1865622
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] /
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 #define IEEE80211_TX_OK 0
36 #define IEEE80211_TX_AGAIN 1
37 #define IEEE80211_TX_PENDING 2
38
39 /* misc utils */
40
41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
42 int next_frag_len)
43 {
44 int rate, mrate, erp, dur, i;
45 struct ieee80211_rate *txrate;
46 struct ieee80211_local *local = tx->local;
47 struct ieee80211_supported_band *sband;
48 struct ieee80211_hdr *hdr;
49 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
50
51 /* assume HW handles this */
52 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
53 return 0;
54
55 /* uh huh? */
56 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
57 return 0;
58
59 sband = local->hw.wiphy->bands[tx->channel->band];
60 txrate = &sband->bitrates[info->control.rates[0].idx];
61
62 erp = txrate->flags & IEEE80211_RATE_ERP_G;
63
64 /*
65 * data and mgmt (except PS Poll):
66 * - during CFP: 32768
67 * - during contention period:
68 * if addr1 is group address: 0
69 * if more fragments = 0 and addr1 is individual address: time to
70 * transmit one ACK plus SIFS
71 * if more fragments = 1 and addr1 is individual address: time to
72 * transmit next fragment plus 2 x ACK plus 3 x SIFS
73 *
74 * IEEE 802.11, 9.6:
75 * - control response frame (CTS or ACK) shall be transmitted using the
76 * same rate as the immediately previous frame in the frame exchange
77 * sequence, if this rate belongs to the PHY mandatory rates, or else
78 * at the highest possible rate belonging to the PHY rates in the
79 * BSSBasicRateSet
80 */
81 hdr = (struct ieee80211_hdr *)tx->skb->data;
82 if (ieee80211_is_ctl(hdr->frame_control)) {
83 /* TODO: These control frames are not currently sent by
84 * mac80211, but should they be implemented, this function
85 * needs to be updated to support duration field calculation.
86 *
87 * RTS: time needed to transmit pending data/mgmt frame plus
88 * one CTS frame plus one ACK frame plus 3 x SIFS
89 * CTS: duration of immediately previous RTS minus time
90 * required to transmit CTS and its SIFS
91 * ACK: 0 if immediately previous directed data/mgmt had
92 * more=0, with more=1 duration in ACK frame is duration
93 * from previous frame minus time needed to transmit ACK
94 * and its SIFS
95 * PS Poll: BIT(15) | BIT(14) | aid
96 */
97 return 0;
98 }
99
100 /* data/mgmt */
101 if (0 /* FIX: data/mgmt during CFP */)
102 return cpu_to_le16(32768);
103
104 if (group_addr) /* Group address as the destination - no ACK */
105 return 0;
106
107 /* Individual destination address:
108 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
109 * CTS and ACK frames shall be transmitted using the highest rate in
110 * basic rate set that is less than or equal to the rate of the
111 * immediately previous frame and that is using the same modulation
112 * (CCK or OFDM). If no basic rate set matches with these requirements,
113 * the highest mandatory rate of the PHY that is less than or equal to
114 * the rate of the previous frame is used.
115 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
116 */
117 rate = -1;
118 /* use lowest available if everything fails */
119 mrate = sband->bitrates[0].bitrate;
120 for (i = 0; i < sband->n_bitrates; i++) {
121 struct ieee80211_rate *r = &sband->bitrates[i];
122
123 if (r->bitrate > txrate->bitrate)
124 break;
125
126 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
127 rate = r->bitrate;
128
129 switch (sband->band) {
130 case IEEE80211_BAND_2GHZ: {
131 u32 flag;
132 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
133 flag = IEEE80211_RATE_MANDATORY_G;
134 else
135 flag = IEEE80211_RATE_MANDATORY_B;
136 if (r->flags & flag)
137 mrate = r->bitrate;
138 break;
139 }
140 case IEEE80211_BAND_5GHZ:
141 if (r->flags & IEEE80211_RATE_MANDATORY_A)
142 mrate = r->bitrate;
143 break;
144 case IEEE80211_NUM_BANDS:
145 WARN_ON(1);
146 break;
147 }
148 }
149 if (rate == -1) {
150 /* No matching basic rate found; use highest suitable mandatory
151 * PHY rate */
152 rate = mrate;
153 }
154
155 /* Time needed to transmit ACK
156 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
157 * to closest integer */
158
159 dur = ieee80211_frame_duration(local, 10, rate, erp,
160 tx->sdata->vif.bss_conf.use_short_preamble);
161
162 if (next_frag_len) {
163 /* Frame is fragmented: duration increases with time needed to
164 * transmit next fragment plus ACK and 2 x SIFS. */
165 dur *= 2; /* ACK + SIFS */
166 /* next fragment */
167 dur += ieee80211_frame_duration(local, next_frag_len,
168 txrate->bitrate, erp,
169 tx->sdata->vif.bss_conf.use_short_preamble);
170 }
171
172 return cpu_to_le16(dur);
173 }
174
175 static int inline is_ieee80211_device(struct ieee80211_local *local,
176 struct net_device *dev)
177 {
178 return local == wdev_priv(dev->ieee80211_ptr);
179 }
180
181 /* tx handlers */
182
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
185 {
186
187 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
189 u32 sta_flags;
190
191 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
192 return TX_CONTINUE;
193
194 if (unlikely(tx->local->sw_scanning) &&
195 !ieee80211_is_probe_req(hdr->frame_control) &&
196 !ieee80211_is_nullfunc(hdr->frame_control))
197 /*
198 * When software scanning only nullfunc frames (to notify
199 * the sleep state to the AP) and probe requests (for the
200 * active scan) are allowed, all other frames should not be
201 * sent and we should not get here, but if we do
202 * nonetheless, drop them to avoid sending them
203 * off-channel. See the link below and
204 * ieee80211_start_scan() for more.
205 *
206 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
207 */
208 return TX_DROP;
209
210 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
211 return TX_CONTINUE;
212
213 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
214 return TX_CONTINUE;
215
216 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
217
218 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
219 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
220 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
221 ieee80211_is_data(hdr->frame_control))) {
222 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
223 printk(KERN_DEBUG "%s: dropped data frame to not "
224 "associated station %pM\n",
225 tx->dev->name, hdr->addr1);
226 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
227 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
228 return TX_DROP;
229 }
230 } else {
231 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
232 tx->local->num_sta == 0 &&
233 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
234 /*
235 * No associated STAs - no need to send multicast
236 * frames.
237 */
238 return TX_DROP;
239 }
240 return TX_CONTINUE;
241 }
242
243 return TX_CONTINUE;
244 }
245
246 /* This function is called whenever the AP is about to exceed the maximum limit
247 * of buffered frames for power saving STAs. This situation should not really
248 * happen often during normal operation, so dropping the oldest buffered packet
249 * from each queue should be OK to make some room for new frames. */
250 static void purge_old_ps_buffers(struct ieee80211_local *local)
251 {
252 int total = 0, purged = 0;
253 struct sk_buff *skb;
254 struct ieee80211_sub_if_data *sdata;
255 struct sta_info *sta;
256
257 /*
258 * virtual interfaces are protected by RCU
259 */
260 rcu_read_lock();
261
262 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
263 struct ieee80211_if_ap *ap;
264 if (sdata->vif.type != NL80211_IFTYPE_AP)
265 continue;
266 ap = &sdata->u.ap;
267 skb = skb_dequeue(&ap->ps_bc_buf);
268 if (skb) {
269 purged++;
270 dev_kfree_skb(skb);
271 }
272 total += skb_queue_len(&ap->ps_bc_buf);
273 }
274
275 list_for_each_entry_rcu(sta, &local->sta_list, list) {
276 skb = skb_dequeue(&sta->ps_tx_buf);
277 if (skb) {
278 purged++;
279 dev_kfree_skb(skb);
280 }
281 total += skb_queue_len(&sta->ps_tx_buf);
282 }
283
284 rcu_read_unlock();
285
286 local->total_ps_buffered = total;
287 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
288 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
289 wiphy_name(local->hw.wiphy), purged);
290 #endif
291 }
292
293 static ieee80211_tx_result
294 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
295 {
296 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
298
299 /*
300 * broadcast/multicast frame
301 *
302 * If any of the associated stations is in power save mode,
303 * the frame is buffered to be sent after DTIM beacon frame.
304 * This is done either by the hardware or us.
