1937d8c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] /
1 /*
2 * Handles the Intel 27x USB Device Controller (UDC)
3 *
4 * Inspired by original driver by Frank Becker, David Brownell, and others.
5 * Copyright (C) 2008 Robert Jarzmik
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27 #include <linux/delay.h>
28 #include <linux/list.h>
29 #include <linux/interrupt.h>
30 #include <linux/proc_fs.h>
31 #include <linux/clk.h>
32 #include <linux/irq.h>
33 #include <linux/gpio.h>
34
35 #include <asm/byteorder.h>
36 #include <mach/hardware.h>
37
38 #include <linux/usb.h>
39 #include <linux/usb/ch9.h>
40 #include <linux/usb/gadget.h>
41 #include <mach/udc.h>
42
43 #include "pxa27x_udc.h"
44
45 /*
46 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
47 * series processors.
48 *
49 * Such controller drivers work with a gadget driver. The gadget driver
50 * returns descriptors, implements configuration and data protocols used
51 * by the host to interact with this device, and allocates endpoints to
52 * the different protocol interfaces. The controller driver virtualizes
53 * usb hardware so that the gadget drivers will be more portable.
54 *
55 * This UDC hardware wants to implement a bit too much USB protocol. The
56 * biggest issues are: that the endpoints have to be set up before the
57 * controller can be enabled (minor, and not uncommon); and each endpoint
58 * can only have one configuration, interface and alternative interface
59 * number (major, and very unusual). Once set up, these cannot be changed
60 * without a controller reset.
61 *
62 * The workaround is to setup all combinations necessary for the gadgets which
63 * will work with this driver. This is done in pxa_udc structure, statically.
64 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
65 * (You could modify this if needed. Some drivers have a "fifo_mode" module
66 * parameter to facilitate such changes.)
67 *
68 * The combinations have been tested with these gadgets :
69 * - zero gadget
70 * - file storage gadget
71 * - ether gadget
72 *
73 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
74 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
75 *
76 * All the requests are handled the same way :
77 * - the drivers tries to handle the request directly to the IO
78 * - if the IO fifo is not big enough, the remaining is send/received in
79 * interrupt handling.
80 */
81
82 #define DRIVER_VERSION "2008-04-18"
83 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
84
85 static const char driver_name[] = "pxa27x_udc";
86 static struct pxa_udc *the_controller;
87
88 static void handle_ep(struct pxa_ep *ep);
89
90 /*
91 * Debug filesystem
92 */
93 #ifdef CONFIG_USB_GADGET_DEBUG_FS
94
95 #include <linux/debugfs.h>
96 #include <linux/uaccess.h>
97 #include <linux/seq_file.h>
98
99 static int state_dbg_show(struct seq_file *s, void *p)
100 {
101 struct pxa_udc *udc = s->private;
102 int pos = 0, ret;
103 u32 tmp;
104
105 ret = -ENODEV;
106 if (!udc->driver)
107 goto out;
108
109 /* basic device status */
110 pos += seq_printf(s, DRIVER_DESC "\n"
111 "%s version: %s\nGadget driver: %s\n",
112 driver_name, DRIVER_VERSION,
113 udc->driver ? udc->driver->driver.name : "(none)");
114
115 tmp = udc_readl(udc, UDCCR);
116 pos += seq_printf(s,
117 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), "
118 "con=%d,inter=%d,altinter=%d\n", tmp,
119 (tmp & UDCCR_OEN) ? " oen":"",
120 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
121 (tmp & UDCCR_AHNP) ? " rem" : "",
122 (tmp & UDCCR_BHNP) ? " rstir" : "",
123 (tmp & UDCCR_DWRE) ? " dwre" : "",
124 (tmp & UDCCR_SMAC) ? " smac" : "",
125 (tmp & UDCCR_EMCE) ? " emce" : "",
126 (tmp & UDCCR_UDR) ? " udr" : "",
127 (tmp & UDCCR_UDA) ? " uda" : "",
128 (tmp & UDCCR_UDE) ? " ude" : "",
129 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
130 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
131 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
132 /* registers for device and ep0 */
133 pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
134 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
135 pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
136 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
137 pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
138 pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, "
139 "reconfig=%lu\n",
140 udc->stats.irqs_reset, udc->stats.irqs_suspend,
141 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
142
143 ret = 0;
144 out:
145 return ret;
146 }
147
148 static int queues_dbg_show(struct seq_file *s, void *p)
149 {
150 struct pxa_udc *udc = s->private;
151 struct pxa_ep *ep;
152 struct pxa27x_request *req;
153 int pos = 0, i, maxpkt, ret;
154
155 ret = -ENODEV;
156 if (!udc->driver)
157 goto out;
158
159 /* dump endpoint queues */
160 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
161 ep = &udc->pxa_ep[i];
162 maxpkt = ep->fifo_size;
163 pos += seq_printf(s, "%-12s max_pkt=%d %s\n",
164 EPNAME(ep), maxpkt, "pio");
165
166 if (list_empty(&ep->queue)) {
167 pos += seq_printf(s, "\t(nothing queued)\n");
168 continue;
169 }
170
171 list_for_each_entry(req, &ep->queue, queue) {
172 pos += seq_printf(s, "\treq %p len %d/%d buf %p\n",
173 &req->req, req->req.actual,
174 req->req.length, req->req.buf);
175 }
176 }
177
178 ret = 0;
179 out:
180 return ret;
181 }
182
183 static int eps_dbg_show(struct seq_file *s, void *p)
184 {
185 struct pxa_udc *udc = s->private;
186 struct pxa_ep *ep;
187 int pos = 0, i, ret;
188 u32 tmp;
189
190 ret = -ENODEV;
191 if (!udc->driver)
192 goto out;
193
194 ep = &udc->pxa_ep[0];
195 tmp = udc_ep_readl(ep, UDCCSR);
196 pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp,
197 (tmp & UDCCSR0_SA) ? " sa" : "",
198 (tmp & UDCCSR0_RNE) ? " rne" : "",
199 (tmp & UDCCSR0_FST) ? " fst" : "",
200 (tmp & UDCCSR0_SST) ? " sst" : "",
201 (tmp & UDCCSR0_DME) ? " dme" : "",
202 (tmp & UDCCSR0_IPR) ? " ipr" : "",
203 (tmp & UDCCSR0_OPC) ? " opc" : "");
204 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
205 ep = &udc->pxa_ep[i];
206 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
207 pos += seq_printf(s, "%-12s: "
208 "IN %lu(%lu reqs), OUT %lu(%lu reqs), "
209 "irqs=%lu, udccr=0x%08x, udccsr=0x%03x, "
210 "udcbcr=%d\n",
211 EPNAME(ep),
212 ep->stats.in_bytes, ep->stats.in_ops,
213 ep->stats.out_bytes, ep->stats.out_ops,
214 ep->stats.irqs,
215 tmp, udc_ep_readl(ep, UDCCSR),
216 udc_ep_readl(ep, UDCBCR));
217 }
218
219 ret = 0;
220 out:
221 return ret;
222 }
223
224 static int eps_dbg_open(struct inode *inode, struct file *file)
225 {
226 return single_open(file, eps_dbg_show, inode->i_private);
227 }
228
229 static int queues_dbg_open(struct inode *inode, struct file *file)
230 {
231 return single_open(file, queues_dbg_show, inode->i_private);
232 }
233
234 static int state_dbg_open(struct inode *inode, struct file *file)
235 {
236 return single_open(file, state_dbg_show, inode->i_private);
237 }
238
239 static const struct file_operations state_dbg_fops = {
240 .owner = THIS_MODULE,
241 .open = state_dbg_open,
242 .llseek = seq_lseek,
243 .read = seq_read,
244 .release = single_release,
245 };
246
247 static const struct file_operations queues_dbg_fops = {
248 .owner = THIS_MODULE,
249 .open = queues_dbg_open,
250 .llseek = seq_lseek,
251 .read = seq_read,
252 .release = single_release,
253 };
254
255 static const struct file_operations eps_dbg_fops = {
256 .owner = THIS_MODULE,
257 .open = eps_dbg_open,
258 .llseek = seq_lseek,
259 .read = seq_read,
260 .release = single_release,
261 };
262
263 static void pxa_init_debugfs(struct pxa_udc *udc)
264 {
265 struct dentry *root, *state, *queues, *eps;
266
267 root = debugfs_create_dir(udc->gadget.name, NULL);
268 if (IS_ERR(root) || !root)
269 goto err_root;
270
271 state = debugfs_create_file("udcstate", 0400, root, udc,
272 &state_dbg_fops);
273 if (!state)
274 goto err_state;
275 queues = debugfs_create_file("queues", 0400, root, udc,
276 &queues_dbg_fops);
277 if (!queues)
278 goto err_queues;
279 eps = debugfs_create_file("epstate", 0400, root, udc,
280 &eps_dbg_fops);
281 if (!eps)
282 goto err_eps;
283
284 udc->debugfs_root = root;
285 udc->debugfs_state = state;
286 udc->debugfs_queues = queues;
287 udc->debugfs_eps = eps;
288 return;
289 err_eps:
290 debugfs_remove(eps);
291 err_queues:
292 debugfs_remove(queues);
293 err_state:
294 debugfs_remove(root);
295 err_root:
296 dev_err(udc->dev, "debugfs is not available\n");
297 }
298
299 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
300 {
301 debugfs_remove(udc->debugfs_eps);
302 debugfs_remove(udc->debugfs_queues);
303 debugfs_remove(udc->debugfs_state);
304 debugfs_remove(udc->debugfs_root);
305 udc->debugfs_eps = NULL;
306 udc->debugfs_queues = NULL;
307 udc->debugfs_state = NULL;
308 udc->debugfs_root = NULL;
309 }
310
311 #else
312 static inline void pxa_init_debugfs(struct pxa_udc *udc)
313 {
314 }
315
316 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
317 {
318 }
319 #endif
320
321 /**
322 * is_match_usb_pxa - check if usb_ep and pxa_ep match
323 * @udc_usb_ep: usb endpoint
324 * @ep: pxa endpoint
325 * @config: configuration required in pxa_ep
326 * @interface: interface required in pxa_ep
327 * @altsetting: altsetting required in pxa_ep
328 *
329 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
330 */
331 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
332 int config, int interface, int altsetting)
333 {
334 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
335 return 0;
336 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
337 return 0;
338 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
339 return 0;
340 if ((ep->config != config) || (ep->interface != interface)
341 || (ep->alternate != altsetting))
342 return 0;
343 return 1;
344 }
345
346 /**
347 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
348 * @udc: pxa udc
349 * @udc_usb_ep: udc_usb_ep structure
350 *
351 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
352 * This is necessary because of the strong pxa hardware restriction requiring
353 * that once pxa endpoints are initialized, their configuration is freezed, and
354 * no change can be made to their address, direction, or in which configuration,
355 * interface or altsetting they are active ... which differs from more usual
356 * models which have endpoints be roughly just addressable fifos, and leave
357 * configuration events up to gadget drivers (like all control messages).
