2806 return tty->ops->break_ctl(tty, 0);
2807 return 0;
2808 case TCSBRK: /* SVID version: non-zero arg --> no break */
2809 /* non-zero arg means wait for all output data
2810 * to be sent (performed above) but don't send break.
2811 * This is used by the tcdrain() termios function.
2812 */
2813 if (!arg)
2814 return send_break(tty, 250);
2815 return 0;
2816 case TCSBRKP: /* support for POSIX tcsendbreak() */
2817 return send_break(tty, arg ? arg*100 : 250);
2818
2819 case TIOCMGET:
2820 return tty_tiocmget(tty, p);
2821 case TIOCMSET:
2822 case TIOCMBIC:
2823 case TIOCMBIS:
2824 return tty_tiocmset(tty, cmd, p);
2825 case TIOCGICOUNT:
2826 retval = tty_tiocgicount(tty, p);
2827 /* For the moment allow fall through to the old method */
2828 if (retval != -EINVAL)
2829 return retval;
2830 break;
2831 case TCFLSH:
2832 switch (arg) {
2833 case TCIFLUSH:
2834 case TCIOFLUSH:
2835 /* flush tty buffer and allow ldisc to process ioctl */
2836 tty_buffer_flush(tty);
2837 break;
2838 }
2839 break;
2840 }
2841 if (tty->ops->ioctl) {
2842 retval = (tty->ops->ioctl)(tty, cmd, arg);
2843 if (retval != -ENOIOCTLCMD)
2844 return retval;
2845 }
2846 ld = tty_ldisc_ref_wait(tty);
2847 retval = -EINVAL;
2848 if (ld->ops->ioctl) {
2849 retval = ld->ops->ioctl(tty, file, cmd, arg);
2850 if (retval == -ENOIOCTLCMD)
2851 retval = -ENOTTY;
2852 }
2853 tty_ldisc_deref(ld);
2854 return retval;
2855 }
2856
2857 #ifdef CONFIG_COMPAT
2858 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2859 unsigned long arg)
2860 {
2861 struct tty_struct *tty = file_tty(file);
2862 struct tty_ldisc *ld;
2863 int retval = -ENOIOCTLCMD;
2864
2865 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2866 return -EINVAL;
2867
2868 if (tty->ops->compat_ioctl) {
2869 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2870 if (retval != -ENOIOCTLCMD)
2871 return retval;
2872 }
2873
2874 ld = tty_ldisc_ref_wait(tty);
2875 if (ld->ops->compat_ioctl)
2876 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2877 else
2878 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2879 tty_ldisc_deref(ld);
2880
2881 return retval;
2882 }
2883 #endif
2884
2885 static int this_tty(const void *t, struct file *file, unsigned fd)
2886 {
2887 if (likely(file->f_op->read != tty_read))
2888 return 0;
2889 return file_tty(file) != t ? 0 : fd + 1;
2890 }
2891
2892 /*
2893 * This implements the "Secure Attention Key" --- the idea is to
2894 * prevent trojan horses by killing all processes associated with this
2895 * tty when the user hits the "Secure Attention Key". Required for
2896 * super-paranoid applications --- see the Orange Book for more details.
2897 *
2898 * This code could be nicer; ideally it should send a HUP, wait a few
2899 * seconds, then send a INT, and then a KILL signal. But you then
2900 * have to coordinate with the init process, since all processes associated
2901 * with the current tty must be dead before the new getty is allowed
2902 * to spawn.
2903 *
2904 * Now, if it would be correct ;-/ The current code has a nasty hole -
2905 * it doesn't catch files in flight. We may send the descriptor to ourselves
2906 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2907 *
2908 * Nasty bug: do_SAK is being called in interrupt context. This can
2909 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2910 */
2911 void __do_SAK(struct tty_struct *tty)
2912 {
2913 #ifdef TTY_SOFT_SAK
2914 tty_hangup(tty);
2915 #else
2916 struct task_struct *g, *p;
2917 struct pid *session;
2918 int i;
2919
2920 if (!tty)
2921 return;
2922 session = tty->session;
2923
2924 tty_ldisc_flush(tty);
2925
2926 tty_driver_flush_buffer(tty);
2927
2928 read_lock(&tasklist_lock);
2929 /* Kill the entire session */
2930 do_each_pid_task(session, PIDTYPE_SID, p) {
2931 printk(KERN_NOTICE "SAK: killed process %d"
2932 " (%s): task_session(p)==tty->session\n",
2933 task_pid_nr(p), p->comm);
2934 send_sig(SIGKILL, p, 1);
2935 } while_each_pid_task(session, PIDTYPE_SID, p);
2936 /* Now kill any processes that happen to have the
2937 * tty open.