305 */
306
307 /* powersaving STAs only in AP/VLAN mode */
308 if (!tx->sdata->bss)
309 return TX_CONTINUE;
310
311 /* no buffering for ordered frames */
312 if (ieee80211_has_order(hdr->frame_control))
313 return TX_CONTINUE;
314
315 /* no stations in PS mode */
316 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
317 return TX_CONTINUE;
318
319 /* buffered in mac80211 */
320 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
321 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
322 purge_old_ps_buffers(tx->local);
323 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
324 AP_MAX_BC_BUFFER) {
325 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
326 if (net_ratelimit()) {
327 printk(KERN_DEBUG "%s: BC TX buffer full - "
328 "dropping the oldest frame\n",
329 tx->dev->name);
330 }
331 #endif
332 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
333 } else
334 tx->local->total_ps_buffered++;
335 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
336 return TX_QUEUED;
337 }
338
339 /* buffered in hardware */
340 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
341
342 return TX_CONTINUE;
343 }
344
345 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
346 struct sk_buff *skb)
347 {
348 if (!ieee80211_is_mgmt(fc))
349 return 0;
350
351 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
352 return 0;
353
354 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
355 skb->data))
356 return 0;
357
358 return 1;
359 }
360
361 static ieee80211_tx_result
362 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
363 {
364 struct sta_info *sta = tx->sta;
365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
367 u32 staflags;
368
369 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
370 return TX_CONTINUE;
371
372 staflags = get_sta_flags(sta);
373
374 if (unlikely((staflags & WLAN_STA_PS) &&
375 !(staflags & WLAN_STA_PSPOLL))) {
376 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
377 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
378 "before %d)\n",
379 sta->sta.addr, sta->sta.aid,
380 skb_queue_len(&sta->ps_tx_buf));
381 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
382 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
383 purge_old_ps_buffers(tx->local);
384 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
385 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
386 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
387 if (net_ratelimit()) {
388 printk(KERN_DEBUG "%s: STA %pM TX "
389 "buffer full - dropping oldest frame\n",
390 tx->dev->name, sta->sta.addr);
391 }
392 #endif
393 dev_kfree_skb(old);
394 } else
395 tx->local->total_ps_buffered++;
396
397 /* Queue frame to be sent after STA sends an PS Poll frame */
398 if (skb_queue_empty(&sta->ps_tx_buf))
399 sta_info_set_tim_bit(sta);
400
401 info->control.jiffies = jiffies;
402 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
403 return TX_QUEUED;
404 }
405 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
406 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
407 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
408 "set -> send frame\n", tx->dev->name,
409 sta->sta.addr);
410 }
411 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
412 if (test_and_clear_sta_flags(sta, WLAN_STA_PSPOLL)) {
413 /*
414 * The sleeping station with pending data is now snoozing.
415 * It queried us for its buffered frames and will go back
416 * to deep sleep once it got everything.
417 *
418 * inform the driver, in case the hardware does powersave
419 * frame filtering and keeps a station blacklist on its own
420 * (e.g: p54), so that frames can be delivered unimpeded.
421 *
422 * Note: It should be save to disable the filter now.
423 * As, it is really unlikely that we still have any pending
424 * frame for this station in the hw's buffers/fifos left,
425 * that is not rejected with a unsuccessful tx_status yet.
426 */
427
428 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
429 }
430 return TX_CONTINUE;
431 }
432
433 static ieee80211_tx_result debug_noinline
434 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
435 {
436 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
437 return TX_CONTINUE;
438
439 if (tx->flags & IEEE80211_TX_UNICAST)
440 return ieee80211_tx_h_unicast_ps_buf(tx);
441 else
442 return ieee80211_tx_h_multicast_ps_buf(tx);
443 }
444
445 static ieee80211_tx_result debug_noinline
446 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
447 {
448 struct ieee80211_key *key = NULL;
449 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
450 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
451
452 if (unlikely(tx->skb->do_not_encrypt))
453 tx->key = NULL;
454 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
455 tx->key = key;
456 else if (ieee80211_is_mgmt(hdr->frame_control) &&
457 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
458 tx->key = key;
459 else if ((key = rcu_dereference(tx->sdata->default_key)))
460 tx->key = key;
461 else if (tx->sdata->drop_unencrypted &&
462 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
463 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
464 (!ieee80211_is_robust_mgmt_frame(hdr) ||
465 (ieee80211_is_action(hdr->frame_control) &&
466 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
467 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
468 return TX_DROP;
469 } else
470 tx->key = NULL;
471
472 if (tx->key) {
473 tx->key->tx_rx_count++;
474 /* TODO: add threshold stuff again */
475
476 switch (tx->key->conf.alg) {
477 case ALG_WEP:
478 if (ieee80211_is_auth(hdr->frame_control))
479 break;
480 case ALG_TKIP:
481 if (!ieee80211_is_data_present(hdr->frame_control))
482 tx->key = NULL;
483 break;
484 case ALG_CCMP:
485 if (!ieee80211_is_data_present(hdr->frame_control) &&
486 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
487 tx->skb))
488 tx->key = NULL;
489 break;
490 case ALG_AES_CMAC:
491 if (!ieee80211_is_mgmt(hdr->frame_control))
492 tx->key = NULL;
493 break;
494 }
495 }
496
497 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
498 tx->skb->do_not_encrypt = 1;
499
500 return TX_CONTINUE;
501 }
502
503 static ieee80211_tx_result debug_noinline
504 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
505 {
506 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
507 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
508 struct ieee80211_supported_band *sband;
509 struct ieee80211_rate *rate;
510 int i, len;
511 bool inval = false, rts = false, short_preamble = false;
512 struct ieee80211_tx_rate_control txrc;
513
514 memset(&txrc, 0, sizeof(txrc));
515
516 sband = tx->local->hw.wiphy->bands[tx->channel->band];
517
518 len = min_t(int, tx->skb->len + FCS_LEN,
519 tx->local->hw.wiphy->frag_threshold);
520
521 /* set up the tx rate control struct we give the RC algo */
522 txrc.hw = local_to_hw(tx->local);
523 txrc.sband = sband;
524 txrc.bss_conf = &tx->sdata->vif.bss_conf;
525 txrc.skb = tx->skb;
526 txrc.reported_rate.idx = -1;
527 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
528
529 /* set up RTS protection if desired */
530 if (len > tx->local->hw.wiphy->rts_threshold) {
531 txrc.rts = rts = true;
532 }
533
534 /*
535 * Use short preamble if the BSS can handle it, but not for
536 * management frames unless we know the receiver can handle
537 * that -- the management frame might be to a station that
538 * just wants a probe response.
539 */
540 if (tx->sdata->vif.bss_conf.use_short_preamble &&
541 (ieee80211_is_data(hdr->frame_control) ||
542 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
543 txrc.short_preamble = short_preamble = true;
544
545
546 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
547
548 if (unlikely(info->control.rates[0].idx < 0))
549 return TX_DROP;
550
551 if (txrc.reported_rate.idx < 0)
552 txrc.reported_rate = info->control.rates[0];
553
554 if (tx->sta)
555 tx->sta->last_tx_rate = txrc.reported_rate;
556
557 if (unlikely(!info->control.rates[0].count))
558 info->control.rates[0].count = 1;
559
560 if (is_multicast_ether_addr(hdr->addr1)) {
561 /*
562 * XXX: verify the rate is in the basic rateset
563 */
564 return TX_CONTINUE;
565 }
566
567 /*
568 * set up the RTS/CTS rate as the fastest basic rate
569 * that is not faster than the data rate
570 *
571 * XXX: Should this check all retry rates?
572 */
573 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
574 s8 baserate = 0;
575
576 rate = &sband->bitrates[info->control.rates[0].idx];
577
578 for (i = 0; i < sband->n_bitrates; i++) {
579 /* must be a basic rate */
580 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
581 continue;
582 /* must not be faster than the data rate */
583 if (sband->bitrates[i].bitrate > rate->bitrate)
584 continue;
585 /* maximum */
586 if (sband->bitrates[baserate].bitrate <
587 sband->bitrates[i].bitrate)
588 baserate = i;
589 }
590
591 info->control.rts_cts_rate_idx = baserate;
592 }
593
594 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
595 /*
596 * make sure there's no valid rate following
597 * an invalid one, just in case drivers don't
598 * take the API seriously to stop at -1.