358 *
359 * Note that there is still a blurred point here :
360 * - we rely on UDCCR register "active interface" and "active altsetting".
361 * This is a nonsense in regard of USB spec, where multiple interfaces are
362 * active at the same time.
363 * - if we knew for sure that the pxa can handle multiple interface at the
364 * same time, assuming Intel's Developer Guide is wrong, this function
365 * should be reviewed, and a cache of couples (iface, altsetting) should
366 * be kept in the pxa_udc structure. In this case this function would match
367 * against the cache of couples instead of the "last altsetting" set up.
368 *
369 * Returns the matched pxa_ep structure or NULL if none found
370 */
371 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
372 struct udc_usb_ep *udc_usb_ep)
373 {
374 int i;
375 struct pxa_ep *ep;
376 int cfg = udc->config;
377 int iface = udc->last_interface;
378 int alt = udc->last_alternate;
379
380 if (udc_usb_ep == &udc->udc_usb_ep[0])
381 return &udc->pxa_ep[0];
382
383 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
384 ep = &udc->pxa_ep[i];
385 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
386 return ep;
387 }
388 return NULL;
389 }
390
391 /**
392 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
393 * @udc: pxa udc
394 *
395 * Context: in_interrupt()
396 *
397 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
398 * previously set up (and is not NULL). The update is necessary is a
399 * configuration change or altsetting change was issued by the USB host.
400 */
401 static void update_pxa_ep_matches(struct pxa_udc *udc)
402 {
403 int i;
404 struct udc_usb_ep *udc_usb_ep;
405
406 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
407 udc_usb_ep = &udc->udc_usb_ep[i];
408 if (udc_usb_ep->pxa_ep)
409 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
410 }
411 }
412
413 /**
414 * pio_irq_enable - Enables irq generation for one endpoint
415 * @ep: udc endpoint
416 */
417 static void pio_irq_enable(struct pxa_ep *ep)
418 {
419 struct pxa_udc *udc = ep->dev;
420 int index = EPIDX(ep);
421 u32 udcicr0 = udc_readl(udc, UDCICR0);
422 u32 udcicr1 = udc_readl(udc, UDCICR1);
423
424 if (index < 16)
425 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
426 else
427 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
428 }
429
430 /**
431 * pio_irq_disable - Disables irq generation for one endpoint
432 * @ep: udc endpoint
433 */
434 static void pio_irq_disable(struct pxa_ep *ep)
435 {
436 struct pxa_udc *udc = ep->dev;
437 int index = EPIDX(ep);
438 u32 udcicr0 = udc_readl(udc, UDCICR0);
439 u32 udcicr1 = udc_readl(udc, UDCICR1);
440
441 if (index < 16)
442 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
443 else
444 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
445 }
446
447 /**
448 * udc_set_mask_UDCCR - set bits in UDCCR
449 * @udc: udc device
450 * @mask: bits to set in UDCCR
451 *
452 * Sets bits in UDCCR, leaving DME and FST bits as they were.
453 */
454 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
455 {
456 u32 udccr = udc_readl(udc, UDCCR);
457 udc_writel(udc, UDCCR,
458 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
459 }
460
461 /**
462 * udc_clear_mask_UDCCR - clears bits in UDCCR
463 * @udc: udc device
464 * @mask: bit to clear in UDCCR
465 *
466 * Clears bits in UDCCR, leaving DME and FST bits as they were.
467 */
468 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
469 {
470 u32 udccr = udc_readl(udc, UDCCR);
471 udc_writel(udc, UDCCR,
472 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
473 }
474
475 /**
476 * ep_write_UDCCSR - set bits in UDCCSR
477 * @udc: udc device
478 * @mask: bits to set in UDCCR
479 *
480 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
481 *
482 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
483 * SET_INTERFACE and SET_CONFIGURATION.
484 */
485 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
486 {
487 if (is_ep0(ep))
488 mask |= UDCCSR0_ACM;
489 udc_ep_writel(ep, UDCCSR, mask);
490 }
491
492 /**
493 * ep_count_bytes_remain - get how many bytes in udc endpoint
494 * @ep: udc endpoint
495 *
496 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
497 */
498 static int ep_count_bytes_remain(struct pxa_ep *ep)
499 {
500 if (ep->dir_in)
501 return -EOPNOTSUPP;
502 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
503 }
504
505 /**
506 * ep_is_empty - checks if ep has byte ready for reading
507 * @ep: udc endpoint
508 *
509 * If endpoint is the control endpoint, checks if there are bytes in the
510 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
511 * are ready for reading on OUT endpoint.
512 *
513 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
514 */
515 static int ep_is_empty(struct pxa_ep *ep)
516 {
517 int ret;
518
519 if (!is_ep0(ep) && ep->dir_in)
520 return -EOPNOTSUPP;
521 if (is_ep0(ep))
522 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
523 else
524 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
525 return ret;
526 }
527
528 /**
529 * ep_is_full - checks if ep has place to write bytes
530 * @ep: udc endpoint
531 *
532 * If endpoint is not the control endpoint and is an IN endpoint, checks if
533 * there is place to write bytes into the endpoint.
534 *
535 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
536 */
537 static int ep_is_full(struct pxa_ep *ep)
538 {
539 if (is_ep0(ep))
540 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
541 if (!ep->dir_in)
542 return -EOPNOTSUPP;
543 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
544 }
545
546 /**
547 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
548 * @ep: pxa endpoint
549 *
550 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
551 */
552 static int epout_has_pkt(struct pxa_ep *ep)
553 {
554 if (!is_ep0(ep) && ep->dir_in)
555 return -EOPNOTSUPP;
556 if (is_ep0(ep))
557 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
558 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
559 }
560
561 /**
562 * set_ep0state - Set ep0 automata state
563 * @dev: udc device
564 * @state: state
565 */
566 static void set_ep0state(struct pxa_udc *udc, int state)
567 {
568 struct pxa_ep *ep = &udc->pxa_ep[0];
569 char *old_stname = EP0_STNAME(udc);
570
571 udc->ep0state = state;
572 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
573 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
574 udc_ep_readl(ep, UDCBCR));
575 }
576
577 /**
578 * ep0_idle - Put control endpoint into idle state
579 * @dev: udc device
580 */
581 static void ep0_idle(struct pxa_udc *dev)
582 {
583 set_ep0state(dev, WAIT_FOR_SETUP);
584 }
585
586 /**
587 * inc_ep_stats_reqs - Update ep stats counts
588 * @ep: physical endpoint
589 * @req: usb request
590 * @is_in: ep direction (USB_DIR_IN or 0)
591 *
592 */
593 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
594 {
595 if (is_in)
596 ep->stats.in_ops++;
597 else
598 ep->stats.out_ops++;
599 }
600
601 /**
602 * inc_ep_stats_bytes - Update ep stats counts
603 * @ep: physical endpoint
604 * @count: bytes transfered on endpoint
605 * @is_in: ep direction (USB_DIR_IN or 0)
606 */
607 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
608 {
609 if (is_in)
610 ep->stats.in_bytes += count;
611 else
612 ep->stats.out_bytes += count;
613 }
614
615 /**
616 * pxa_ep_setup - Sets up an usb physical endpoint
617 * @ep: pxa27x physical endpoint
618 *
619 * Find the physical pxa27x ep, and setup its UDCCR
620 */
621 static __init void pxa_ep_setup(struct pxa_ep *ep)
622 {
623 u32 new_udccr;
624
625 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
626 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
627 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
628 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
629 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
630 | ((ep->dir_in) ? UDCCONR_ED : 0)
631 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
632 | UDCCONR_EE;
633
634 udc_ep_writel(ep, UDCCR, new_udccr);
635 }
636
637 /**
638 * pxa_eps_setup - Sets up all usb physical endpoints
639 * @dev: udc device
640 *
641 * Setup all pxa physical endpoints, except ep0
642 */
643 static __init void pxa_eps_setup(struct pxa_udc *dev)
644 {
645 unsigned int i;
646
647 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
648
649 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
650 pxa_ep_setup(&dev->pxa_ep[i]);
651 }
652
653 /**
654 * pxa_ep_alloc_request - Allocate usb request
655 * @_ep: usb endpoint
656 * @gfp_flags:
657 *
658 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
659 * must still pass correctly initialized endpoints, since other controller
660 * drivers may care about how it's currently set up (dma issues etc).