2938 */
2939 do_each_thread(g, p) {
2940 if (p->signal->tty == tty) {
2941 printk(KERN_NOTICE "SAK: killed process %d"
2942 " (%s): task_session(p)==tty->session\n",
2943 task_pid_nr(p), p->comm);
2944 send_sig(SIGKILL, p, 1);
2945 continue;
2946 }
2947 task_lock(p);
2948 i = iterate_fd(p->files, 0, this_tty, tty);
2949 if (i != 0) {
2950 printk(KERN_NOTICE "SAK: killed process %d"
2951 " (%s): fd#%d opened to the tty\n",
2952 task_pid_nr(p), p->comm, i - 1);
2953 force_sig(SIGKILL, p);
2954 }
2955 task_unlock(p);
2956 } while_each_thread(g, p);
2957 read_unlock(&tasklist_lock);
2958 #endif
2959 }
2960
2961 static void do_SAK_work(struct work_struct *work)
2962 {
2963 struct tty_struct *tty =
2964 container_of(work, struct tty_struct, SAK_work);
2965 __do_SAK(tty);
2966 }
2967
2968 /*
2969 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2970 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2971 * the values which we write to it will be identical to the values which it
2972 * already has. --akpm
2973 */
2974 void do_SAK(struct tty_struct *tty)
2975 {
2976 if (!tty)
2977 return;
2978 schedule_work(&tty->SAK_work);
2979 }
2980
2981 EXPORT_SYMBOL(do_SAK);
2982
2983 static int dev_match_devt(struct device *dev, const void *data)
2984 {
2985 const dev_t *devt = data;
2986 return dev->devt == *devt;
2987 }
2988
2989 /* Must put_device() after it's unused! */
2990 static struct device *tty_get_device(struct tty_struct *tty)
2991 {
2992 dev_t devt = tty_devnum(tty);
2993 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2994 }
2995
2996
2997 /**
2998 * initialize_tty_struct
2999 * @tty: tty to initialize
3000 *
3001 * This subroutine initializes a tty structure that has been newly
3002 * allocated.
3003 *
3004 * Locking: none - tty in question must not be exposed at this point
3005 */
3006
3007 void initialize_tty_struct(struct tty_struct *tty,
3008 struct tty_driver *driver, int idx)
3009 {
3010 memset(tty, 0, sizeof(struct tty_struct));
3011 kref_init(&tty->kref);
3012 tty->magic = TTY_MAGIC;
3013 tty_ldisc_init(tty);
3014 tty->session = NULL;
3015 tty->pgrp = NULL;
3016 mutex_init(&tty->legacy_mutex);
3017 mutex_init(&tty->throttle_mutex);
3018 init_rwsem(&tty->termios_rwsem);
3019 mutex_init(&tty->winsize_mutex);
3020 init_ldsem(&tty->ldisc_sem);
3021 init_waitqueue_head(&tty->write_wait);
3022 init_waitqueue_head(&tty->read_wait);
3023 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3024 mutex_init(&tty->atomic_write_lock);
3025 spin_lock_init(&tty->ctrl_lock);
3026 INIT_LIST_HEAD(&tty->tty_files);
3027 INIT_WORK(&tty->SAK_work, do_SAK_work);
3028
3029 tty->driver = driver;
3030 tty->ops = driver->ops;
3031 tty->index = idx;
3032 tty_line_name(driver, idx, tty->name);
3033 tty->dev = tty_get_device(tty);
3034 }
3035
3036 /**
3037 * deinitialize_tty_struct
3038 * @tty: tty to deinitialize
3039 *
3040 * This subroutine deinitializes a tty structure that has been newly
3041 * allocated but tty_release cannot be called on that yet.