599 */
600 if (inval) {
601 info->control.rates[i].idx = -1;
602 continue;
603 }
604 if (info->control.rates[i].idx < 0) {
605 inval = true;
606 continue;
607 }
608
609 /*
610 * For now assume MCS is already set up correctly, this
611 * needs to be fixed.
612 */
613 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
614 WARN_ON(info->control.rates[i].idx > 76);
615 continue;
616 }
617
618 /* set up RTS protection if desired */
619 if (rts)
620 info->control.rates[i].flags |=
621 IEEE80211_TX_RC_USE_RTS_CTS;
622
623 /* RC is busted */
624 if (WARN_ON_ONCE(info->control.rates[i].idx >=
625 sband->n_bitrates)) {
626 info->control.rates[i].idx = -1;
627 continue;
628 }
629
630 rate = &sband->bitrates[info->control.rates[i].idx];
631
632 /* set up short preamble */
633 if (short_preamble &&
634 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
635 info->control.rates[i].flags |=
636 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
637
638 /* set up G protection */
639 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
640 rate->flags & IEEE80211_RATE_ERP_G)
641 info->control.rates[i].flags |=
642 IEEE80211_TX_RC_USE_CTS_PROTECT;
643 }
644
645 return TX_CONTINUE;
646 }
647
648 static ieee80211_tx_result debug_noinline
649 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
650 {
651 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
652
653 if (tx->sta)
654 info->control.sta = &tx->sta->sta;
655
656 return TX_CONTINUE;
657 }
658
659 static ieee80211_tx_result debug_noinline
660 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
661 {
662 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
663 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
664 u16 *seq;
665 u8 *qc;
666 int tid;
667
668 /*
669 * Packet injection may want to control the sequence
670 * number, if we have no matching interface then we
671 * neither assign one ourselves nor ask the driver to.
672 */
673 if (unlikely(!info->control.vif))
674 return TX_CONTINUE;
675
676 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
677 return TX_CONTINUE;
678
679 if (ieee80211_hdrlen(hdr->frame_control) < 24)
680 return TX_CONTINUE;
681
682 /*
683 * Anything but QoS data that has a sequence number field
684 * (is long enough) gets a sequence number from the global
685 * counter.
686 */
687 if (!ieee80211_is_data_qos(hdr->frame_control)) {
688 /* driver should assign sequence number */
689 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
690 /* for pure STA mode without beacons, we can do it */
691 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
692 tx->sdata->sequence_number += 0x10;
693 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
694 return TX_CONTINUE;
695 }
696
697 /*
698 * This should be true for injected/management frames only, for
699 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
700 * above since they are not QoS-data frames.
701 */
702 if (!tx->sta)
703 return TX_CONTINUE;
704
705 /* include per-STA, per-TID sequence counter */
706
707 qc = ieee80211_get_qos_ctl(hdr);
708 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
709 seq = &tx->sta->tid_seq[tid];
710
711 hdr->seq_ctrl = cpu_to_le16(*seq);
712
713 /* Increase the sequence number. */
714 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
715
716 return TX_CONTINUE;
717 }
718
719 static int ieee80211_fragment(struct ieee80211_local *local,
720 struct sk_buff *skb, int hdrlen,
721 int frag_threshold)
722 {
723 struct sk_buff *tail = skb, *tmp;
724 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
725 int pos = hdrlen + per_fragm;
726 int rem = skb->len - hdrlen - per_fragm;
727
728 if (WARN_ON(rem < 0))
729 return -EINVAL;
730
731 while (rem) {
732 int fraglen = per_fragm;
733
734 if (fraglen > rem)
735 fraglen = rem;
736 rem -= fraglen;
737 tmp = dev_alloc_skb(local->tx_headroom +
738 frag_threshold +
739 IEEE80211_ENCRYPT_HEADROOM +
740 IEEE80211_ENCRYPT_TAILROOM);
741 if (!tmp)
742 return -ENOMEM;
743 tail->next = tmp;
744 tail = tmp;
745 skb_reserve(tmp, local->tx_headroom +
746 IEEE80211_ENCRYPT_HEADROOM);
747 /* copy control information */
748 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
749 skb_copy_queue_mapping(tmp, skb);
750 tmp->priority = skb->priority;
751 tmp->do_not_encrypt = skb->do_not_encrypt;
752 tmp->dev = skb->dev;
753 tmp->iif = skb->iif;
754
755 /* copy header and data */
756 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
757 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
758
759 pos += fraglen;
760 }
761
762 skb->len = hdrlen + per_fragm;
763 return 0;
764 }
765
766 static ieee80211_tx_result debug_noinline
767 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
768 {
769 struct sk_buff *skb = tx->skb;
770 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
771 struct ieee80211_hdr *hdr = (void *)skb->data;
772 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
773 int hdrlen;
774 int fragnum;
775
776 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
777 return TX_CONTINUE;
778
779 /*
780 * Warn when submitting a fragmented A-MPDU frame and drop it.
781 * This scenario is handled in __ieee80211_tx_prepare but extra
782 * caution taken here as fragmented ampdu may cause Tx stop.
783 */
784 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
785 return TX_DROP;
786
787 hdrlen = ieee80211_hdrlen(hdr->frame_control);
788
789 /* internal error, why is TX_FRAGMENTED set? */
790 if (WARN_ON(skb->len <= frag_threshold))
791 return TX_DROP;
792
793 /*
794 * Now fragment the frame. This will allocate all the fragments and
795 * chain them (using skb as the first fragment) to skb->next.
796 * During transmission, we will remove the successfully transmitted
797 * fragments from this list. When the low-level driver rejects one
798 * of the fragments then we will simply pretend to accept the skb
799 * but store it away as pending.
800 */
801 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
802 return TX_DROP;
803
804 /* update duration/seq/flags of fragments */
805 fragnum = 0;
806 do {
807 int next_len;
808 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
809
810 hdr = (void *)skb->data;
811 info = IEEE80211_SKB_CB(skb);
812
813 if (skb->next) {
814 hdr->frame_control |= morefrags;
815 next_len = skb->next->len;
816 /*
817 * No multi-rate retries for fragmented frames, that
818 * would completely throw off the NAV at other STAs.
819 */
820 info->control.rates[1].idx = -1;
821 info->control.rates[2].idx = -1;
822 info->control.rates[3].idx = -1;
823 info->control.rates[4].idx = -1;
824 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
825 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
826 } else {
827 hdr->frame_control &= ~morefrags;
828 next_len = 0;
829 }
830 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
831 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
832 fragnum++;
833 } while ((skb = skb->next));
834
835 return TX_CONTINUE;
836 }
837
838 static ieee80211_tx_result debug_noinline
839 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
840 {
841 if (!tx->key)
842 return TX_CONTINUE;
843
844 switch (tx->key->conf.alg) {
845 case ALG_WEP:
846 return ieee80211_crypto_wep_encrypt(tx);
847 case ALG_TKIP:
848 return ieee80211_crypto_tkip_encrypt(tx);
849 case ALG_CCMP:
850 return ieee80211_crypto_ccmp_encrypt(tx);
851 case ALG_AES_CMAC:
852 return ieee80211_crypto_aes_cmac_encrypt(tx);
853 }
854
855 /* not reached */
856 WARN_ON(1);
857 return TX_DROP;
858 }
859
860 static ieee80211_tx_result debug_noinline
861 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
862 {
863 struct sk_buff *skb = tx->skb;
864 struct ieee80211_hdr *hdr;
865 int next_len;
866 bool group_addr;
867
868 do {
869 hdr = (void *) skb->data;
870 next_len = skb->next ? skb->next->len : 0;
871 group_addr = is_multicast_ether_addr(hdr->addr1);
872
873 hdr->duration_id =
874 ieee80211_duration(tx, group_addr, next_len);
875 } while ((skb = skb->next));
876
877 return TX_CONTINUE;
878 }
879
880 static ieee80211_tx_result debug_noinline
881 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
882 {
883 struct sk_buff *skb = tx->skb;
884
885 if (!tx->sta)
886 return TX_CONTINUE;
887
888 tx->sta->tx_packets++;
889 do {
890 tx->sta->tx_fragments++;
891 tx->sta->tx_bytes += skb->len;
892 } while ((skb = skb->next));
893
894 return TX_CONTINUE;
895 }
896
897 /* actual transmit path */
898
899 /*
900 * deal with packet injection down monitor interface
901 * with Radiotap Header -- only called for monitor mode interface
902 */
903 static ieee80211_tx_result
904 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
905 struct sk_buff *skb)
906 {
907 /*
908 * this is the moment to interpret and discard the radiotap header that
909 * must be at the start of the packet injected in Monitor mode
910 *
911 * Need to take some care with endian-ness since radiotap
912 * args are little-endian
913 */
914
915 struct ieee80211_radiotap_iterator iterator;
916 struct ieee80211_radiotap_header *rthdr =
917 (struct ieee80211_radiotap_header *) skb->data;
918 struct ieee80211_supported_band *sband;
919 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
920
921 sband = tx->local->hw.wiphy->bands[tx->channel->band];
922
923 skb->do_not_encrypt = 1;
924 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
925
926 /*
927 * for every radiotap entry that is present
928 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
929 * entries present, or -EINVAL on error)
930 */
931
932 while (!ret) {
933 ret = ieee80211_radiotap_iterator_next(&iterator);
934
935 if (ret)
936 continue;
937
938 /* see if this argument is something we can use */
939 switch (iterator.this_arg_index) {
940 /*
941 * You must take care when dereferencing iterator.this_arg
942 * for multibyte types... the pointer is not aligned. Use
943 * get_unaligned((type *)iterator.this_arg) to dereference
944 * iterator.this_arg for type "type" safely on all arches.