661 */
662 static struct usb_request *
663 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
664 {
665 struct pxa27x_request *req;
666
667 req = kzalloc(sizeof *req, gfp_flags);
668 if (!req)
669 return NULL;
670
671 INIT_LIST_HEAD(&req->queue);
672 req->in_use = 0;
673 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
674
675 return &req->req;
676 }
677
678 /**
679 * pxa_ep_free_request - Free usb request
680 * @_ep: usb endpoint
681 * @_req: usb request
682 *
683 * Wrapper around kfree to free _req
684 */
685 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
686 {
687 struct pxa27x_request *req;
688
689 req = container_of(_req, struct pxa27x_request, req);
690 WARN_ON(!list_empty(&req->queue));
691 kfree(req);
692 }
693
694 /**
695 * ep_add_request - add a request to the endpoint's queue
696 * @ep: usb endpoint
697 * @req: usb request
698 *
699 * Context: ep->lock held
700 *
701 * Queues the request in the endpoint's queue, and enables the interrupts
702 * on the endpoint.
703 */
704 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
705 {
706 if (unlikely(!req))
707 return;
708 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
709 req->req.length, udc_ep_readl(ep, UDCCSR));
710
711 req->in_use = 1;
712 list_add_tail(&req->queue, &ep->queue);
713 pio_irq_enable(ep);
714 }
715
716 /**
717 * ep_del_request - removes a request from the endpoint's queue
718 * @ep: usb endpoint
719 * @req: usb request
720 *
721 * Context: ep->lock held
722 *
723 * Unqueue the request from the endpoint's queue. If there are no more requests
724 * on the endpoint, and if it's not the control endpoint, interrupts are
725 * disabled on the endpoint.
726 */
727 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
728 {
729 if (unlikely(!req))
730 return;
731 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
732 req->req.length, udc_ep_readl(ep, UDCCSR));
733
734 list_del_init(&req->queue);
735 req->in_use = 0;
736 if (!is_ep0(ep) && list_empty(&ep->queue))
737 pio_irq_disable(ep);
738 }
739
740 /**
741 * req_done - Complete an usb request
742 * @ep: pxa physical endpoint
743 * @req: pxa request
744 * @status: usb request status sent to gadget API
745 *
746 * Context: ep->lock held
747 *
748 * Retire a pxa27x usb request. Endpoint must be locked.
749 */
750 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status)
751 {
752 ep_del_request(ep, req);
753 if (likely(req->req.status == -EINPROGRESS))
754 req->req.status = status;
755 else
756 status = req->req.status;
757
758 if (status && status != -ESHUTDOWN)
759 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
760 &req->req, status,
761 req->req.actual, req->req.length);
762
763 req->req.complete(&req->udc_usb_ep->usb_ep, &req->req);
764 }
765
766 /**
767 * ep_end_out_req - Ends endpoint OUT request
768 * @ep: physical endpoint
769 * @req: pxa request
770 *
771 * Context: ep->lock held
772 *
773 * Ends endpoint OUT request (completes usb request).
774 */
775 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req)
776 {
777 inc_ep_stats_reqs(ep, !USB_DIR_IN);
778 req_done(ep, req, 0);
779 }
780
781 /**
782 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
783 * @ep: physical endpoint
784 * @req: pxa request
785 *
786 * Context: ep->lock held
787 *
788 * Ends control endpoint OUT request (completes usb request), and puts
789 * control endpoint into idle state
790 */
791 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req)
792 {
793 set_ep0state(ep->dev, OUT_STATUS_STAGE);
794 ep_end_out_req(ep, req);
795 ep0_idle(ep->dev);
796 }
797
798 /**
799 * ep_end_in_req - Ends endpoint IN request
800 * @ep: physical endpoint
801 * @req: pxa request
802 *
803 * Context: ep->lock held
804 *
805 * Ends endpoint IN request (completes usb request).
806 */
807 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req)
808 {
809 inc_ep_stats_reqs(ep, USB_DIR_IN);
810 req_done(ep, req, 0);
811 }
812
813 /**
814 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
815 * @ep: physical endpoint
816 * @req: pxa request
817 *
818 * Context: ep->lock held
819 *
820 * Ends control endpoint IN request (completes usb request), and puts
821 * control endpoint into status state
822 */
823 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req)
824 {
825 set_ep0state(ep->dev, IN_STATUS_STAGE);
826 ep_end_in_req(ep, req);
827 }
828
829 /**
830 * nuke - Dequeue all requests
831 * @ep: pxa endpoint
832 * @status: usb request status
833 *
834 * Context: ep->lock held
835 *
836 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
837 * disabled on that endpoint (because no more requests).
838 */
839 static void nuke(struct pxa_ep *ep, int status)
840 {
841 struct pxa27x_request *req;
842
843 while (!list_empty(&ep->queue)) {
844 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
845 req_done(ep, req, status);
846 }
847 }
848
849 /**
850 * read_packet - transfer 1 packet from an OUT endpoint into request
851 * @ep: pxa physical endpoint
852 * @req: usb request
853 *
854 * Takes bytes from OUT endpoint and transfers them info the usb request.
855 * If there is less space in request than bytes received in OUT endpoint,
856 * bytes are left in the OUT endpoint.
857 *
858 * Returns how many bytes were actually transfered
859 */
860 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
861 {
862 u32 *buf;
863 int bytes_ep, bufferspace, count, i;
864
865 bytes_ep = ep_count_bytes_remain(ep);
866 bufferspace = req->req.length - req->req.actual;
867
868 buf = (u32 *)(req->req.buf + req->req.actual);
869 prefetchw(buf);
870
871 if (likely(!ep_is_empty(ep)))
872 count = min(bytes_ep, bufferspace);
873 else /* zlp */
874 count = 0;
875
876 for (i = count; i > 0; i -= 4)
877 *buf++ = udc_ep_readl(ep, UDCDR);
878 req->req.actual += count;
879
880 ep_write_UDCCSR(ep, UDCCSR_PC);
881
882 return count;
883 }
884
885 /**
886 * write_packet - transfer 1 packet from request into an IN endpoint
887 * @ep: pxa physical endpoint
888 * @req: usb request
889 * @max: max bytes that fit into endpoint
890 *
891 * Takes bytes from usb request, and transfers them into the physical
892 * endpoint. If there are no bytes to transfer, doesn't write anything
893 * to physical endpoint.
894 *
895 * Returns how many bytes were actually transfered.
896 */
897 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
898 unsigned int max)
899 {
900 int length, count, remain, i;
901 u32 *buf;
902 u8 *buf_8;
903
904 buf = (u32 *)(req->req.buf + req->req.actual);
905 prefetch(buf);
906
907 length = min(req->req.length - req->req.actual, max);
908 req->req.actual += length;
909
910 remain = length & 0x3;
911 count = length & ~(0x3);
912 for (i = count; i > 0 ; i -= 4)
913 udc_ep_writel(ep, UDCDR, *buf++);
914
915 buf_8 = (u8 *)buf;
916 for (i = remain; i > 0; i--)
917 udc_ep_writeb(ep, UDCDR, *buf_8++);
918
919 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
920 udc_ep_readl(ep, UDCCSR));
921
922 return length;
923 }
924
925 /**
926 * read_fifo - Transfer packets from OUT endpoint into usb request
927 * @ep: pxa physical endpoint
928 * @req: usb request
929 *
930 * Context: callable when in_interrupt()
931 *
932 * Unload as many packets as possible from the fifo we use for usb OUT
933 * transfers and put them into the request. Caller should have made sure
934 * there's at least one packet ready.
935 * Doesn't complete the request, that's the caller's job
936 *
937 * Returns 1 if the request completed, 0 otherwise
938 */
939 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
940 {
941 int count, is_short, completed = 0;
942
943 while (epout_has_pkt(ep)) {
944 count = read_packet(ep, req);
945 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
946
947 is_short = (count < ep->fifo_size);
948 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
949 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
950 &req->req, req->req.actual, req->req.length);
951
952 /* completion */
953 if (is_short || req->req.actual == req->req.length) {
954 completed = 1;
955 break;
956 }
957 /* finished that packet. the next one may be waiting... */
958 }
959 return completed;
960 }
961
962 /**
963 * write_fifo - transfer packets from usb request into an IN endpoint
964 * @ep: pxa physical endpoint
965 * @req: pxa usb request
966 *
967 * Write to an IN endpoint fifo, as many packets as possible.
968 * irqs will use this to write the rest later.
969 * caller guarantees at least one packet buffer is ready (or a zlp).
970 * Doesn't complete the request, that's the caller's job
971 *
972 * Returns 1 if request fully transfered, 0 if partial transfer
973 */
974 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
975 {
976 unsigned max;
977 int count, is_short, is_last = 0, completed = 0, totcount = 0;
978 u32 udccsr;
979
980 max = ep->fifo_size;
981 do {
982 is_short = 0;
983
984 udccsr = udc_ep_readl(ep, UDCCSR);
985 if (udccsr & UDCCSR_PC) {
986 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
987 udccsr);
988 ep_write_UDCCSR(ep, UDCCSR_PC);
989 }
990 if (udccsr & UDCCSR_TRN) {
991 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
992 udccsr);
993 ep_write_UDCCSR(ep, UDCCSR_TRN);
994 }
995
996 count = write_packet(ep, req, max);
997 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
998 totcount += count;
999
1000 /* last packet is usually short (or a zlp) */
1001 if (unlikely(count < max)) {
1002 is_last = 1;
1003 is_short = 1;
1004 } else {
1005 if (likely(req->req.length > req->req.actual)
1006 || req->req.zero)
1007 is_last = 0;
1008 else
1009 is_last = 1;
1010 /* interrupt/iso maxpacket may not fill the fifo */
1011 is_short = unlikely(max < ep->fifo_size);
1012 }
1013
1014 if (is_short)
1015 ep_write_UDCCSR(ep, UDCCSR_SP);
1016
1017 /* requests complete when all IN data is in the FIFO */
1018 if (is_last) {
1019 completed = 1;
1020 break;
1021 }
1022 } while (!ep_is_full(ep));
1023
1024 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
1025 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
1026 req->req.length - req->req.actual, &req->req);
1027
1028 return completed;
1029 }
1030
1031 /**
1032 * read_ep0_fifo - Transfer packets from control endpoint into usb request
1033 * @ep: control endpoint
1034 * @req: pxa usb request
1035 *
1036 * Special ep0 version of the above read_fifo. Reads as many bytes from control
1037 * endpoint as can be read, and stores them into usb request (limited by request
1038 * maximum length).
