From: Borislav Petkov Date: Wed, 10 Feb 2016 09:55:12 +0000 (+0100) Subject: perf/x86: Move perf_event_intel_lbr.c ........ => x86/events/intel/lbr.c X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=c85cc4497f823b83379a23e798018d69fe566185;p=GitHub%2FLineageOS%2Fandroid_kernel_motorola_exynos9610.git perf/x86: Move perf_event_intel_lbr.c ........ => x86/events/intel/lbr.c Signed-off-by: Borislav Petkov Cc: Arnaldo Carvalho de Melo Cc: Jiri Olsa Cc: Linus Torvalds Cc: Peter Zijlstra Cc: Peter Zijlstra Cc: Stephane Eranian Cc: Thomas Gleixner Cc: Vince Weaver Link: http://lkml.kernel.org/r/1455098123-11740-7-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar --- diff --git a/arch/x86/events/Makefile b/arch/x86/events/Makefile index c4d41b66d167..48097fd4aa71 100644 --- a/arch/x86/events/Makefile +++ b/arch/x86/events/Makefile @@ -6,4 +6,4 @@ ifdef CONFIG_AMD_IOMMU obj-$(CONFIG_CPU_SUP_AMD) += amd/iommu.o endif obj-$(CONFIG_CPU_SUP_INTEL) += intel/core.o intel/bts.o intel/cqm.o -obj-$(CONFIG_CPU_SUP_INTEL) += intel/cstate.o intel/ds.o +obj-$(CONFIG_CPU_SUP_INTEL) += intel/cstate.o intel/ds.o intel/lbr.o diff --git a/arch/x86/events/intel/lbr.c b/arch/x86/events/intel/lbr.c new file mode 100644 index 000000000000..78c88f9293cc --- /dev/null +++ b/arch/x86/events/intel/lbr.c @@ -0,0 +1,1062 @@ +#include +#include + +#include +#include +#include + +#include "../../kernel/cpu/perf_event.h" + +enum { + LBR_FORMAT_32 = 0x00, + LBR_FORMAT_LIP = 0x01, + LBR_FORMAT_EIP = 0x02, + LBR_FORMAT_EIP_FLAGS = 0x03, + LBR_FORMAT_EIP_FLAGS2 = 0x04, + LBR_FORMAT_INFO = 0x05, + LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO, +}; + +static enum { + LBR_EIP_FLAGS = 1, + LBR_TSX = 2, +} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { + [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS, + [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, +}; + +/* + * Intel LBR_SELECT bits + * Intel Vol3a, April 2011, Section 16.7 Table 16-10 + * + * Hardware branch filter (not available on all CPUs) + */ +#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */ +#define LBR_USER_BIT 1 /* do not capture at ring > 0 */ +#define LBR_JCC_BIT 2 /* do not capture conditional branches */ +#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */ +#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */ +#define LBR_RETURN_BIT 5 /* do not capture near returns */ +#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */ +#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */ +#define LBR_FAR_BIT 8 /* do not capture far branches */ +#define LBR_CALL_STACK_BIT 9 /* enable call stack */ + +/* + * Following bit only exists in Linux; we mask it out before writing it to + * the actual MSR. But it helps the constraint perf code to understand + * that this is a separate configuration. + */ +#define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */ + +#define LBR_KERNEL (1 << LBR_KERNEL_BIT) +#define LBR_USER (1 << LBR_USER_BIT) +#define LBR_JCC (1 << LBR_JCC_BIT) +#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT) +#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT) +#define LBR_RETURN (1 << LBR_RETURN_BIT) +#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT) +#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT) +#define LBR_FAR (1 << LBR_FAR_BIT) +#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT) +#define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT) + +#define LBR_PLM (LBR_KERNEL | LBR_USER) + +#define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */ +#define LBR_NOT_SUPP -1 /* LBR filter not supported */ +#define LBR_IGN 0 /* ignored */ + +#define LBR_ANY \ + (LBR_JCC |\ + LBR_REL_CALL |\ + LBR_IND_CALL |\ + LBR_RETURN |\ + LBR_REL_JMP |\ + LBR_IND_JMP |\ + LBR_FAR) + +#define LBR_FROM_FLAG_MISPRED (1ULL << 63) +#define LBR_FROM_FLAG_IN_TX (1ULL << 62) +#define LBR_FROM_FLAG_ABORT (1ULL << 61) + +/* + * x86control flow change classification + * x86control flow changes include branches, interrupts, traps, faults + */ +enum { + X86_BR_NONE = 0, /* unknown */ + + X86_BR_USER = 1 << 0, /* branch target is user */ + X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ + + X86_BR_CALL = 1 << 2, /* call */ + X86_BR_RET = 1 << 3, /* return */ + X86_BR_SYSCALL = 1 << 4, /* syscall */ + X86_BR_SYSRET = 1 << 5, /* syscall return */ + X86_BR_INT = 1 << 6, /* sw interrupt */ + X86_BR_IRET = 1 << 7, /* return from interrupt */ + X86_BR_JCC = 1 << 8, /* conditional */ + X86_BR_JMP = 1 << 9, /* jump */ + X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ + X86_BR_IND_CALL = 1 << 11,/* indirect calls */ + X86_BR_ABORT = 1 << 12,/* transaction abort */ + X86_BR_IN_TX = 1 << 13,/* in transaction */ + X86_BR_NO_TX = 1 << 14,/* not in transaction */ + X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ + X86_BR_CALL_STACK = 1 << 16,/* call stack */ + X86_BR_IND_JMP = 1 << 17,/* indirect jump */ +}; + +#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) +#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) + +#define X86_BR_ANY \ + (X86_BR_CALL |\ + X86_BR_RET |\ + X86_BR_SYSCALL |\ + X86_BR_SYSRET |\ + X86_BR_INT |\ + X86_BR_IRET |\ + X86_BR_JCC |\ + X86_BR_JMP |\ + X86_BR_IRQ |\ + X86_BR_ABORT |\ + X86_BR_IND_CALL |\ + X86_BR_IND_JMP |\ + X86_BR_ZERO_CALL) + +#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) + +#define X86_BR_ANY_CALL \ + (X86_BR_CALL |\ + X86_BR_IND_CALL |\ + X86_BR_ZERO_CALL |\ + X86_BR_SYSCALL |\ + X86_BR_IRQ |\ + X86_BR_INT) + +static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); + +/* + * We only support LBR implementations that have FREEZE_LBRS_ON_PMI + * otherwise it becomes near impossible to get a reliable stack. + */ + +static void __intel_pmu_lbr_enable(bool pmi) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + u64 debugctl, lbr_select = 0, orig_debugctl; + + /* + * No need to unfreeze manually, as v4 can do that as part + * of the GLOBAL_STATUS ack. + */ + if (pmi && x86_pmu.version >= 4) + return; + + /* + * No need to reprogram LBR_SELECT in a PMI, as it + * did not change. + */ + if (cpuc->lbr_sel) + lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; + if (!pmi && cpuc->lbr_sel) + wrmsrl(MSR_LBR_SELECT, lbr_select); + + rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); + orig_debugctl = debugctl; + debugctl |= DEBUGCTLMSR_LBR; + /* + * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. + * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions + * may cause superfluous increase/decrease of LBR_TOS. + */ + if (!(lbr_select & LBR_CALL_STACK)) + debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; + if (orig_debugctl != debugctl) + wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); +} + +static void __intel_pmu_lbr_disable(void) +{ + u64 debugctl; + + rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); + debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); + wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); +} + +static void intel_pmu_lbr_reset_32(void) +{ + int i; + + for (i = 0; i < x86_pmu.lbr_nr; i++) + wrmsrl(x86_pmu.lbr_from + i, 0); +} + +static void intel_pmu_lbr_reset_64(void) +{ + int i; + + for (i = 0; i < x86_pmu.lbr_nr; i++) { + wrmsrl(x86_pmu.lbr_from + i, 0); + wrmsrl(x86_pmu.lbr_to + i, 0); + if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) + wrmsrl(MSR_LBR_INFO_0 + i, 0); + } +} + +void intel_pmu_lbr_reset(void) +{ + if (!x86_pmu.lbr_nr) + return; + + if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) + intel_pmu_lbr_reset_32(); + else + intel_pmu_lbr_reset_64(); +} + +/* + * TOS = most recently recorded branch + */ +static inline u64 intel_pmu_lbr_tos(void) +{ + u64 tos; + + rdmsrl(x86_pmu.lbr_tos, tos); + return tos; +} + +enum { + LBR_NONE, + LBR_VALID, +}; + +static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx) +{ + int i; + unsigned lbr_idx, mask; + u64 tos; + + if (task_ctx->lbr_callstack_users == 0 || + task_ctx->lbr_stack_state == LBR_NONE) { + intel_pmu_lbr_reset(); + return; + } + + mask = x86_pmu.lbr_nr - 1; + tos = task_ctx->tos; + for (i = 0; i < tos; i++) { + lbr_idx = (tos - i) & mask; + wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]); + wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]); + if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) + wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); + } + wrmsrl(x86_pmu.lbr_tos, tos); + task_ctx->lbr_stack_state = LBR_NONE; +} + +static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx) +{ + int i; + unsigned lbr_idx, mask; + u64 tos; + + if (task_ctx->lbr_callstack_users == 