945 */
946 case IEEE80211_RADIOTAP_FLAGS:
947 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
948 /*
949 * this indicates that the skb we have been
950 * handed has the 32-bit FCS CRC at the end...
951 * we should react to that by snipping it off
952 * because it will be recomputed and added
953 * on transmission
954 */
955 if (skb->len < (iterator.max_length + FCS_LEN))
956 return TX_DROP;
957
958 skb_trim(skb, skb->len - FCS_LEN);
959 }
960 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
961 tx->skb->do_not_encrypt = 0;
962 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
963 tx->flags |= IEEE80211_TX_FRAGMENTED;
964 break;
965
966 /*
967 * Please update the file
968 * Documentation/networking/mac80211-injection.txt
969 * when parsing new fields here.
970 */
971
972 default:
973 break;
974 }
975 }
976
977 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
978 return TX_DROP;
979
980 /*
981 * remove the radiotap header
982 * iterator->max_length was sanity-checked against
983 * skb->len by iterator init
984 */
985 skb_pull(skb, iterator.max_length);
986
987 return TX_CONTINUE;
988 }
989
990 /*
991 * initialises @tx
992 */
993 static ieee80211_tx_result
994 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx,
995 struct sk_buff *skb,
996 struct net_device *dev)
997 {
998 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
999 struct ieee80211_hdr *hdr;
1000 struct ieee80211_sub_if_data *sdata;
1001 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1002 int hdrlen, tid;
1003 u8 *qc, *state;
1004 bool queued = false;
1005
1006 memset(tx, 0, sizeof(*tx));
1007 tx->skb = skb;
1008 tx->dev = dev; /* use original interface */
1009 tx->local = local;
1010 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1011 tx->channel = local->hw.conf.channel;
1012 /*
1013 * Set this flag (used below to indicate "automatic fragmentation"),
1014 * it will be cleared/left by radiotap as desired.
1015 */
1016 tx->flags |= IEEE80211_TX_FRAGMENTED;
1017
1018 /* process and remove the injection radiotap header */
1019 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1020 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1021 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP)
1022 return TX_DROP;
1023
1024 /*
1025 * __ieee80211_parse_tx_radiotap has now removed
1026 * the radiotap header that was present and pre-filled
1027 * 'tx' with tx control information.
1028 */
1029 }
1030
1031 /*
1032 * If this flag is set to true anywhere, and we get here,
1033 * we are doing the needed processing, so remove the flag
1034 * now.
1035 */
1036 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1037
1038 hdr = (struct ieee80211_hdr *) skb->data;
1039
1040 tx->sta = sta_info_get(local, hdr->addr1);
1041
1042 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1043 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1044 unsigned long flags;
1045 struct tid_ampdu_tx *tid_tx;
1046
1047 qc = ieee80211_get_qos_ctl(hdr);
1048 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1049
1050 spin_lock_irqsave(&tx->sta->lock, flags);
1051 /*
1052 * XXX: This spinlock could be fairly expensive, but see the
1053 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1054 * One way to solve this would be to do something RCU-like
1055 * for managing the tid_tx struct and using atomic bitops
1056 * for the actual state -- by introducing an actual
1057 * 'operational' bit that would be possible. It would
1058 * require changing ieee80211_agg_tx_operational() to
1059 * set that bit, and changing the way tid_tx is managed
1060 * everywhere, including races between that bit and
1061 * tid_tx going away (tid_tx being added can be easily
1062 * committed to memory before the 'operational' bit).
1063 */
1064 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1065 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1066 if (*state == HT_AGG_STATE_OPERATIONAL) {
1067 info->flags |= IEEE80211_TX_CTL_AMPDU;
1068 } else if (*state != HT_AGG_STATE_IDLE) {
1069 /* in progress */
1070 queued = true;
1071 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1072 __skb_queue_tail(&tid_tx->pending, skb);
1073 }
1074 spin_unlock_irqrestore(&tx->sta->lock, flags);
1075
1076 if (unlikely(queued))
1077 return TX_QUEUED;
1078 }
1079
1080 if (is_multicast_ether_addr(hdr->addr1)) {
1081 tx->flags &= ~IEEE80211_TX_UNICAST;
1082 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1083 } else {
1084 tx->flags |= IEEE80211_TX_UNICAST;
1085 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1086 }
1087
1088 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1089 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1090 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1091 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1092 tx->flags |= IEEE80211_TX_FRAGMENTED;
1093 else
1094 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1095 }
1096
1097 if (!tx->sta)
1098 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1099 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1100 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1101
1102 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1103 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1104 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1105 tx->ethertype = (pos[0] << 8) | pos[1];
1106 }
1107 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1108
1109 return TX_CONTINUE;
1110 }
1111
1112 /*
1113 * NB: @tx is uninitialised when passed in here
1114 */
1115 static int ieee80211_tx_prepare(struct ieee80211_local *local,
1116 struct ieee80211_tx_data *tx,
1117 struct sk_buff *skb)
1118 {
1119 struct net_device *dev;
1120
1121 dev = dev_get_by_index(&init_net, skb->iif);
1122 if (unlikely(dev && !is_ieee80211_device(local, dev))) {
1123 dev_put(dev);
1124 dev = NULL;
1125 }
1126 if (unlikely(!dev))
1127 return -ENODEV;
1128 /*
1129 * initialises tx with control
1130 *
1131 * return value is safe to ignore here because this function
1132 * can only be invoked for multicast frames
1133 *
1134 * XXX: clean up
1135 */
1136 __ieee80211_tx_prepare(tx, skb, dev);
1137 dev_put(dev);
1138 return 0;
1139 }
1140
1141 static int __ieee80211_tx(struct ieee80211_local *local,
1142 struct sk_buff **skbp,
1143 struct sta_info *sta)
1144 {
1145 struct sk_buff *skb = *skbp, *next;
1146 struct ieee80211_tx_info *info;
1147 int ret, len;
1148 bool fragm = false;
1149
1150 local->mdev->trans_start = jiffies;
1151
1152 while (skb) {
1153 if (ieee80211_queue_stopped(&local->hw,
1154 skb_get_queue_mapping(skb)))
1155 return IEEE80211_TX_PENDING;
1156
1157 info = IEEE80211_SKB_CB(skb);
1158
1159 if (fragm)
1160 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1161 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1162
1163 next = skb->next;
1164 len = skb->len;
1165 ret = local->ops->tx(local_to_hw(local), skb);
1166 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1167 dev_kfree_skb(skb);
1168 ret = NETDEV_TX_OK;
1169 }
1170 if (ret != NETDEV_TX_OK)
1171 return IEEE80211_TX_AGAIN;
1172 *skbp = skb = next;
1173 ieee80211_led_tx(local, 1);
1174 fragm = true;
1175 }
1176
1177 return IEEE80211_TX_OK;
1178 }
1179
1180 /*
1181 * Invoke TX handlers, return 0 on success and non-zero if the
1182 * frame was dropped or queued.