1039 *
1040 * Returns 0 if usb request only partially filled, 1 if fully filled
1041 */
1042 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1043 {
1044 int count, is_short, completed = 0;
1045
1046 while (epout_has_pkt(ep)) {
1047 count = read_packet(ep, req);
1048 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1049 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
1050
1051 is_short = (count < ep->fifo_size);
1052 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
1053 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
1054 &req->req, req->req.actual, req->req.length);
1055
1056 if (is_short || req->req.actual >= req->req.length) {
1057 completed = 1;
1058 break;
1059 }
1060 }
1061
1062 return completed;
1063 }
1064
1065 /**
1066 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
1067 * @ep: control endpoint
1068 * @req: request
1069 *
1070 * Context: callable when in_interrupt()
1071 *
1072 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1073 * If the request doesn't fit, the remaining part will be sent from irq.
1074 * The request is considered fully written only if either :
1075 * - last write transfered all remaining bytes, but fifo was not fully filled
1076 * - last write was a 0 length write
1077 *
1078 * Returns 1 if request fully written, 0 if request only partially sent
1079 */
1080 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1081 {
1082 unsigned count;
1083 int is_last, is_short;
1084
1085 count = write_packet(ep, req, EP0_FIFO_SIZE);
1086 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1087
1088 is_short = (count < EP0_FIFO_SIZE);
1089 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1090
1091 /* Sends either a short packet or a 0 length packet */
1092 if (unlikely(is_short))
1093 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1094
1095 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1096 count, is_short ? "/S" : "", is_last ? "/L" : "",
1097 req->req.length - req->req.actual,
1098 &req->req, udc_ep_readl(ep, UDCCSR));
1099
1100 return is_last;
1101 }
1102
1103 /**
1104 * pxa_ep_queue - Queue a request into an IN endpoint
1105 * @_ep: usb endpoint
1106 * @_req: usb request
1107 * @gfp_flags: flags
1108 *
1109 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1110 * in the special case of ep0 setup :
1111 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1112 *
1113 * Returns 0 if succedeed, error otherwise
1114 */
1115 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1116 gfp_t gfp_flags)
1117 {
1118 struct udc_usb_ep *udc_usb_ep;
1119 struct pxa_ep *ep;
1120 struct pxa27x_request *req;
1121 struct pxa_udc *dev;
1122 unsigned long flags;
1123 int rc = 0;
1124 int is_first_req;
1125 unsigned length;
1126
1127 req = container_of(_req, struct pxa27x_request, req);
1128 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1129
1130 if (unlikely(!_req || !_req->complete || !_req->buf))
1131 return -EINVAL;
1132
1133 if (unlikely(!_ep))
1134 return -EINVAL;
1135
1136 dev = udc_usb_ep->dev;
1137 ep = udc_usb_ep->pxa_ep;
1138 if (unlikely(!ep))
1139 return -EINVAL;
1140
1141 dev = ep->dev;
1142 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1143 ep_dbg(ep, "bogus device state\n");
1144 return -ESHUTDOWN;
1145 }
1146
1147 /* iso is always one packet per request, that's the only way
1148 * we can report per-packet status. that also helps with dma.
1149 */
1150 if (unlikely(EPXFERTYPE_is_ISO(ep)
1151 && req->req.length > ep->fifo_size))
1152 return -EMSGSIZE;
1153
1154 spin_lock_irqsave(&ep->lock, flags);
1155
1156 is_first_req = list_empty(&ep->queue);
1157 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1158 _req, is_first_req ? "yes" : "no",
1159 _req->length, _req->buf);
1160
1161 if (!ep->enabled) {
1162 _req->status = -ESHUTDOWN;
1163 rc = -ESHUTDOWN;
1164 goto out;
1165 }
1166
1167 if (req->in_use) {
1168 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1169 goto out;
1170 }
1171
1172 length = _req->length;
1173 _req->status = -EINPROGRESS;
1174 _req->actual = 0;
1175
1176 ep_add_request(ep, req);
1177
1178 if (is_ep0(ep)) {
1179 switch (dev->ep0state) {
1180 case WAIT_ACK_SET_CONF_INTERF:
1181 if (length == 0) {
1182 ep_end_in_req(ep, req);
1183 } else {
1184 ep_err(ep, "got a request of %d bytes while"
1185 "in state WAIT_ACK_SET_CONF_INTERF\n",
1186 length);
1187 ep_del_request(ep, req);
1188 rc = -EL2HLT;
1189 }
1190 ep0_idle(ep->dev);
1191 break;
1192 case IN_DATA_STAGE:
1193 if (!ep_is_full(ep))
1194 if (write_ep0_fifo(ep, req))
1195 ep0_end_in_req(ep, req);
1196 break;
1197 case OUT_DATA_STAGE:
1198 if ((length == 0) || !epout_has_pkt(ep))
1199 if (read_ep0_fifo(ep, req))
1200 ep0_end_out_req(ep, req);
1201 break;
1202 default:
1203 ep_err(ep, "odd state %s to send me a request\n",
1204 EP0_STNAME(ep->dev));
1205 ep_del_request(ep, req);
1206 rc = -EL2HLT;
1207 break;
1208 }
1209 } else {
1210 handle_ep(ep);
1211 }
1212
1213 out:
1214 spin_unlock_irqrestore(&ep->lock, flags);
1215 return rc;
1216 }
1217
1218 /**
1219 * pxa_ep_dequeue - Dequeue one request
1220 * @_ep: usb endpoint
1221 * @_req: usb request
1222 *
1223 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1224 */
1225 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1226 {
1227 struct pxa_ep *ep;
1228 struct udc_usb_ep *udc_usb_ep;
1229 struct pxa27x_request *req;
1230 unsigned long flags;
1231 int rc = -EINVAL;
1232
1233 if (!_ep)
1234 return rc;
1235 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1236 ep = udc_usb_ep->pxa_ep;
1237 if (!ep || is_ep0(ep))
1238 return rc;
1239
1240 spin_lock_irqsave(&ep->lock, flags);
1241
1242 /* make sure it's actually queued on this endpoint */
1243 list_for_each_entry(req, &ep->queue, queue) {
1244 if (&req->req == _req) {
1245 req_done(ep, req, -ECONNRESET);
1246 rc = 0;
1247 break;
1248 }
1249 }
1250
1251 spin_unlock_irqrestore(&ep->lock, flags);
1252 return rc;
1253 }
1254
1255 /**
1256 * pxa_ep_set_halt - Halts operations on one endpoint
1257 * @_ep: usb endpoint
1258 * @value:
1259 *
1260 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1261 */
1262 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1263 {
1264 struct pxa_ep *ep;
1265 struct udc_usb_ep *udc_usb_ep;
1266 unsigned long flags;
1267 int rc;
1268
1269
1270 if (!_ep)
1271 return -EINVAL;
1272 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1273 ep = udc_usb_ep->pxa_ep;
1274 if (!ep || is_ep0(ep))
1275 return -EINVAL;
1276
1277 if (value == 0) {
1278 /*
1279 * This path (reset toggle+halt) is needed to implement
1280 * SET_INTERFACE on normal hardware. but it can't be
1281 * done from software on the PXA UDC, and the hardware
1282 * forgets to do it as part of SET_INTERFACE automagic.
1283 */
1284 ep_dbg(ep, "only host can clear halt\n");
1285 return -EROFS;
1286 }
1287
1288 spin_lock_irqsave(&ep->lock, flags);
1289
1290 rc = -EAGAIN;
1291 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1292 goto out;
1293
1294 /* FST, FEF bits are the same for control and non control endpoints */
1295 rc = 0;
1296 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1297 if (is_ep0(ep))
1298 set_ep0state(ep->dev, STALL);
1299
1300 out:
1301 spin_unlock_irqrestore(&ep->lock, flags);
1302 return rc;
1303 }
1304
1305 /**
1306 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1307 * @_ep: usb endpoint
1308 *
1309 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1310 */
1311 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1312 {
1313 struct pxa_ep *ep;
1314 struct udc_usb_ep *udc_usb_ep;
1315
1316 if (!_ep)
1317 return -ENODEV;
1318 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1319 ep = udc_usb_ep->pxa_ep;
1320 if (!ep || is_ep0(ep))
1321 return -ENODEV;
1322
1323 if (ep->dir_in)
1324 return -EOPNOTSUPP;
1325 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1326 return 0;
1327 else
1328 return ep_count_bytes_remain(ep) + 1;
1329 }
1330
1331 /**
1332 * pxa_ep_fifo_flush - Flushes one endpoint
1333 * @_ep: usb endpoint
1334 *
1335 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1336 */
1337 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1338 {
1339 struct pxa_ep *ep;
1340 struct udc_usb_ep *udc_usb_ep;
1341 unsigned long flags;
1342
1343 if (!_ep)
1344 return;
1345 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1346 ep = udc_usb_ep->pxa_ep;
1347 if (!ep || is_ep0(ep))
1348 return;
1349
1350 spin_lock_irqsave(&ep->lock, flags);
1351
1352 if (unlikely(!list_empty(&ep->queue)))
1353 ep_dbg(ep, "called while queue list not empty\n");
1354 ep_dbg(ep, "called\n");
1355
1356 /* for OUT, just read and discard the FIFO contents. */
1357 if (!ep->dir_in) {
1358 while (!ep_is_empty(ep))
1359 udc_ep_readl(ep, UDCDR);
1360 } else {
1361 /* most IN status is the same, but ISO can't stall */
1362 ep_write_UDCCSR(ep,
1363 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1364 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1365 }
1366
1367 spin_unlock_irqrestore(&ep->lock, flags);
1368
1369 return;
1370 }
1371
1372 /**
1373 * pxa_ep_enable - Enables usb endpoint
1374 * @_ep: usb endpoint
1375 * @desc: usb endpoint descriptor
1376 *
1377 * Nothing much to do here, as ep configuration is done once and for all
1378 * before udc is enabled. After udc enable, no physical endpoint configuration
1379 * can be changed.