3042 *
3043 * Locking: none - tty in question must not be exposed at this point
3044 */
3045 void deinitialize_tty_struct(struct tty_struct *tty)
3046 {
3047 tty_ldisc_deinit(tty);
3048 }
3049
3050 /**
3051 * tty_put_char - write one character to a tty
3052 * @tty: tty
3053 * @ch: character
3054 *
3055 * Write one byte to the tty using the provided put_char method
3056 * if present. Returns the number of characters successfully output.
3057 *
3058 * Note: the specific put_char operation in the driver layer may go
3059 * away soon. Don't call it directly, use this method
3060 */
3061
3062 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3063 {
3064 if (tty->ops->put_char)
3065 return tty->ops->put_char(tty, ch);
3066 return tty->ops->write(tty, &ch, 1);
3067 }
3068 EXPORT_SYMBOL_GPL(tty_put_char);
3069
3070 struct class *tty_class;
3071
3072 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3073 unsigned int index, unsigned int count)
3074 {
3075 /* init here, since reused cdevs cause crashes */
3076 cdev_init(&driver->cdevs[index], &tty_fops);
3077 driver->cdevs[index].owner = driver->owner;
3078 return cdev_add(&driver->cdevs[index], dev, count);
3079 }
3080
3081 /**
3082 * tty_register_device - register a tty device
3083 * @driver: the tty driver that describes the tty device
3084 * @index: the index in the tty driver for this tty device
3085 * @device: a struct device that is associated with this tty device.
3086 * This field is optional, if there is no known struct device
3087 * for this tty device it can be set to NULL safely.
3088 *
3089 * Returns a pointer to the struct device for this tty device
3090 * (or ERR_PTR(-EFOO) on error).
3091 *
3092 * This call is required to be made to register an individual tty device
3093 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3094 * that bit is not set, this function should not be called by a tty
3095 * driver.
3096 *
3097 * Locking: ??
3098 */
3099
3100 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3101 struct device *device)
3102 {
3103 return tty_register_device_attr(driver, index, device, NULL, NULL);
3104 }
3105 EXPORT_SYMBOL(tty_register_device);
3106
3107 static void tty_device_create_release(struct device *dev)
3108 {
3109 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3110 kfree(dev);
3111 }
3112
3113 /**
3114 * tty_register_device_attr - register a tty device
3115 * @driver: the tty driver that describes the tty device
3116 * @index: the index in the tty driver for this tty device
3117 * @device: a struct device that is associated with this tty device.
3118 * This field is optional, if there is no known struct device
3119 * for this tty device it can be set to NULL safely.
3120 * @drvdata: Driver data to be set to device.
3121 * @attr_grp: Attribute group to be set on device.
3122 *
3123 * Returns a pointer to the struct device for this tty device
3124 * (or ERR_PTR(-EFOO) on error).
3125 *
3126 * This call is required to be made to register an individual tty device
3127 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3128 * that bit is not set, this function should not be called by a tty
3129 * driver.
3130 *
3131 * Locking: ??
3132 */
3133 struct device *tty_register_device_attr(struct tty_driver *driver,
3134 unsigned index, struct device *device,
3135 void *drvdata,
3136 const struct attribute_group **attr_grp)
3137 {
3138 char name[64];
3139 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3140 struct device *dev = NULL;
3141 int retval = -ENODEV;
3142 bool cdev = false;
3143
3144 if (index >= driver->num) {
3145 printk(KERN_ERR "Attempt to register invalid tty line number "
3146 " (%d).\n", index);
3147 return ERR_PTR(-EINVAL);
3148 }
3149
3150 if (driver->type == TTY_DRIVER_TYPE_PTY)
3151 pty_line_name(driver, index, name);
3152 else
3153 tty_line_name(driver, index, name);
3154
3155 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3156 retval = tty_cdev_add(driver, devt, index, 1);
3157 if (retval)
3158 goto error;
3159 cdev = true;
3160 }
3161
3162 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3163 if (!dev) {
3164 retval = -ENOMEM;
3165 goto error;
3166 }
3167
3168 dev->devt = devt;
3169 dev->class = tty_class;
3170 dev->parent = device;
3171 dev->release = tty_device_create_release;
3172 dev_set_name(dev, "%s", name);
3173 dev->groups = attr_grp;
3174 dev_set_drvdata(dev, drvdata);
3175
3176 retval = device_register(dev);
3177 if (retval)
3178 goto error;
3179
3180 return dev;
3181
3182 error:
3183 put_device(dev);
3184 if (cdev)
3185 cdev_del(&driver->cdevs[index]);
3186 return ERR_PTR(retval);
3187 }
3188 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3189
3190 /**
3191 * tty_unregister_device - unregister a tty device
3192 * @driver: the tty driver that describes the tty device
3193 * @index: the index in the tty driver for this tty device
3194 *
3195 * If a tty device is registered with a call to tty_register_device() then
3196 * this function must be called when the tty device is gone.