1183 */
1184 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1185 {
1186 struct sk_buff *skb = tx->skb;
1187 ieee80211_tx_result res = TX_DROP;
1188
1189 #define CALL_TXH(txh) \
1190 res = txh(tx); \
1191 if (res != TX_CONTINUE) \
1192 goto txh_done;
1193
1194 CALL_TXH(ieee80211_tx_h_check_assoc)
1195 CALL_TXH(ieee80211_tx_h_ps_buf)
1196 CALL_TXH(ieee80211_tx_h_select_key)
1197 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1198 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1199 CALL_TXH(ieee80211_tx_h_misc)
1200 CALL_TXH(ieee80211_tx_h_sequence)
1201 CALL_TXH(ieee80211_tx_h_fragment)
1202 /* handlers after fragment must be aware of tx info fragmentation! */
1203 CALL_TXH(ieee80211_tx_h_encrypt)
1204 CALL_TXH(ieee80211_tx_h_calculate_duration)
1205 CALL_TXH(ieee80211_tx_h_stats)
1206 #undef CALL_TXH
1207
1208 txh_done:
1209 if (unlikely(res == TX_DROP)) {
1210 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1211 while (skb) {
1212 struct sk_buff *next;
1213
1214 next = skb->next;
1215 dev_kfree_skb(skb);
1216 skb = next;
1217 }
1218 return -1;
1219 } else if (unlikely(res == TX_QUEUED)) {
1220 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1221 return -1;
1222 }
1223
1224 return 0;
1225 }
1226
1227 static void ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
1228 bool txpending)
1229 {
1230 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1231 struct sta_info *sta;
1232 struct ieee80211_tx_data tx;
1233 ieee80211_tx_result res_prepare;
1234 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1235 struct sk_buff *next;
1236 unsigned long flags;
1237 int ret, retries;
1238 u16 queue;
1239
1240 queue = skb_get_queue_mapping(skb);
1241
1242 WARN_ON(!txpending && !skb_queue_empty(&local->pending[queue]));
1243
1244 if (unlikely(skb->len < 10)) {
1245 dev_kfree_skb(skb);
1246 return;
1247 }
1248
1249 rcu_read_lock();
1250
1251 /* initialises tx */
1252 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev);
1253
1254 if (unlikely(res_prepare == TX_DROP)) {
1255 dev_kfree_skb(skb);
1256 rcu_read_unlock();
1257 return;
1258 } else if (unlikely(res_prepare == TX_QUEUED)) {
1259 rcu_read_unlock();
1260 return;
1261 }
1262
1263 sta = tx.sta;
1264 tx.channel = local->hw.conf.channel;
1265 info->band = tx.channel->band;
1266
1267 if (invoke_tx_handlers(&tx))
1268 goto out;
1269
1270 retries = 0;
1271 retry:
1272 ret = __ieee80211_tx(local, &tx.skb, tx.sta);
1273 switch (ret) {
1274 case IEEE80211_TX_OK:
1275 break;
1276 case IEEE80211_TX_AGAIN:
1277 /*
1278 * Since there are no fragmented frames on A-MPDU
1279 * queues, there's no reason for a driver to reject
1280 * a frame there, warn and drop it.
1281 */
1282 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1283 goto drop;
1284 /* fall through */
1285 case IEEE80211_TX_PENDING:
1286 skb = tx.skb;
1287
1288 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1289
1290 if (__netif_subqueue_stopped(local->mdev, queue)) {
1291 do {
1292 next = skb->next;
1293 skb->next = NULL;
1294 if (unlikely(txpending))
1295 skb_queue_head(&local->pending[queue],
1296 skb);
1297 else
1298 skb_queue_tail(&local->pending[queue],
1299 skb);
1300 } while ((skb = next));
1301
1302 /*
1303 * Make sure nobody will enable the queue on us
1304 * (without going through the tasklet) nor disable the
1305 * netdev queue underneath the pending handling code.
1306 */
1307 __set_bit(IEEE80211_QUEUE_STOP_REASON_PENDING,
1308 &local->queue_stop_reasons[queue]);
1309
1310 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1311 flags);
1312 } else {
1313 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1314 flags);
1315
1316 retries++;
1317 if (WARN(retries > 10, "tx refused but queue active"))
1318 goto drop;
1319 goto retry;
1320 }
1321 }
1322 out:
1323 rcu_read_unlock();
1324 return;
1325
1326 drop:
1327 rcu_read_unlock();
1328
1329 skb = tx.skb;
1330 while (skb) {
1331 next = skb->next;
1332 dev_kfree_skb(skb);
1333 skb = next;
1334 }
1335 }
1336
1337 /* device xmit handlers */
1338
1339 static int ieee80211_skb_resize(struct ieee80211_local *local,
1340 struct sk_buff *skb,
1341 int head_need, bool may_encrypt)
1342 {
1343 int tail_need = 0;
1344
1345 /*
1346 * This could be optimised, devices that do full hardware
1347 * crypto (including TKIP MMIC) need no tailroom... But we
1348 * have no drivers for such devices currently.
1349 */
1350 if (may_encrypt) {
1351 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1352 tail_need -= skb_tailroom(skb);
1353 tail_need = max_t(int, tail_need, 0);
1354 }
1355
1356 if (head_need || tail_need) {
1357 /* Sorry. Can't account for this any more */
1358 skb_orphan(skb);
1359 }
1360
1361 if (skb_header_cloned(skb))
1362 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1363 else
1364 I802_DEBUG_INC(local->tx_expand_skb_head);
1365
1366 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1367 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1368 wiphy_name(local->hw.wiphy));
1369 return -ENOMEM;
1370 }
1371
1372 /* update truesize too */
1373 skb->truesize += head_need + tail_need;
1374
1375 return 0;
1376 }
1377
1378 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
1379 {
1380 struct ieee80211_master_priv *mpriv = netdev_priv(dev);
1381 struct ieee80211_local *local = mpriv->local;
1382 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1383 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1384 struct net_device *odev = NULL;
1385 struct ieee80211_sub_if_data *osdata;
1386 int headroom;
1387 bool may_encrypt;
1388 enum {
1389 NOT_MONITOR,
1390 FOUND_SDATA,
1391 UNKNOWN_ADDRESS,
1392 } monitor_iface = NOT_MONITOR;
1393
1394 if (skb->iif)
1395 odev = dev_get_by_index(&init_net, skb->iif);
1396 if (unlikely(odev && !is_ieee80211_device(local, odev))) {
1397 dev_put(odev);
1398 odev = NULL;
1399 }
1400 if (unlikely(!odev)) {
1401 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1402 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1403 "originating device\n", dev->name);
1404 #endif
1405 dev_kfree_skb(skb);
1406 return NETDEV_TX_OK;
1407 }
1408
1409 if ((local->hw.flags & IEEE80211_HW_PS_NULLFUNC_STACK) &&
1410 local->hw.conf.dynamic_ps_timeout > 0) {
1411 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1412 ieee80211_stop_queues_by_reason(&local->hw,
1413 IEEE80211_QUEUE_STOP_REASON_PS);
1414 queue_work(local->hw.workqueue,
1415 &local->dynamic_ps_disable_work);
1416 }
1417
1418 mod_timer(&local->dynamic_ps_timer, jiffies +
1419 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1420 }
1421
1422 memset(info, 0, sizeof(*info));
1423
1424 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1425
1426 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1427
1428 if (ieee80211_vif_is_mesh(&osdata->vif) &&
1429 ieee80211_is_data(hdr->frame_control)) {
1430 if (is_multicast_ether_addr(hdr->addr3))
1431 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1432 else
1433 if (mesh_nexthop_lookup(skb, osdata)) {
1434 dev_put(odev);
1435 return NETDEV_TX_OK;
1436 }
1437 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1438 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh,
1439 fwded_frames);
1440 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1441 struct ieee80211_sub_if_data *sdata;
1442 int hdrlen;
1443 u16 len_rthdr;
1444
1445 info->flags |= IEEE80211_TX_CTL_INJECTED;
1446 monitor_iface = UNKNOWN_ADDRESS;
1447
1448 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1449 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr;
1450 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1451
1452 /* check the header is complete in the frame */
1453 if (likely(skb->len >= len_rthdr + hdrlen)) {
1454 /*
1455 * We process outgoing injected frames that have a
1456 * local address we handle as though they are our
1457 * own frames.
1458 * This code here isn't entirely correct, the local
1459 * MAC address is not necessarily enough to find
1460 * the interface to use; for that proper VLAN/WDS
1461 * support we will need a different mechanism.