1380 * Function makes sanity checks and flushes the endpoint.
1381 */
1382 static int pxa_ep_enable(struct usb_ep *_ep,
1383 const struct usb_endpoint_descriptor *desc)
1384 {
1385 struct pxa_ep *ep;
1386 struct udc_usb_ep *udc_usb_ep;
1387 struct pxa_udc *udc;
1388
1389 if (!_ep || !desc)
1390 return -EINVAL;
1391
1392 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1393 if (udc_usb_ep->pxa_ep) {
1394 ep = udc_usb_ep->pxa_ep;
1395 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1396 _ep->name);
1397 } else {
1398 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1399 }
1400
1401 if (!ep || is_ep0(ep)) {
1402 dev_err(udc_usb_ep->dev->dev,
1403 "unable to match pxa_ep for ep %s\n",
1404 _ep->name);
1405 return -EINVAL;
1406 }
1407
1408 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1409 || (ep->type != usb_endpoint_type(desc))) {
1410 ep_err(ep, "type mismatch\n");
1411 return -EINVAL;
1412 }
1413
1414 if (ep->fifo_size < le16_to_cpu(desc->wMaxPacketSize)) {
1415 ep_err(ep, "bad maxpacket\n");
1416 return -ERANGE;
1417 }
1418
1419 udc_usb_ep->pxa_ep = ep;
1420 udc = ep->dev;
1421
1422 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1423 ep_err(ep, "bogus device state\n");
1424 return -ESHUTDOWN;
1425 }
1426
1427 ep->enabled = 1;
1428
1429 /* flush fifo (mostly for OUT buffers) */
1430 pxa_ep_fifo_flush(_ep);
1431
1432 ep_dbg(ep, "enabled\n");
1433 return 0;
1434 }
1435
1436 /**
1437 * pxa_ep_disable - Disable usb endpoint
1438 * @_ep: usb endpoint
1439 *
1440 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1441 * changed.
1442 * Function flushes the endpoint and related requests.
1443 */
1444 static int pxa_ep_disable(struct usb_ep *_ep)
1445 {
1446 struct pxa_ep *ep;
1447 struct udc_usb_ep *udc_usb_ep;
1448 unsigned long flags;
1449
1450 if (!_ep)
1451 return -EINVAL;
1452
1453 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1454 ep = udc_usb_ep->pxa_ep;
1455 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1456 return -EINVAL;
1457
1458 spin_lock_irqsave(&ep->lock, flags);
1459 ep->enabled = 0;
1460 nuke(ep, -ESHUTDOWN);
1461 spin_unlock_irqrestore(&ep->lock, flags);
1462
1463 pxa_ep_fifo_flush(_ep);
1464 udc_usb_ep->pxa_ep = NULL;
1465
1466 ep_dbg(ep, "disabled\n");
1467 return 0;
1468 }
1469
1470 static struct usb_ep_ops pxa_ep_ops = {
1471 .enable = pxa_ep_enable,
1472 .disable = pxa_ep_disable,
1473
1474 .alloc_request = pxa_ep_alloc_request,
1475 .free_request = pxa_ep_free_request,
1476
1477 .queue = pxa_ep_queue,
1478 .dequeue = pxa_ep_dequeue,
1479
1480 .set_halt = pxa_ep_set_halt,
1481 .fifo_status = pxa_ep_fifo_status,
1482 .fifo_flush = pxa_ep_fifo_flush,
1483 };
1484
1485 /**
1486 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1487 * @udc: udc device
1488 * @on: 0 if disconnect pullup resistor, 1 otherwise
1489 * Context: any
1490 *
1491 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1492 * declare it as a full speed usb device
1493 */
1494 static void dplus_pullup(struct pxa_udc *udc, int on)
1495 {
1496 if (on) {
1497 if (gpio_is_valid(udc->mach->gpio_pullup))
1498 gpio_set_value(udc->mach->gpio_pullup,
1499 !udc->mach->gpio_pullup_inverted);
1500 if (udc->mach->udc_command)
1501 udc->mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
1502 } else {
1503 if (gpio_is_valid(udc->mach->gpio_pullup))
1504 gpio_set_value(udc->mach->gpio_pullup,
1505 udc->mach->gpio_pullup_inverted);
1506 if (udc->mach->udc_command)
1507 udc->mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1508 }
1509 udc->pullup_on = on;
1510 }
1511
1512 /**
1513 * pxa_udc_get_frame - Returns usb frame number
1514 * @_gadget: usb gadget
1515 */
1516 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1517 {
1518 struct pxa_udc *udc = to_gadget_udc(_gadget);
1519
1520 return (udc_readl(udc, UDCFNR) & 0x7ff);
1521 }
1522
1523 /**
1524 * pxa_udc_wakeup - Force udc device out of suspend
1525 * @_gadget: usb gadget
1526 *
1527 * Returns 0 if succesfull, error code otherwise
1528 */
1529 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1530 {
1531 struct pxa_udc *udc = to_gadget_udc(_gadget);
1532
1533 /* host may not have enabled remote wakeup */
1534 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1535 return -EHOSTUNREACH;
1536 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1537 return 0;
1538 }
1539
1540 static void udc_enable(struct pxa_udc *udc);
1541 static void udc_disable(struct pxa_udc *udc);
1542
1543 /**
1544 * should_enable_udc - Tells if UDC should be enabled
1545 * @udc: udc device
1546 * Context: any
1547 *
1548 * The UDC should be enabled if :
1549
1550 * - the pullup resistor is connected
1551 * - and a gadget driver is bound
1552 * - and vbus is sensed (or no vbus sense is available)
1553 *
1554 * Returns 1 if UDC should be enabled, 0 otherwise
1555 */
1556 static int should_enable_udc(struct pxa_udc *udc)
1557 {
1558 int put_on;
1559
1560 put_on = ((udc->pullup_on) && (udc->driver));
1561 put_on &= ((udc->vbus_sensed) || (!udc->transceiver));
1562 return put_on;
1563 }
1564
1565 /**
1566 * should_disable_udc - Tells if UDC should be disabled
1567 * @udc: udc device
1568 * Context: any
1569 *
1570 * The UDC should be disabled if :
1571 * - the pullup resistor is not connected
1572 * - or no gadget driver is bound
1573 * - or no vbus is sensed (when vbus sesing is available)
1574 *
1575 * Returns 1 if UDC should be disabled
1576 */
1577 static int should_disable_udc(struct pxa_udc *udc)
1578 {
1579 int put_off;
1580
1581 put_off = ((!udc->pullup_on) || (!udc->driver));
1582 put_off |= ((!udc->vbus_sensed) && (udc->transceiver));
1583 return put_off;
1584 }
1585
1586 /**
1587 * pxa_udc_pullup - Offer manual D+ pullup control
1588 * @_gadget: usb gadget using the control
1589 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1590 * Context: !in_interrupt()
1591 *
1592 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1593 */
1594 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1595 {
1596 struct pxa_udc *udc = to_gadget_udc(_gadget);
1597
1598 if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command)
1599 return -EOPNOTSUPP;
1600
1601 dplus_pullup(udc, is_active);
1602
1603 if (should_enable_udc(udc))
1604 udc_enable(udc);
1605 if (should_disable_udc(udc))
1606 udc_disable(udc);
1607 return 0;
1608 }
1609
1610 static void udc_enable(struct pxa_udc *udc);
1611 static void udc_disable(struct pxa_udc *udc);
1612
1613 /**
1614 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1615 * @_gadget: usb gadget
1616 * @is_active: 0 if should disable the udc, 1 if should enable
1617 *
1618 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1619 * udc, and deactivates D+ pullup resistor.
1620 *
1621 * Returns 0
1622 */
1623 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1624 {
1625 struct pxa_udc *udc = to_gadget_udc(_gadget);
1626
1627 udc->vbus_sensed = is_active;
1628 if (should_enable_udc(udc))
1629 udc_enable(udc);
1630 if (should_disable_udc(udc))
1631 udc_disable(udc);
1632
1633 return 0;
1634 }
1635
1636 /**
1637 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1638 * @_gadget: usb gadget
1639 * @mA: current drawn
1640 *
1641 * Context: !in_interrupt()
1642 *
1643 * Called after a configuration was chosen by a USB host, to inform how much
1644 * current can be drawn by the device from VBus line.
1645 *
1646 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1647 */
1648 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1649 {
1650 struct pxa_udc *udc;
1651
1652 udc = to_gadget_udc(_gadget);
1653 if (udc->transceiver)
1654 return otg_set_power(udc->transceiver, mA);
1655 return -EOPNOTSUPP;
1656 }
1657
1658 static const struct usb_gadget_ops pxa_udc_ops = {
1659 .get_frame = pxa_udc_get_frame,
1660 .wakeup = pxa_udc_wakeup,
1661 .pullup = pxa_udc_pullup,
1662 .vbus_session = pxa_udc_vbus_session,
1663 .vbus_draw = pxa_udc_vbus_draw,
1664 };
1665
1666 /**
1667 * udc_disable - disable udc device controller
1668 * @udc: udc device
1669 * Context: any
1670 *
1671 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1672 * interrupts.