3197 *
3198 * Locking: ??
3199 */
3200
3201 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3202 {
3203 device_destroy(tty_class,
3204 MKDEV(driver->major, driver->minor_start) + index);
3205 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3206 cdev_del(&driver->cdevs[index]);
3207 }
3208 EXPORT_SYMBOL(tty_unregister_device);
3209
3210 /**
3211 * __tty_alloc_driver -- allocate tty driver
3212 * @lines: count of lines this driver can handle at most
3213 * @owner: module which is repsonsible for this driver
3214 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3215 *
3216 * This should not be called directly, some of the provided macros should be
3217 * used instead. Use IS_ERR and friends on @retval.
3218 */
3219 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3220 unsigned long flags)
3221 {
3222 struct tty_driver *driver;
3223 unsigned int cdevs = 1;
3224 int err;
3225
3226 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3227 return ERR_PTR(-EINVAL);
3228
3229 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3230 if (!driver)
3231 return ERR_PTR(-ENOMEM);
3232
3233 kref_init(&driver->kref);
3234 driver->magic = TTY_DRIVER_MAGIC;
3235 driver->num = lines;
3236 driver->owner = owner;
3237 driver->flags = flags;
3238
3239 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3240 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3241 GFP_KERNEL);
3242 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3243 GFP_KERNEL);
3244 if (!driver->ttys || !driver->termios) {
3245 err = -ENOMEM;
3246 goto err_free_all;
3247 }
3248 }
3249
3250 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3251 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3252 GFP_KERNEL);
3253 if (!driver->ports) {
3254 err = -ENOMEM;
3255 goto err_free_all;
3256 }
3257 cdevs = lines;
3258 }
3259
3260 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3261 if (!driver->cdevs) {
3262 err = -ENOMEM;
3263 goto err_free_all;
3264 }
3265
3266 return driver;
3267 err_free_all:
3268 kfree(driver->ports);
3269 kfree(driver->ttys);
3270 kfree(driver->termios);
3271 kfree(driver);
3272 return ERR_PTR(err);
3273 }
3274 EXPORT_SYMBOL(__tty_alloc_driver);
3275
3276 static void destruct_tty_driver(struct kref *kref)
3277 {
3278 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3279 int i;
3280 struct ktermios *tp;
3281
3282 if (driver->flags & TTY_DRIVER_INSTALLED) {
3283 /*
3284 * Free the termios and termios_locked structures because
3285 * we don't want to get memory leaks when modular tty
3286 * drivers are removed from the kernel.
3287 */
3288 for (i = 0; i < driver->num; i++) {
3289 tp = driver->termios[i];
3290 if (tp) {
3291 driver->termios[i] = NULL;
3292 kfree(tp);
3293 }
3294 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3295 tty_unregister_device(driver, i);
3296 }
3297 proc_tty_unregister_driver(driver);
3298 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3299 cdev_del(&driver->cdevs[0]);
3300 }
3301 kfree(driver->cdevs);
3302 kfree(driver->ports);
3303 kfree(driver->termios);
3304 kfree(driver->ttys);
3305 kfree(driver);
3306 }
3307
3308 void tty_driver_kref_put(struct tty_driver *driver)
3309 {
3310 kref_put(&driver->kref, destruct_tty_driver);
3311 }
3312 EXPORT_SYMBOL(tty_driver_kref_put);
3313
3314 void tty_set_operations(struct tty_driver *driver,
3315 const struct tty_operations *op)
3316 {
3317 driver->ops = op;
3318 };
3319 EXPORT_SYMBOL(tty_set_operations);
3320
3321 void put_tty_driver(struct tty_driver *d)
3322 {
3323 tty_driver_kref_put(d);
3324 }
3325 EXPORT_SYMBOL(put_tty_driver);
3326
3327 /*
3328 * Called by a tty driver to register itself.