1462 */
1463
1464 rcu_read_lock();
1465 list_for_each_entry_rcu(sdata, &local->interfaces,
1466 list) {
1467 if (!netif_running(sdata->dev))
1468 continue;
1469 if (sdata->vif.type != NL80211_IFTYPE_AP)
1470 continue;
1471 if (compare_ether_addr(sdata->dev->dev_addr,
1472 hdr->addr2)) {
1473 dev_hold(sdata->dev);
1474 dev_put(odev);
1475 osdata = sdata;
1476 odev = osdata->dev;
1477 skb->iif = sdata->dev->ifindex;
1478 monitor_iface = FOUND_SDATA;
1479 break;
1480 }
1481 }
1482 rcu_read_unlock();
1483 }
1484 }
1485
1486 may_encrypt = !skb->do_not_encrypt;
1487
1488 headroom = osdata->local->tx_headroom;
1489 if (may_encrypt)
1490 headroom += IEEE80211_ENCRYPT_HEADROOM;
1491 headroom -= skb_headroom(skb);
1492 headroom = max_t(int, 0, headroom);
1493
1494 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) {
1495 dev_kfree_skb(skb);
1496 dev_put(odev);
1497 return NETDEV_TX_OK;
1498 }
1499
1500 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1501 osdata = container_of(osdata->bss,
1502 struct ieee80211_sub_if_data,
1503 u.ap);
1504 if (likely(monitor_iface != UNKNOWN_ADDRESS))
1505 info->control.vif = &osdata->vif;
1506
1507 ieee80211_tx(odev, skb, false);
1508 dev_put(odev);
1509
1510 return NETDEV_TX_OK;
1511 }
1512
1513 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1514 struct net_device *dev)
1515 {
1516 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1517 struct ieee80211_channel *chan = local->hw.conf.channel;
1518 struct ieee80211_radiotap_header *prthdr =
1519 (struct ieee80211_radiotap_header *)skb->data;
1520 u16 len_rthdr;
1521
1522 /*
1523 * Frame injection is not allowed if beaconing is not allowed
1524 * or if we need radar detection. Beaconing is usually not allowed when
1525 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1526 * Passive scan is also used in world regulatory domains where
1527 * your country is not known and as such it should be treated as
1528 * NO TX unless the channel is explicitly allowed in which case
1529 * your current regulatory domain would not have the passive scan
1530 * flag.
1531 *
1532 * Since AP mode uses monitor interfaces to inject/TX management
1533 * frames we can make AP mode the exception to this rule once it
1534 * supports radar detection as its implementation can deal with
1535 * radar detection by itself. We can do that later by adding a
1536 * monitor flag interfaces used for AP support.
1537 */
1538 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1539 IEEE80211_CHAN_PASSIVE_SCAN)))
1540 goto fail;
1541
1542 /* check for not even having the fixed radiotap header part */
1543 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1544 goto fail; /* too short to be possibly valid */
1545
1546 /* is it a header version we can trust to find length from? */
1547 if (unlikely(prthdr->it_version))
1548 goto fail; /* only version 0 is supported */
1549
1550 /* then there must be a radiotap header with a length we can use */
1551 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1552
1553 /* does the skb contain enough to deliver on the alleged length? */
1554 if (unlikely(skb->len < len_rthdr))
1555 goto fail; /* skb too short for claimed rt header extent */
1556
1557 skb->dev = local->mdev;
1558
1559 /* needed because we set skb device to master */
1560 skb->iif = dev->ifindex;
1561
1562 /* sometimes we do encrypt injected frames, will be fixed
1563 * up in radiotap parser if not wanted */
1564 skb->do_not_encrypt = 0;
1565
1566 /*
1567 * fix up the pointers accounting for the radiotap
1568 * header still being in there. We are being given
1569 * a precooked IEEE80211 header so no need for
1570 * normal processing
1571 */
1572 skb_set_mac_header(skb, len_rthdr);
1573 /*
1574 * these are just fixed to the end of the rt area since we
1575 * don't have any better information and at this point, nobody cares
1576 */
1577 skb_set_network_header(skb, len_rthdr);
1578 skb_set_transport_header(skb, len_rthdr);
1579
1580 /* pass the radiotap header up to the next stage intact */
1581 dev_queue_xmit(skb);
1582 return NETDEV_TX_OK;
1583
1584 fail:
1585 dev_kfree_skb(skb);
1586 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1587 }
1588
1589 /**
1590 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1591 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1592 * @skb: packet to be sent
1593 * @dev: incoming interface
1594 *
1595 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1596 * not be freed, and caller is responsible for either retrying later or freeing
1597 * skb).
1598 *
1599 * This function takes in an Ethernet header and encapsulates it with suitable
1600 * IEEE 802.11 header based on which interface the packet is coming in. The
1601 * encapsulated packet will then be passed to master interface, wlan#.11, for
1602 * transmission (through low-level driver).
1603 */
1604 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1605 struct net_device *dev)
1606 {
1607 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1608 struct ieee80211_local *local = sdata->local;
1609 int ret = 1, head_need;
1610 u16 ethertype, hdrlen, meshhdrlen = 0;
1611 __le16 fc;
1612 struct ieee80211_hdr hdr;
1613 struct ieee80211s_hdr mesh_hdr;
1614 const u8 *encaps_data;
1615 int encaps_len, skip_header_bytes;
1616 int nh_pos, h_pos;
1617 struct sta_info *sta;
1618 u32 sta_flags = 0;
1619
1620 if (unlikely(skb->len < ETH_HLEN)) {
1621 ret = 0;
1622 goto fail;
1623 }
1624
1625 nh_pos = skb_network_header(skb) - skb->data;
1626 h_pos = skb_transport_header(skb) - skb->data;
1627
1628 /* convert Ethernet header to proper 802.11 header (based on
1629 * operation mode) */
1630 ethertype = (skb->data[12] << 8) | skb->data[13];
1631 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1632
1633 switch (sdata->vif.type) {
1634 case NL80211_IFTYPE_AP:
1635 case NL80211_IFTYPE_AP_VLAN:
1636 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1637 /* DA BSSID SA */
1638 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1639 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1640 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1641 hdrlen = 24;
1642 break;
1643 case NL80211_IFTYPE_WDS:
1644 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1645 /* RA TA DA SA */
1646 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1647 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1648 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1649 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1650 hdrlen = 30;
1651 break;
1652 #ifdef CONFIG_MAC80211_MESH
1653 case NL80211_IFTYPE_MESH_POINT:
1654 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1655 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1656 /* Do not send frames with mesh_ttl == 0 */
1657 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1658 ret = 0;
1659 goto fail;
1660 }
1661 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1662
1663 if (compare_ether_addr(dev->dev_addr,
1664 skb->data + ETH_ALEN) == 0) {
1665 /* RA TA DA SA */
1666 memset(hdr.addr1, 0, ETH_ALEN);
1667 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1668 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1669 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1670 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1671 } else {
1672 /* packet from other interface */
1673 struct mesh_path *mppath;
1674
1675 memset(hdr.addr1, 0, ETH_ALEN);
1676 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1677 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1678
1679 if (is_multicast_ether_addr(skb->data))
1680 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1681 else {
1682 rcu_read_lock();
1683 mppath = mpp_path_lookup(skb->data, sdata);
1684 if (mppath)
1685 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1686 else
1687 memset(hdr.addr3, 0xff, ETH_ALEN);
1688 rcu_read_unlock();
1689 }
1690
1691 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1692 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1693 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1694 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1695 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1696 sdata->u.mesh.mesh_seqnum++;
1697 meshhdrlen = 18;
1698 }
1699 hdrlen = 30;
1700 break;
1701 #endif
1702 case NL80211_IFTYPE_STATION:
1703 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1704 /* BSSID SA DA */
1705 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1706 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1707 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1708 hdrlen = 24;
1709 break;
1710 case NL80211_IFTYPE_ADHOC:
1711 /* DA SA BSSID */
1712 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1713 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1714 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1715 hdrlen = 24;
1716 break;
1717 default:
1718 ret = 0;
1719 goto fail;
1720 }
1721
1722 /*
1723 * There's no need to try to look up the destination
1724 * if it is a multicast address (which can only happen
1725 * in AP mode)
1726 */
1727 if (!is_multicast_ether_addr(hdr.addr1)) {
1728 rcu_read_lock();
1729 sta = sta_info_get(local, hdr.addr1);
1730 if (sta)
1731 sta_flags = get_sta_flags(sta);
1732 rcu_read_unlock();
1733 }
1734
1735 /* receiver and we are QoS enabled, use a QoS type frame */
1736 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1737 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1738 hdrlen += 2;
1739 }
1740
1741 /*
1742 * Drop unicast frames to unauthorised stations unless they are
1743 * EAPOL frames from the local station.