1673 */
1674 static void udc_disable(struct pxa_udc *udc)
1675 {
1676 if (!udc->enabled)
1677 return;
1678
1679 udc_writel(udc, UDCICR0, 0);
1680 udc_writel(udc, UDCICR1, 0);
1681
1682 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1683 clk_disable(udc->clk);
1684
1685 ep0_idle(udc);
1686 udc->gadget.speed = USB_SPEED_UNKNOWN;
1687
1688 udc->enabled = 0;
1689 }
1690
1691 /**
1692 * udc_init_data - Initialize udc device data structures
1693 * @dev: udc device
1694 *
1695 * Initializes gadget endpoint list, endpoints locks. No action is taken
1696 * on the hardware.
1697 */
1698 static __init void udc_init_data(struct pxa_udc *dev)
1699 {
1700 int i;
1701 struct pxa_ep *ep;
1702
1703 /* device/ep0 records init */
1704 INIT_LIST_HEAD(&dev->gadget.ep_list);
1705 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1706 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1707 ep0_idle(dev);
1708
1709 /* PXA endpoints init */
1710 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1711 ep = &dev->pxa_ep[i];
1712
1713 ep->enabled = is_ep0(ep);
1714 INIT_LIST_HEAD(&ep->queue);
1715 spin_lock_init(&ep->lock);
1716 }
1717
1718 /* USB endpoints init */
1719 for (i = 1; i < NR_USB_ENDPOINTS; i++)
1720 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1721 &dev->gadget.ep_list);
1722 }
1723
1724 /**
1725 * udc_enable - Enables the udc device
1726 * @dev: udc device
1727 *
1728 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1729 * interrupts, sets usb as UDC client and setups endpoints.
1730 */
1731 static void udc_enable(struct pxa_udc *udc)
1732 {
1733 if (udc->enabled)
1734 return;
1735
1736 udc_writel(udc, UDCICR0, 0);
1737 udc_writel(udc, UDCICR1, 0);
1738 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1739
1740 clk_enable(udc->clk);
1741
1742 ep0_idle(udc);
1743 udc->gadget.speed = USB_SPEED_FULL;
1744 memset(&udc->stats, 0, sizeof(udc->stats));
1745
1746 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1747 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1748 udelay(2);
1749 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1750 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1751
1752 /*
1753 * Caller must be able to sleep in order to cope with startup transients
1754 */
1755 msleep(100);
1756
1757 /* enable suspend/resume and reset irqs */
1758 udc_writel(udc, UDCICR1,
1759 UDCICR1_IECC | UDCICR1_IERU
1760 | UDCICR1_IESU | UDCICR1_IERS);
1761
1762 /* enable ep0 irqs */
1763 pio_irq_enable(&udc->pxa_ep[0]);
1764
1765 udc->enabled = 1;
1766 }
1767
1768 /**
1769 * usb_gadget_register_driver - Register gadget driver
1770 * @driver: gadget driver
1771 *
1772 * When a driver is successfully registered, it will receive control requests
1773 * including set_configuration(), which enables non-control requests. Then
1774 * usb traffic follows until a disconnect is reported. Then a host may connect
1775 * again, or the driver might get unbound.
1776 *
1777 * Note that the udc is not automatically enabled. Check function
1778 * should_enable_udc().
1779 *
1780 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1781 */
1782 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1783 {
1784 struct pxa_udc *udc = the_controller;
1785 int retval;
1786
1787 if (!driver || driver->speed < USB_SPEED_FULL || !driver->bind
1788 || !driver->disconnect || !driver->setup)
1789 return -EINVAL;
1790 if (!udc)
1791 return -ENODEV;
1792 if (udc->driver)
1793 return -EBUSY;
1794
1795 /* first hook up the driver ... */
1796 udc->driver = driver;
1797 udc->gadget.dev.driver = &driver->driver;
1798 dplus_pullup(udc, 1);
1799
1800 retval = device_add(&udc->gadget.dev);
1801 if (retval) {
1802 dev_err(udc->dev, "device_add error %d\n", retval);
1803 goto add_fail;
1804 }
1805 retval = driver->bind(&udc->gadget);
1806 if (retval) {
1807 dev_err(udc->dev, "bind to driver %s --> error %d\n",
1808 driver->driver.name, retval);
1809 goto bind_fail;
1810 }
1811 dev_dbg(udc->dev, "registered gadget driver '%s'\n",
1812 driver->driver.name);
1813
1814 if (udc->transceiver) {
1815 retval = otg_set_peripheral(udc->transceiver, &udc->gadget);
1816 if (retval) {
1817 dev_err(udc->dev, "can't bind to transceiver\n");
1818 goto transceiver_fail;
1819 }
1820 }
1821
1822 if (should_enable_udc(udc))
1823 udc_enable(udc);
1824 return 0;
1825
1826 transceiver_fail:
1827 if (driver->unbind)
1828 driver->unbind(&udc->gadget);
1829 bind_fail:
1830 device_del(&udc->gadget.dev);
1831 add_fail:
1832 udc->driver = NULL;
1833 udc->gadget.dev.driver = NULL;
1834 return retval;
1835 }
1836 EXPORT_SYMBOL(usb_gadget_register_driver);
1837
1838
1839 /**
1840 * stop_activity - Stops udc endpoints
1841 * @udc: udc device
1842 * @driver: gadget driver
1843 *
1844 * Disables all udc endpoints (even control endpoint), report disconnect to
1845 * the gadget user.
1846 */
1847 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver)
1848 {
1849 int i;
1850
1851 /* don't disconnect drivers more than once */
1852 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1853 driver = NULL;
1854 udc->gadget.speed = USB_SPEED_UNKNOWN;
1855
1856 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1857 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1858
1859 if (driver)
1860 driver->disconnect(&udc->gadget);
1861 }
1862
1863 /**
1864 * usb_gadget_unregister_driver - Unregister the gadget driver
1865 * @driver: gadget driver
1866 *
1867 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1868 */
1869 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1870 {
1871 struct pxa_udc *udc = the_controller;
1872
1873 if (!udc)
1874 return -ENODEV;
1875 if (!driver || driver != udc->driver || !driver->unbind)
1876 return -EINVAL;
1877
1878 stop_activity(udc, driver);
1879 udc_disable(udc);
1880 dplus_pullup(udc, 0);
1881
1882 driver->unbind(&udc->gadget);
1883 udc->driver = NULL;
1884
1885 device_del(&udc->gadget.dev);
1886 dev_info(udc->dev, "unregistered gadget driver '%s'\n",
1887 driver->driver.name);
1888
1889 if (udc->transceiver)
1890 return otg_set_peripheral(udc->transceiver, NULL);
1891 return 0;
1892 }
1893 EXPORT_SYMBOL(usb_gadget_unregister_driver);
1894
1895 /**
1896 * handle_ep0_ctrl_req - handle control endpoint control request
1897 * @udc: udc device
1898 * @req: control request
1899 */
1900 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1901 struct pxa27x_request *req)
1902 {
1903 struct pxa_ep *ep = &udc->pxa_ep[0];
1904 union {
1905 struct usb_ctrlrequest r;
1906 u32 word[2];
1907 } u;
1908 int i;
1909 int have_extrabytes = 0;
1910
1911 nuke(ep, -EPROTO);
1912
1913 /*
1914 * In the PXA320 manual, in the section about Back-to-Back setup
1915 * packets, it describes this situation. The solution is to set OPC to
1916 * get rid of the status packet, and then continue with the setup
1917 * packet. Generalize to pxa27x CPUs.
1918 */
1919 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1920 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1921
1922 /* read SETUP packet */
1923 for (i = 0; i < 2; i++) {
1924 if (unlikely(ep_is_empty(ep)))
1925 goto stall;
1926 u.word[i] = udc_ep_readl(ep, UDCDR);
1927 }
1928
1929 have_extrabytes = !ep_is_empty(ep);
1930 while (!ep_is_empty(ep)) {
1931 i = udc_ep_readl(ep, UDCDR);
1932 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1933 }
1934
1935 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1936 u.r.bRequestType, u.r.bRequest,
1937 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1938 le16_to_cpu(u.r.wLength));
1939 if (unlikely(have_extrabytes))
1940 goto stall;
1941
1942 if (u.r.bRequestType & USB_DIR_IN)
1943 set_ep0state(udc, IN_DATA_STAGE);
1944 else
1945 set_ep0state(udc, OUT_DATA_STAGE);
1946
1947 /* Tell UDC to enter Data Stage */
1948 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1949
1950 i = udc->driver->setup(&udc->gadget, &u.r);
1951 if (i < 0)
1952 goto stall;
1953 out:
1954 return;
1955 stall:
1956 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1957 udc_ep_readl(ep, UDCCSR), i);
1958 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1959 set_ep0state(udc, STALL);
1960 goto out;
1961 }
1962
1963 /**
1964 * handle_ep0 - Handle control endpoint data transfers
1965 * @udc: udc device
1966 * @fifo_irq: 1 if triggered by fifo service type irq
1967 * @opc_irq: 1 if triggered by output packet complete type irq
1968 *
1969 * Context : when in_interrupt() or with ep->lock held
1970 *
1971 * Tries to transfer all pending request data into the endpoint and/or
1972 * transfer all pending data in the endpoint into usb requests.
1973 * Handles states of ep0 automata.
1974 *
1975 * PXA27x hardware handles several standard usb control requests without
1976 * driver notification. The requests fully handled by hardware are :
1977 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1978 * GET_STATUS
1979 * The requests handled by hardware, but with irq notification are :
1980 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1981 * The remaining standard requests really handled by handle_ep0 are :
1982 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1983 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1984 * uniformly, by gadget drivers.
1985 *
1986 * The control endpoint state machine is _not_ USB spec compliant, it's even
1987 * hardly compliant with Intel PXA270 developers guide.
1988 * The key points which inferred this state machine are :
1989 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1990 * software.
1991 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1992 * cleared by software.
1993 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1994 * before reading ep0.
1995 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1996 * (check Back-to-Back setup packet in developers guide).