3329 */
3330 int tty_register_driver(struct tty_driver *driver)
3331 {
3332 int error;
3333 int i;
3334 dev_t dev;
3335 struct device *d;
3336
3337 if (!driver->major) {
3338 error = alloc_chrdev_region(&dev, driver->minor_start,
3339 driver->num, driver->name);
3340 if (!error) {
3341 driver->major = MAJOR(dev);
3342 driver->minor_start = MINOR(dev);
3343 }
3344 } else {
3345 dev = MKDEV(driver->major, driver->minor_start);
3346 error = register_chrdev_region(dev, driver->num, driver->name);
3347 }
3348 if (error < 0)
3349 goto err;
3350
3351 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3352 error = tty_cdev_add(driver, dev, 0, driver->num);
3353 if (error)
3354 goto err_unreg_char;
3355 }
3356
3357 mutex_lock(&tty_mutex);
3358 list_add(&driver->tty_drivers, &tty_drivers);
3359 mutex_unlock(&tty_mutex);
3360
3361 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3362 for (i = 0; i < driver->num; i++) {
3363 d = tty_register_device(driver, i, NULL);
3364 if (IS_ERR(d)) {
3365 error = PTR_ERR(d);
3366 goto err_unreg_devs;
3367 }
3368 }
3369 }
3370 proc_tty_register_driver(driver);
3371 driver->flags |= TTY_DRIVER_INSTALLED;
3372 return 0;
3373
3374 err_unreg_devs:
3375 for (i--; i >= 0; i--)
3376 tty_unregister_device(driver, i);
3377
3378 mutex_lock(&tty_mutex);
3379 list_del(&driver->tty_drivers);
3380 mutex_unlock(&tty_mutex);
3381
3382 err_unreg_char:
3383 unregister_chrdev_region(dev, driver->num);
3384 err:
3385 return error;
3386 }
3387 EXPORT_SYMBOL(tty_register_driver);
3388
3389 /*
3390 * Called by a tty driver to unregister itself.
3391 */
3392 int tty_unregister_driver(struct tty_driver *driver)
3393 {
3394 #if 0
3395 /* FIXME */
3396 if (driver->refcount)
3397 return -EBUSY;
3398 #endif
3399 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3400 driver->num);
3401 mutex_lock(&tty_mutex);
3402 list_del(&driver->tty_drivers);
3403 mutex_unlock(&tty_mutex);
3404 return 0;
3405 }
3406
3407 EXPORT_SYMBOL(tty_unregister_driver);
3408
3409 dev_t tty_devnum(struct tty_struct *tty)
3410 {
3411 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3412 }
3413 EXPORT_SYMBOL(tty_devnum);
3414
3415 void proc_clear_tty(struct task_struct *p)
3416 {
3417 unsigned long flags;
3418 struct tty_struct *tty;
3419 spin_lock_irqsave(&p->sighand->siglock, flags);
3420 tty = p->signal->tty;
3421 p->signal->tty = NULL;
3422 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3423 tty_kref_put(tty);
3424 }
3425
3426 /* Called under the sighand lock */
3427
3428 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3429 {
3430 if (tty) {
3431 unsigned long flags;
3432 /* We should not have a session or pgrp to put here but.... */
3433 spin_lock_irqsave(&tty->ctrl_lock, flags);
3434 put_pid(tty->session);
3435 put_pid(tty->pgrp);
3436 tty->pgrp = get_pid(task_pgrp(tsk));
3437 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3438 tty->session = get_pid(task_session(tsk));
3439 if (tsk->signal->tty) {
3440 printk(KERN_DEBUG "tty not NULL!!\n");
3441 tty_kref_put(tsk->signal->tty);
3442 }
3443 }
3444 put_pid(tsk->signal->tty_old_pgrp);
3445 tsk->signal->tty = tty_kref_get(tty);
3446 tsk->signal->tty_old_pgrp = NULL;
3447 }
3448
3449 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3450 {
3451 spin_lock_irq(&tsk->sighand->siglock);
3452 __proc_set_tty(tsk, tty);
3453 spin_unlock_irq(&tsk->sighand->siglock);
3454 }
3455
3456 struct tty_struct *get_current_tty(void)
3457 {
3458 struct tty_struct *tty;
3459 unsigned long flags;
3460
3461 spin_lock_irqsave(&current->sighand->siglock, flags);
3462 tty = tty_kref_get(current->signal->tty);
3463 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3464 return tty;
3465 }
3466 EXPORT_SYMBOL_GPL(get_current_tty);
3467
3468 void tty_default_fops(struct file_operations *fops)
3469 {
3470 *fops = tty_fops;
3471 }
3472
3473 /*
3474 * Initialize the console device. This is called *early*, so
3475 * we can't necessarily depend on lots of kernel help here.