1744 */
1745 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1746 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1747 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1748 !(ethertype == ETH_P_PAE &&
1749 compare_ether_addr(dev->dev_addr,
1750 skb->data + ETH_ALEN) == 0))) {
1751 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1752 if (net_ratelimit())
1753 printk(KERN_DEBUG "%s: dropped frame to %pM"
1754 " (unauthorized port)\n", dev->name,
1755 hdr.addr1);
1756 #endif
1757
1758 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1759
1760 ret = 0;
1761 goto fail;
1762 }
1763
1764 hdr.frame_control = fc;
1765 hdr.duration_id = 0;
1766 hdr.seq_ctrl = 0;
1767
1768 skip_header_bytes = ETH_HLEN;
1769 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1770 encaps_data = bridge_tunnel_header;
1771 encaps_len = sizeof(bridge_tunnel_header);
1772 skip_header_bytes -= 2;
1773 } else if (ethertype >= 0x600) {
1774 encaps_data = rfc1042_header;
1775 encaps_len = sizeof(rfc1042_header);
1776 skip_header_bytes -= 2;
1777 } else {
1778 encaps_data = NULL;
1779 encaps_len = 0;
1780 }
1781
1782 skb_pull(skb, skip_header_bytes);
1783 nh_pos -= skip_header_bytes;
1784 h_pos -= skip_header_bytes;
1785
1786 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1787
1788 /*
1789 * So we need to modify the skb header and hence need a copy of
1790 * that. The head_need variable above doesn't, so far, include
1791 * the needed header space that we don't need right away. If we
1792 * can, then we don't reallocate right now but only after the
1793 * frame arrives at the master device (if it does...)
1794 *
1795 * If we cannot, however, then we will reallocate to include all
1796 * the ever needed space. Also, if we need to reallocate it anyway,
1797 * make it big enough for everything we may ever need.
1798 */
1799
1800 if (head_need > 0 || skb_cloned(skb)) {
1801 head_need += IEEE80211_ENCRYPT_HEADROOM;
1802 head_need += local->tx_headroom;
1803 head_need = max_t(int, 0, head_need);
1804 if (ieee80211_skb_resize(local, skb, head_need, true))
1805 goto fail;
1806 }
1807
1808 if (encaps_data) {
1809 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1810 nh_pos += encaps_len;
1811 h_pos += encaps_len;
1812 }
1813
1814 if (meshhdrlen > 0) {
1815 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1816 nh_pos += meshhdrlen;
1817 h_pos += meshhdrlen;
1818 }
1819
1820 if (ieee80211_is_data_qos(fc)) {
1821 __le16 *qos_control;
1822
1823 qos_control = (__le16*) skb_push(skb, 2);
1824 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1825 /*
1826 * Maybe we could actually set some fields here, for now just
1827 * initialise to zero to indicate no special operation.
1828 */
1829 *qos_control = 0;
1830 } else
1831 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1832
1833 nh_pos += hdrlen;
1834 h_pos += hdrlen;
1835
1836 skb->iif = dev->ifindex;
1837
1838 skb->dev = local->mdev;
1839 dev->stats.tx_packets++;
1840 dev->stats.tx_bytes += skb->len;
1841
1842 /* Update skb pointers to various headers since this modified frame
1843 * is going to go through Linux networking code that may potentially
1844 * need things like pointer to IP header. */
1845 skb_set_mac_header(skb, 0);
1846 skb_set_network_header(skb, nh_pos);
1847 skb_set_transport_header(skb, h_pos);
1848
1849 dev->trans_start = jiffies;
1850 dev_queue_xmit(skb);
1851
1852 return 0;
1853
1854 fail:
1855 if (!ret)
1856 dev_kfree_skb(skb);
1857
1858 return ret;
1859 }
1860
1861
1862 /*
1863 * ieee80211_clear_tx_pending may not be called in a context where
1864 * it is possible that it packets could come in again.
1865 */
1866 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1867 {
1868 int i;
1869
1870 for (i = 0; i < local->hw.queues; i++)
1871 skb_queue_purge(&local->pending[i]);
1872 }
1873
1874 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1875 struct sk_buff *skb)
1876 {
1877 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1878 struct ieee80211_sub_if_data *sdata;
1879 struct sta_info *sta;
1880 struct ieee80211_hdr *hdr;
1881 struct net_device *dev;
1882 int ret;
1883 bool result = true;
1884
1885 /* does interface still exist? */
1886 dev = dev_get_by_index(&init_net, skb->iif);
1887 if (!dev) {
1888 dev_kfree_skb(skb);
1889 return true;
1890 }
1891
1892 /* validate info->control.vif against skb->iif */
1893 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1894 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1895 sdata = container_of(sdata->bss,
1896 struct ieee80211_sub_if_data,
1897 u.ap);
1898
1899 if (unlikely(info->control.vif && info->control.vif != &sdata->vif)) {
1900 dev_kfree_skb(skb);
1901 result = true;
1902 goto out;
1903 }
1904
1905 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1906 ieee80211_tx(dev, skb, true);
1907 } else {
1908 hdr = (struct ieee80211_hdr *)skb->data;
1909 sta = sta_info_get(local, hdr->addr1);
1910
1911 ret = __ieee80211_tx(local, &skb, sta);
1912 if (ret != IEEE80211_TX_OK)
1913 result = false;
1914 }
1915
1916 out:
1917 dev_put(dev);
1918
1919 return result;
1920 }
1921
1922 /*
1923 * Transmit all pending packets. Called from tasklet, locks master device
1924 * TX lock so that no new packets can come in.
1925 */
1926 void ieee80211_tx_pending(unsigned long data)
1927 {
1928 struct ieee80211_local *local = (struct ieee80211_local *)data;
1929 struct net_device *dev = local->mdev;
1930 unsigned long flags;
1931 int i;
1932 bool next;
1933
1934 rcu_read_lock();
1935 netif_tx_lock_bh(dev);
1936
1937 for (i = 0; i < local->hw.queues; i++) {
1938 /*
1939 * If queue is stopped by something other than due to pending
1940 * frames, or we have no pending frames, proceed to next queue.