1997 * - irq can be called on a "packet complete" event (opc_irq=1), while
1998 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1999 * from experimentation).
2000 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
2001 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
2002 * => we never actually read the "status stage" packet of an IN data stage
2003 * => this is not documented in Intel documentation
2004 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
2005 * STAGE. The driver add STATUS STAGE to send last zero length packet in
2006 * OUT_STATUS_STAGE.
2007 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
2008 * event is detected, we terminate the status stage without ackowledging the
2009 * packet (not to risk to loose a potential SETUP packet)
2010 */
2011 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
2012 {
2013 u32 udccsr0;
2014 struct pxa_ep *ep = &udc->pxa_ep[0];
2015 struct pxa27x_request *req = NULL;
2016 int completed = 0;
2017
2018 if (!list_empty(&ep->queue))
2019 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
2020
2021 udccsr0 = udc_ep_readl(ep, UDCCSR);
2022 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
2023 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
2024 (fifo_irq << 1 | opc_irq));
2025
2026 if (udccsr0 & UDCCSR0_SST) {
2027 ep_dbg(ep, "clearing stall status\n");
2028 nuke(ep, -EPIPE);
2029 ep_write_UDCCSR(ep, UDCCSR0_SST);
2030 ep0_idle(udc);
2031 }
2032
2033 if (udccsr0 & UDCCSR0_SA) {
2034 nuke(ep, 0);
2035 set_ep0state(udc, SETUP_STAGE);
2036 }
2037
2038 switch (udc->ep0state) {
2039 case WAIT_FOR_SETUP:
2040 /*
2041 * Hardware bug : beware, we cannot clear OPC, since we would
2042 * miss a potential OPC irq for a setup packet.
2043 * So, we only do ... nothing, and hope for a next irq with
2044 * UDCCSR0_SA set.
2045 */
2046 break;
2047 case SETUP_STAGE:
2048 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
2049 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
2050 handle_ep0_ctrl_req(udc, req);
2051 break;
2052 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
2053 if (epout_has_pkt(ep))
2054 ep_write_UDCCSR(ep, UDCCSR0_OPC);
2055 if (req && !ep_is_full(ep))
2056 completed = write_ep0_fifo(ep, req);
2057 if (completed)
2058 ep0_end_in_req(ep, req);
2059 break;
2060 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
2061 if (epout_has_pkt(ep) && req)
2062 completed = read_ep0_fifo(ep, req);
2063 if (completed)
2064 ep0_end_out_req(ep, req);
2065 break;
2066 case STALL:
2067 ep_write_UDCCSR(ep, UDCCSR0_FST);
2068 break;
2069 case IN_STATUS_STAGE:
2070 /*
2071 * Hardware bug : beware, we cannot clear OPC, since we would
2072 * miss a potential PC irq for a setup packet.
2073 * So, we only put the ep0 into WAIT_FOR_SETUP state.
2074 */
2075 if (opc_irq)
2076 ep0_idle(udc);
2077 break;
2078 case OUT_STATUS_STAGE:
2079 case WAIT_ACK_SET_CONF_INTERF:
2080 ep_warn(ep, "should never get in %s state here!!!\n",
2081 EP0_STNAME(ep->dev));
2082 ep0_idle(udc);
2083 break;
2084 }
2085 }
2086
2087 /**
2088 * handle_ep - Handle endpoint data tranfers
2089 * @ep: pxa physical endpoint
2090 *
2091 * Tries to transfer all pending request data into the endpoint and/or
2092 * transfer all pending data in the endpoint into usb requests.
2093 *
2094 * Is always called when in_interrupt() or with ep->lock held.
2095 */
2096 static void handle_ep(struct pxa_ep *ep)
2097 {
2098 struct pxa27x_request *req;
2099 int completed;
2100 u32 udccsr;
2101 int is_in = ep->dir_in;
2102 int loop = 0;
2103
2104 do {
2105 completed = 0;
2106 udccsr = udc_ep_readl(ep, UDCCSR);
2107 if (likely(!list_empty(&ep->queue)))
2108 req = list_entry(ep->queue.next,
2109 struct pxa27x_request, queue);
2110 else
2111 req = NULL;
2112
2113 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2114 req, udccsr, loop++);
2115
2116 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2117 udc_ep_writel(ep, UDCCSR,
2118 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2119 if (!req)
2120 break;
2121
2122 if (unlikely(is_in)) {
2123 if (likely(!ep_is_full(ep)))
2124 completed = write_fifo(ep, req);
2125 if (completed)
2126 ep_end_in_req(ep, req);
2127 } else {
2128 if (likely(epout_has_pkt(ep)))
2129 completed = read_fifo(ep, req);
2130 if (completed)
2131 ep_end_out_req(ep, req);
2132 }
2133 } while (completed);
2134 }
2135
2136 /**
2137 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2138 * @udc: udc device
2139 * @config: usb configuration
2140 *
2141 * Post the request to upper level.
2142 * Don't use any pxa specific harware configuration capabilities
2143 */
2144 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2145 {
2146 struct usb_ctrlrequest req ;
2147
2148 dev_dbg(udc->dev, "config=%d\n", config);
2149
2150 udc->config = config;
2151 udc->last_interface = 0;
2152 udc->last_alternate = 0;
2153
2154 req.bRequestType = 0;
2155 req.bRequest = USB_REQ_SET_CONFIGURATION;
2156 req.wValue = config;
2157 req.wIndex = 0;
2158 req.wLength = 0;
2159
2160 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2161 udc->driver->setup(&udc->gadget, &req);
2162 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2163 }
2164
2165 /**
2166 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2167 * @udc: udc device
2168 * @iface: interface number
2169 * @alt: alternate setting number
2170 *
2171 * Post the request to upper level.
2172 * Don't use any pxa specific harware configuration capabilities
2173 */
2174 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2175 {
2176 struct usb_ctrlrequest req;
2177
2178 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2179
2180 udc->last_interface = iface;
2181 udc->last_alternate = alt;
2182
2183 req.bRequestType = USB_RECIP_INTERFACE;
2184 req.bRequest = USB_REQ_SET_INTERFACE;
2185 req.wValue = alt;
2186 req.wIndex = iface;
2187 req.wLength = 0;
2188
2189 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2190 udc->driver->setup(&udc->gadget, &req);
2191 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2192 }
2193
2194 /*
2195 * irq_handle_data - Handle data transfer
2196 * @irq: irq IRQ number
2197 * @udc: dev pxa_udc device structure
2198 *
2199 * Called from irq handler, transferts data to or from endpoint to queue
2200 */
2201 static void irq_handle_data(int irq, struct pxa_udc *udc)
2202 {
2203 int i;
2204 struct pxa_ep *ep;
2205 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2206 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2207
2208 if (udcisr0 & UDCISR_INT_MASK) {
2209 udc->pxa_ep[0].stats.irqs++;
2210 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2211 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2212 !!(udcisr0 & UDCICR_PKTCOMPL));
2213 }
2214
2215 udcisr0 >>= 2;
2216 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2217 if (!(udcisr0 & UDCISR_INT_MASK))
2218 continue;
2219
2220 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2221 ep = &udc->pxa_ep[i];
2222 ep->stats.irqs++;
2223 handle_ep(ep);
2224 }
2225
2226 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2227 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2228 if (!(udcisr1 & UDCISR_INT_MASK))
2229 continue;
2230
2231 ep = &udc->pxa_ep[i];
2232 ep->stats.irqs++;
2233 handle_ep(ep);
2234 }
2235
2236 }
2237
2238 /**
2239 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2240 * @udc: udc device
2241 */
2242 static void irq_udc_suspend(struct pxa_udc *udc)
2243 {
2244 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2245 udc->stats.irqs_suspend++;
2246
2247 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2248 && udc->driver && udc->driver->suspend)
2249 udc->driver->suspend(&udc->gadget);
2250 ep0_idle(udc);
2251 }
2252
2253 /**
2254 * irq_udc_resume - Handle IRQ "UDC Resume"
2255 * @udc: udc device
2256 */
2257 static void irq_udc_resume(struct pxa_udc *udc)
2258 {
2259 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2260 udc->stats.irqs_resume++;
2261
2262 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2263 && udc->driver && udc->driver->resume)
2264 udc->driver->resume(&udc->gadget);
2265 }
2266
2267 /**
2268 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2269 * @udc: udc device
2270 */
2271 static void irq_udc_reconfig(struct pxa_udc *udc)
2272 {
2273 unsigned config, interface, alternate, config_change;
2274 u32 udccr = udc_readl(udc, UDCCR);
2275
2276 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2277 udc->stats.irqs_reconfig++;
2278
2279 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2280 config_change = (config != udc->config);
2281 pxa27x_change_configuration(udc, config);
2282
2283 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2284 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2285 pxa27x_change_interface(udc, interface, alternate);
2286
2287 if (config_change)
2288 update_pxa_ep_matches(udc);
2289 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2290 }
2291
2292 /**
2293 * irq_udc_reset - Handle IRQ "UDC Reset"
2294 * @udc: udc device
2295 */
2296 static void irq_udc_reset(struct pxa_udc *udc)
2297 {
2298 u32 udccr = udc_readl(udc, UDCCR);
2299 struct pxa_ep *ep = &udc->pxa_ep[0];
2300
2301 dev_info(udc->dev, "USB reset\n");
2302 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2303 udc->stats.irqs_reset++;
2304
2305 if ((udccr & UDCCR_UDA) == 0) {
2306 dev_dbg(udc->dev, "USB reset start\n");
2307 stop_activity(udc, udc->driver);
2308 }
2309 udc->gadget.speed = USB_SPEED_FULL;
2310 memset(&udc->stats, 0, sizeof udc->stats);
2311
2312 nuke(ep, -EPROTO);
2313 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2314 ep0_idle(udc);
2315 }
2316
2317 /**
2318 * pxa_udc_irq - Main irq handler
2319 * @irq: irq number
2320 * @_dev: udc device
2321 *
2322 * Handles all udc interrupts
2323 */
2324 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2325 {
2326 struct pxa_udc *udc = _dev;
2327 u32 udcisr0 = udc_readl(udc, UDCISR0);
2328 u32 udcisr1 = udc_readl(udc, UDCISR1);
2329 u32 udccr = udc_readl(udc, UDCCR);
2330 u32 udcisr1_spec;
2331
2332 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2333 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2334
2335 udcisr1_spec = udcisr1 & 0xf8000000;
2336 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2337 irq_udc_suspend(udc);
2338 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2339 irq_udc_resume(udc);
2340 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2341 irq_udc_reconfig(udc);
2342 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2343 irq_udc_reset(udc);
2344
2345 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2346 irq_handle_data(irq, udc);
2347
2348 return IRQ_HANDLED;
2349 }
2350
2351 static struct pxa_udc memory = {
2352 .gadget = {
2353 .ops = &pxa_udc_ops,
2354 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2355 .name = driver_name,
2356 .dev = {
2357 .init_name = "gadget",
2358 },
2359 },
2360
2361 .udc_usb_ep = {
2362 USB_EP_CTRL,
2363 USB_EP_OUT_BULK(1),
2364 USB_EP_IN_BULK(2),
2365 USB_EP_IN_ISO(3),
2366 USB_EP_OUT_ISO(4),
2367 USB_EP_IN_INT(5),
2368 },
2369
2370 .pxa_ep = {
2371 PXA_EP_CTRL,
2372 /* Endpoints for gadget zero */
2373 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2374 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2375 /* Endpoints for ether gadget, file storage gadget */
2376 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2377 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2378 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2379 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2380 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2381 /* Endpoints for RNDIS, serial */
2382 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2383 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2384 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2385 /*
2386 * All the following endpoints are only for completion. They
2387 * won't never work, as multiple interfaces are really broken on
2388 * the pxa.