3476 * Just do some early initializations, and do the complex setup
3477 * later.
3478 */
3479 void __init console_init(void)
3480 {
3481 initcall_t *call;
3482
3483 /* Setup the default TTY line discipline. */
3484 tty_ldisc_begin();
3485
3486 /*
3487 * set up the console device so that later boot sequences can
3488 * inform about problems etc..
3489 */
3490 call = __con_initcall_start;
3491 while (call < __con_initcall_end) {
3492 (*call)();
3493 call++;
3494 }
3495 }
3496
3497 static char *tty_devnode(struct device *dev, umode_t *mode)
3498 {
3499 if (!mode)
3500 return NULL;
3501 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3502 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3503 *mode = 0666;
3504 return NULL;
3505 }
3506
3507 static int __init tty_class_init(void)
3508 {
3509 tty_class = class_create(THIS_MODULE, "tty");
3510 if (IS_ERR(tty_class))
3511 return PTR_ERR(tty_class);
3512 tty_class->devnode = tty_devnode;
3513 return 0;
3514 }
3515
3516 postcore_initcall(tty_class_init);
3517
3518 /* 3/2004 jmc: why do these devices exist? */
3519 static struct cdev tty_cdev, console_cdev;
3520
3521 static ssize_t show_cons_active(struct device *dev,
3522 struct device_attribute *attr, char *buf)
3523 {
3524 struct console *cs[16];
3525 int i = 0;
3526 struct console *c;
3527 ssize_t count = 0;
3528
3529 console_lock();
3530 for_each_console(c) {
3531 if (!c->device)
3532 continue;
3533 if (!c->write)
3534 continue;
3535 if ((c->flags & CON_ENABLED) == 0)
3536 continue;
3537 cs[i++] = c;
3538 if (i >= ARRAY_SIZE(cs))
3539 break;
3540 }
3541 while (i--)
3542 count += sprintf(buf + count, "%s%d%c",
3543 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3544 console_unlock();
3545
3546 return count;
3547 }
3548 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3549
3550 static struct device *consdev;
3551
3552 void console_sysfs_notify(void)
3553 {
3554 if (consdev)
3555 sysfs_notify(&consdev->kobj, NULL, "active");
3556 }
3557
3558 /*
3559 * Ok, now we can initialize the rest of the tty devices and can count
3560 * on memory allocations, interrupts etc..
3561 */
3562 int __init tty_init(void)
3563 {
3564 cdev_init(&tty_cdev, &tty_fops);
3565 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3566 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3567 panic("Couldn't register /dev/tty driver\n");
3568 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3569
3570 cdev_init(&console_cdev, &console_fops);
3571 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3572 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3573 panic("Couldn't register /dev/console driver\n");
3574 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3575 "console");
3576 if (IS_ERR(consdev))
3577 consdev = NULL;
3578 else
3579 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3580
3581 #ifdef CONFIG_VT
3582 vty_init(&console_fops);
3583 #endif
3584 return 0;
3585 }
3586