1941 */
1942 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1943 next = false;
1944 if (local->queue_stop_reasons[i] !=
1945 BIT(IEEE80211_QUEUE_STOP_REASON_PENDING) ||
1946 skb_queue_empty(&local->pending[i]))
1947 next = true;
1948 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1949
1950 if (next)
1951 continue;
1952
1953 /*
1954 * start the queue now to allow processing our packets,
1955 * we're under the tx lock here anyway so nothing will
1956 * happen as a result of this
1957 */
1958 netif_start_subqueue(local->mdev, i);
1959
1960 while (!skb_queue_empty(&local->pending[i])) {
1961 struct sk_buff *skb = skb_dequeue(&local->pending[i]);
1962
1963 if (!ieee80211_tx_pending_skb(local, skb)) {
1964 skb_queue_head(&local->pending[i], skb);
1965 break;
1966 }
1967 }
1968
1969 /* Start regular packet processing again. */
1970 if (skb_queue_empty(&local->pending[i]))
1971 ieee80211_wake_queue_by_reason(&local->hw, i,
1972 IEEE80211_QUEUE_STOP_REASON_PENDING);
1973 }
1974
1975 netif_tx_unlock_bh(dev);
1976 rcu_read_unlock();
1977 }
1978
1979 /* functions for drivers to get certain frames */
1980
1981 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1982 struct sk_buff *skb,
1983 struct beacon_data *beacon)
1984 {
1985 u8 *pos, *tim;
1986 int aid0 = 0;
1987 int i, have_bits = 0, n1, n2;
1988
1989 /* Generate bitmap for TIM only if there are any STAs in power save
1990 * mode. */
1991 if (atomic_read(&bss->num_sta_ps) > 0)
1992 /* in the hope that this is faster than
1993 * checking byte-for-byte */
1994 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1995 IEEE80211_MAX_AID+1);
1996
1997 if (bss->dtim_count == 0)
1998 bss->dtim_count = beacon->dtim_period - 1;
1999 else
2000 bss->dtim_count--;
2001
2002 tim = pos = (u8 *) skb_put(skb, 6);
2003 *pos++ = WLAN_EID_TIM;
2004 *pos++ = 4;
2005 *pos++ = bss->dtim_count;
2006 *pos++ = beacon->dtim_period;
2007
2008 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2009 aid0 = 1;
2010
2011 if (have_bits) {
2012 /* Find largest even number N1 so that bits numbered 1 through
2013 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2014 * (N2 + 1) x 8 through 2007 are 0. */
2015 n1 = 0;
2016 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2017 if (bss->tim[i]) {
2018 n1 = i & 0xfe;
2019 break;
2020 }
2021 }
2022 n2 = n1;
2023 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2024 if (bss->tim[i]) {
2025 n2 = i;
2026 break;
2027 }
2028 }
2029
2030 /* Bitmap control */
2031 *pos++ = n1 | aid0;
2032 /* Part Virt Bitmap */
2033 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2034
2035 tim[1] = n2 - n1 + 4;
2036 skb_put(skb, n2 - n1);
2037 } else {
2038 *pos++ = aid0; /* Bitmap control */
2039 *pos++ = 0; /* Part Virt Bitmap */
2040 }
2041 }
2042
2043 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
2044 struct ieee80211_vif *vif)
2045 {
2046 struct ieee80211_local *local = hw_to_local(hw);
2047 struct sk_buff *skb = NULL;
2048 struct ieee80211_tx_info *info;
2049 struct ieee80211_sub_if_data *sdata = NULL;
2050 struct ieee80211_if_ap *ap = NULL;
2051 struct beacon_data *beacon;
2052 struct ieee80211_supported_band *sband;
2053 enum ieee80211_band band = local->hw.conf.channel->band;
2054
2055 sband = local->hw.wiphy->bands[band];
2056
2057 rcu_read_lock();
2058
2059 sdata = vif_to_sdata(vif);
2060
2061 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2062 ap = &sdata->u.ap;
2063 beacon = rcu_dereference(ap->beacon);
2064 if (ap && beacon) {
2065 /*
2066 * headroom, head length,
2067 * tail length and maximum TIM length
2068 */
2069 skb = dev_alloc_skb(local->tx_headroom +
2070 beacon->head_len +
2071 beacon->tail_len + 256);
2072 if (!skb)
2073 goto out;
2074
2075 skb_reserve(skb, local->tx_headroom);
2076 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2077 beacon->head_len);
2078
2079 /*
2080 * Not very nice, but we want to allow the driver to call
2081 * ieee80211_beacon_get() as a response to the set_tim()
2082 * callback. That, however, is already invoked under the
2083 * sta_lock to guarantee consistent and race-free update
2084 * of the tim bitmap in mac80211 and the driver.
2085 */
2086 if (local->tim_in_locked_section) {
2087 ieee80211_beacon_add_tim(ap, skb, beacon);
2088 } else {
2089 unsigned long flags;
2090
2091 spin_lock_irqsave(&local->sta_lock, flags);
2092 ieee80211_beacon_add_tim(ap, skb, beacon);
2093 spin_unlock_irqrestore(&local->sta_lock, flags);
2094 }
2095
2096 if (beacon->tail)
2097 memcpy(skb_put(skb, beacon->tail_len),
2098 beacon->tail, beacon->tail_len);
2099 } else
2100 goto out;
2101 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2102 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2103 struct ieee80211_hdr *hdr;
2104 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2105
2106 if (!presp)
2107 goto out;
2108
2109 skb = skb_copy(presp, GFP_ATOMIC);
2110 if (!skb)
2111 goto out;
2112
2113 hdr = (struct ieee80211_hdr *) skb->data;
2114 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2115 IEEE80211_STYPE_BEACON);
2116 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2117 struct ieee80211_mgmt *mgmt;
2118 u8 *pos;
2119
2120 /* headroom, head length, tail length and maximum TIM length */
2121 skb = dev_alloc_skb(local->tx_headroom + 400);
2122 if (!skb)
2123 goto out;
2124
2125 skb_reserve(skb, local->hw.extra_tx_headroom);
2126 mgmt = (struct ieee80211_mgmt *)
2127 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2128 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2129 mgmt->frame_control =
2130 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2131 memset(mgmt->da, 0xff, ETH_ALEN);
2132 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
2133 /* BSSID is left zeroed, wildcard value */
2134 mgmt->u.beacon.beacon_int =
2135 cpu_to_le16(local->hw.conf.beacon_int);
2136 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2137
2138 pos = skb_put(skb, 2);
2139 *pos++ = WLAN_EID_SSID;
2140 *pos++ = 0x0;
2141
2142 mesh_mgmt_ies_add(skb, sdata);
2143 } else {
2144 WARN_ON(1);
2145 goto out;
2146 }
2147
2148 info = IEEE80211_SKB_CB(skb);
2149
2150 skb->do_not_encrypt = 1;
2151
2152 info->band = band;
2153 /*
2154 * XXX: For now, always use the lowest rate
2155 */
2156 info->control.rates[0].idx = 0;
2157 info->control.rates[0].count = 1;
2158 info->control.rates[1].idx = -1;
2159 info->control.rates[2].idx = -1;
2160 info->control.rates[3].idx = -1;
2161 info->control.rates[4].idx = -1;
2162 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
2163
2164 info->control.vif = vif;
2165
2166 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2167 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2168 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2169 out:
2170 rcu_read_unlock();
2171 return skb;
2172 }
2173 EXPORT_SYMBOL(ieee80211_beacon_get);
2174
2175 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2176 const void *frame, size_t frame_len,
2177 const struct ieee80211_tx_info *frame_txctl,
2178 struct ieee80211_rts *rts)
2179 {
2180 const struct ieee80211_hdr *hdr = frame;
2181
2182 rts->frame_control =
2183 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2184 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2185 frame_txctl);
2186 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2187 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2188 }
2189 EXPORT_SYMBOL(ieee80211_rts_get);
2190
2191 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2192 const void *frame, size_t frame_len,
2193 const struct ieee80211_tx_info *frame_txctl,
2194 struct ieee80211_cts *cts)
2195 {
2196 const struct ieee80211_hdr *hdr = frame;
2197
2198 cts->frame_control =
2199 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2200 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2201 frame_len, frame_txctl);
2202 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2203 }
2204 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2205
2206 struct sk_buff *
2207 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2208 struct ieee80211_vif *vif)
2209 {
2210 struct ieee80211_local *local = hw_to_local(hw);
2211 struct sk_buff *skb = NULL;
2212 struct sta_info *sta;
2213 struct ieee80211_tx_data tx;
2214 struct ieee80211_sub_if_data *sdata;
2215 struct ieee80211_if_ap *bss = NULL;
2216 struct beacon_data *beacon;
2217 struct ieee80211_tx_info *info;
2218
2219 sdata = vif_to_sdata(vif);
2220 bss = &sdata->u.ap;
2221
2222 if (!bss)
2223 return NULL;
2224
2225 rcu_read_lock();
2226 beacon = rcu_dereference(bss->beacon);
2227
2228 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2229 goto out;
2230
2231 if (bss->dtim_count != 0)
2232 goto out; /* send buffered bc/mc only after DTIM beacon */
2233
2234 while (1) {
2235 skb = skb_dequeue(&bss->ps_bc_buf);
2236 if (!skb)
2237 goto out;
2238 local->total_ps_buffered--;
2239
2240 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2241 struct ieee80211_hdr *hdr =
2242 (struct ieee80211_hdr *) skb->data;
2243 /* more buffered multicast/broadcast frames ==> set
2244 * MoreData flag in IEEE 802.11 header to inform PS
2245 * STAs */
2246 hdr->frame_control |=
2247 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2248 }
2249
2250 if (!ieee80211_tx_prepare(local, &tx, skb))
2251 break;
2252 dev_kfree_skb_any(skb);
2253 }
2254
2255 info = IEEE80211_SKB_CB(skb);
2256
2257 sta = tx.sta;
2258 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2259 tx.channel = local->hw.conf.channel;
2260 info->band = tx.channel->band;
2261
2262 if (invoke_tx_handlers(&tx))
2263 skb = NULL;
2264 out:
2265 rcu_read_unlock();
2266
2267 return skb;
2268 }
2269 EXPORT_SYMBOL(ieee80211_get_buffered_bc);