2389 */
2390 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2391 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2392 /* Endpoint for CDC Ether */
2393 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2394 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2395 }
2396 };
2397
2398 /**
2399 * pxa_udc_probe - probes the udc device
2400 * @_dev: platform device
2401 *
2402 * Perform basic init : allocates udc clock, creates sysfs files, requests
2403 * irq.
2404 */
2405 static int __init pxa_udc_probe(struct platform_device *pdev)
2406 {
2407 struct resource *regs;
2408 struct pxa_udc *udc = &memory;
2409 int retval = 0, gpio;
2410
2411 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2412 if (!regs)
2413 return -ENXIO;
2414 udc->irq = platform_get_irq(pdev, 0);
2415 if (udc->irq < 0)
2416 return udc->irq;
2417
2418 udc->dev = &pdev->dev;
2419 udc->mach = pdev->dev.platform_data;
2420 udc->transceiver = otg_get_transceiver();
2421
2422 gpio = udc->mach->gpio_pullup;
2423 if (gpio_is_valid(gpio)) {
2424 retval = gpio_request(gpio, "USB D+ pullup");
2425 if (retval == 0)
2426 gpio_direction_output(gpio,
2427 udc->mach->gpio_pullup_inverted);
2428 }
2429 if (retval) {
2430 dev_err(&pdev->dev, "Couldn't request gpio %d : %d\n",
2431 gpio, retval);
2432 return retval;
2433 }
2434
2435 udc->clk = clk_get(&pdev->dev, NULL);
2436 if (IS_ERR(udc->clk)) {
2437 retval = PTR_ERR(udc->clk);
2438 goto err_clk;
2439 }
2440
2441 retval = -ENOMEM;
2442 udc->regs = ioremap(regs->start, regs->end - regs->start + 1);
2443 if (!udc->regs) {
2444 dev_err(&pdev->dev, "Unable to map UDC I/O memory\n");
2445 goto err_map;
2446 }
2447
2448 device_initialize(&udc->gadget.dev);
2449 udc->gadget.dev.parent = &pdev->dev;
2450 udc->gadget.dev.dma_mask = NULL;
2451 udc->vbus_sensed = 0;
2452
2453 the_controller = udc;
2454 platform_set_drvdata(pdev, udc);
2455 udc_init_data(udc);
2456 pxa_eps_setup(udc);
2457
2458 /* irq setup after old hardware state is cleaned up */
2459 retval = request_irq(udc->irq, pxa_udc_irq,
2460 IRQF_SHARED, driver_name, udc);
2461 if (retval != 0) {
2462 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2463 driver_name, IRQ_USB, retval);
2464 goto err_irq;
2465 }
2466
2467 pxa_init_debugfs(udc);
2468 return 0;
2469 err_irq:
2470 iounmap(udc->regs);
2471 err_map:
2472 clk_put(udc->clk);
2473 udc->clk = NULL;
2474 err_clk:
2475 return retval;
2476 }
2477
2478 /**
2479 * pxa_udc_remove - removes the udc device driver
2480 * @_dev: platform device
2481 */
2482 static int __exit pxa_udc_remove(struct platform_device *_dev)
2483 {
2484 struct pxa_udc *udc = platform_get_drvdata(_dev);
2485 int gpio = udc->mach->gpio_pullup;
2486
2487 usb_gadget_unregister_driver(udc->driver);
2488 free_irq(udc->irq, udc);
2489 pxa_cleanup_debugfs(udc);
2490 if (gpio_is_valid(gpio))
2491 gpio_free(gpio);
2492
2493 otg_put_transceiver(udc->transceiver);
2494
2495 udc->transceiver = NULL;
2496 platform_set_drvdata(_dev, NULL);
2497 the_controller = NULL;
2498 clk_put(udc->clk);
2499 iounmap(udc->regs);
2500
2501 return 0;
2502 }
2503
2504 static void pxa_udc_shutdown(struct platform_device *_dev)
2505 {
2506 struct pxa_udc *udc = platform_get_drvdata(_dev);
2507
2508 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2509 udc_disable(udc);
2510 }
2511
2512 #ifdef CONFIG_CPU_PXA27x
2513 extern void pxa27x_clear_otgph(void);
2514 #else
2515 #define pxa27x_clear_otgph() do {} while (0)
2516 #endif
2517
2518 #ifdef CONFIG_PM
2519 /**
2520 * pxa_udc_suspend - Suspend udc device
2521 * @_dev: platform device
2522 * @state: suspend state
2523 *
2524 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2525 * device.
2526 */
2527 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2528 {
2529 int i;
2530 struct pxa_udc *udc = platform_get_drvdata(_dev);
2531 struct pxa_ep *ep;
2532
2533 ep = &udc->pxa_ep[0];
2534 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2535 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
2536 ep = &udc->pxa_ep[i];
2537 ep->udccsr_value = udc_ep_readl(ep, UDCCSR);
2538 ep->udccr_value = udc_ep_readl(ep, UDCCR);
2539 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
2540 ep->udccsr_value, ep->udccr_value);
2541 }
2542
2543 udc_disable(udc);
2544 udc->pullup_resume = udc->pullup_on;
2545 dplus_pullup(udc, 0);
2546
2547 return 0;
2548 }
2549
2550 /**
2551 * pxa_udc_resume - Resume udc device
2552 * @_dev: platform device
2553 *
2554 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2555 * device.
2556 */
2557 static int pxa_udc_resume(struct platform_device *_dev)
2558 {
2559 int i;
2560 struct pxa_udc *udc = platform_get_drvdata(_dev);
2561 struct pxa_ep *ep;
2562
2563 ep = &udc->pxa_ep[0];
2564 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2565 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
2566 ep = &udc->pxa_ep[i];
2567 udc_ep_writel(ep, UDCCSR, ep->udccsr_value);
2568 udc_ep_writel(ep, UDCCR, ep->udccr_value);
2569 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
2570 ep->udccsr_value, ep->udccr_value);
2571 }
2572
2573 dplus_pullup(udc, udc->pullup_resume);
2574 if (should_enable_udc(udc))
2575 udc_enable(udc);
2576 /*
2577 * We do not handle OTG yet.
2578 *
2579 * OTGPH bit is set when sleep mode is entered.
2580 * it indicates that OTG pad is retaining its state.
2581 * Upon exit from sleep mode and before clearing OTGPH,
2582 * Software must configure the USB OTG pad, UDC, and UHC
2583 * to the state they were in before entering sleep mode.
2584 */
2585 pxa27x_clear_otgph();
2586
2587 return 0;
2588 }
2589 #endif
2590
2591 /* work with hotplug and coldplug */
2592 MODULE_ALIAS("platform:pxa27x-udc");
2593
2594 static struct platform_driver udc_driver = {
2595 .driver = {
2596 .name = "pxa27x-udc",
2597 .owner = THIS_MODULE,
2598 },
2599 .remove = __exit_p(pxa_udc_remove),
2600 .shutdown = pxa_udc_shutdown,
2601 #ifdef CONFIG_PM
2602 .suspend = pxa_udc_suspend,
2603 .resume = pxa_udc_resume
2604 #endif
2605 };
2606
2607 static int __init udc_init(void)
2608 {
2609 if (!cpu_is_pxa27x() && !cpu_is_pxa3xx())
2610 return -ENODEV;
2611
2612 printk(KERN_INFO "%s: version %s\n", driver_name, DRIVER_VERSION);
2613 return platform_driver_probe(&udc_driver, pxa_udc_probe);
2614 }
2615 module_init(udc_init);
2616
2617
2618 static void __exit udc_exit(void)
2619 {
2620 platform_driver_unregister(&udc_driver);
2621 }
2622 module_exit(udc_exit);
2623
2624 MODULE_DESCRIPTION(DRIVER_DESC);
2625 MODULE_AUTHOR("Robert Jarzmik");
2626 MODULE_LICENSE("GPL");