0) { + task_ctx->lbr_stack_state = LBR_NONE; + return; + } + + mask = x86_pmu.lbr_nr - 1; + tos = intel_pmu_lbr_tos(); + for (i = 0; i < tos; i++) { + lbr_idx = (tos - i) & mask; + rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]); + rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]); + if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) + rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); + } + task_ctx->tos = tos; + task_ctx->lbr_stack_state = LBR_VALID; +} + +void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct x86_perf_task_context *task_ctx; + + /* + * If LBR callstack feature is enabled and the stack was saved when + * the task was scheduled out, restore the stack. Otherwise flush + * the LBR stack. + */ + task_ctx = ctx ? ctx->task_ctx_data : NULL; + if (task_ctx) { + if (sched_in) { + __intel_pmu_lbr_restore(task_ctx); + cpuc->lbr_context = ctx; + } else { + __intel_pmu_lbr_save(task_ctx); + } + return; + } + + /* + * When sampling the branck stack in system-wide, it may be + * necessary to flush the stack on context switch. This happens + * when the branch stack does not tag its entries with the pid + * of the current task. Otherwise it becomes impossible to + * associate a branch entry with a task. This ambiguity is more + * likely to appear when the branch stack supports priv level + * filtering and the user sets it to monitor only at the user + * level (which could be a useful measurement in system-wide + * mode). In that case, the risk is high of having a branch + * stack with branch from multiple tasks. + */ + if (sched_in) { + intel_pmu_lbr_reset(); + cpuc->lbr_context = ctx; + } +} + +static inline bool branch_user_callstack(unsigned br_sel) +{ + return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); +} + +void intel_pmu_lbr_enable(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct x86_perf_task_context *task_ctx; + + if (!x86_pmu.lbr_nr) + return; + + /* + * Reset the LBR stack if we changed task context to + * avoid data leaks. + */ + if (event->ctx->task && cpuc->lbr_context != event->ctx) { + intel_pmu_lbr_reset(); + cpuc->lbr_context = event->ctx; + } + cpuc->br_sel = event->hw.branch_reg.reg; + + if (branch_user_callstack(cpuc->br_sel) && event->ctx && + event->ctx->task_ctx_data) { + task_ctx = event->ctx->task_ctx_data; + task_ctx->lbr_callstack_users++; + } + + cpuc->lbr_users++; + perf_sched_cb_inc(event->ctx->pmu); +} + +void intel_pmu_lbr_disable(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + struct x86_perf_task_context *task_ctx; + + if (!x86_pmu.lbr_nr) + return; + + if (branch_user_callstack(cpuc->br_sel) && event->ctx && + event->ctx->task_ctx_data) { + task_ctx = event->ctx->task_ctx_data; + task_ctx->lbr_callstack_users--; + } + + cpuc->lbr_users--; + WARN_ON_ONCE(cpuc->lbr_users < 0); + perf_sched_cb_dec(event->ctx->pmu); + + if (cpuc->enabled && !cpuc->lbr_users) { + __intel_pmu_lbr_disable(); + /* avoid stale pointer */ + cpuc->lbr_context = NULL; + } +} + +void intel_pmu_lbr_enable_all(bool pmi) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + + if (cpuc->lbr_users) + __intel_pmu_lbr_enable(pmi); +} + +void intel_pmu_lbr_disable_all(void) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + + if (cpuc->lbr_users) + __intel_pmu_lbr_disable(); +} + +static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) +{ + unsigned long mask = x86_pmu.lbr_nr - 1; + u64 tos = intel_pmu_lbr_tos(); + int i; + + for (i = 0; i < x86_pmu.lbr_nr; i++) { + unsigned long lbr_idx = (tos - i) & mask; + union { + struct { + u32 from; + u32 to; + }; + u64 lbr; + } msr_lastbranch; + + rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); + + cpuc->lbr_entries[i].from = msr_lastbranch.from; + cpuc->lbr_entries[i].to = msr_lastbranch.to; + cpuc->lbr_entries[i].mispred = 0; + cpuc->lbr_entries[i].predicted = 0; + cpuc->lbr_entries[i].reserved = 0; + } + cpuc->lbr_stack.nr = i; +} + +/* + * Due to lack of segmentation in Linux the effective address (offset) + * is the same as the linear address, allowing us to merge the LIP and EIP + * LBR formats. + */ +static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) +{ + bool need_info = false; + unsigned long mask = x86_pmu.lbr_nr - 1; + int lbr_format = x86_pmu.intel_cap.lbr_format; + u64 tos = intel_pmu_lbr_tos(); + int i; + int out = 0; + int num = x86_pmu.lbr_nr; + + if (cpuc->lbr_sel) { + need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); + if (cpuc->lbr_sel->config & LBR_CALL_STACK) + num = tos; + } + + for (i = 0; i < num; i++) { + unsigned long lbr_idx = (tos - i) & mask; + u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; + int skip = 0; + u16 cycles = 0; + int lbr_flags = lbr_desc[lbr_format]; + + rdmsrl(x86_pmu.lbr_from + lbr_idx, from); + rdmsrl(x86_pmu.lbr_to + lbr_idx, to); + + if (lbr_format == LBR_FORMAT_INFO && need_info) { + u64 info; + + rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info); + mis = !!(info & LBR_INFO_MISPRED); + pred = !mis; + in_tx = !!(info & LBR_INFO_IN_TX); + abort = !!(info & LBR_INFO_ABORT); + cycles = (info & LBR_INFO_CYCLES); + } + if (lbr_flags & LBR_EIP_FLAGS) { + mis = !!(from & LBR_FROM_FLAG_MISPRED); + pred = !mis; + skip = 1; + } + if (lbr_flags & LBR_TSX) { + in_tx = !!(from & LBR_FROM_FLAG_IN_TX); + abort = !!(from & LBR_FROM_FLAG_ABORT); + skip = 3; + } + from = (u64)((((s64)from) << skip) >> skip); + + /* + * Some CPUs report duplicated abort records, + * with the second entry not having an abort bit set. + * Skip them here. This loop runs backwards, + * so we need to undo the previous record. + * If the abort just happened outside the window + * the extra entry cannot be removed. + */ + if (abort && x86_pmu.lbr_double_abort && out > 0) + out--; + + cpuc->lbr_entries[out].from = from; + cpuc->lbr_entries[out].to = to; + cpuc->lbr_entries[out].mispred = mis; + cpuc->lbr_entries[out].predicted = pred; + cpuc->lbr_entries[out].in_tx = in_tx; + cpuc->lbr_entries[out].abort = abort; + cpuc->lbr_entries[out].cycles = cycles; + cpuc->lbr_entries[out].reserved = 0; + out++; + } + cpuc->lbr_stack.nr = out; +} + +void intel_pmu_lbr_read(void) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + + if (!cpuc->lbr_users) + return; + + if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) + intel_pmu_lbr_read_32(cpuc); + else + intel_pmu_lbr_read_64(cpuc); + + intel_pmu_lbr_filter(cpuc); +} + +/* + * SW filter is used: + * - in case there is no HW filter + * - in case the HW filter has errata or limitations + */ +static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) +{ + u64 br_type = event->attr.branch_sample_type; + int mask = 0; + + if (br_type & PERF_SAMPLE_BRANCH_USER) + mask |= X86_BR_USER; + + if (br_type & PERF_SAMPLE_BRANCH_KERNEL) + mask |= X86_BR_KERNEL; + + /* we ignore BRANCH_HV here */ + + if (br_type & PERF_SAMPLE_BRANCH_ANY) + mask |= X86_BR_ANY; + + if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) + mask |= X86_BR_ANY_CALL; + + if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) + mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; + + if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) + mask |= X86_BR_IND_CALL; + + if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) + mask |= X86_BR_ABORT; + + if (br_type & PERF_SAMPLE_BRANCH_IN_TX) + mask |= X86_BR_IN_TX; + + if (br_type & PERF_SAMPLE_BRANCH_NO_TX) + mask |= X86_BR_NO_TX; + + if (br_type & PERF_SAMPLE_BRANCH_COND) + mask |= X86_BR_JCC; + + if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { + if (!x86_pmu_has_lbr_callstack()) + return -EOPNOTSUPP; + if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) + return -EINVAL; + mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | + X86_BR_CALL_STACK; + } + + if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) + mask |= X86_BR_IND_JMP; + + if (br_type & PERF_SAMPLE_BRANCH_CALL) + mask |= X86_BR_CALL | X86_BR_ZERO_CALL; + /* + * stash actual user request into reg, it may + * be used by fixup code for some CPU + */ + event->hw.branch_reg.reg = mask; + return 0; +} + +/* + * setup the HW LBR filter + * Used only when available, may not be enough to disambiguate + * all branches, may need the help of the SW filter + */ +static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) +{ + struct hw_perf_event_extra *reg; + u64 br_type = event->attr.branch_sample_type; + u64 mask = 0, v; + int i; + + for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { + if (!(br_type & (1ULL << i))) + continue; + + v = x86_pmu.lbr_sel_map[i]; + if (v == LBR_NOT_SUPP) + return -EOPNOTSUPP; + + if (v != LBR_IGN) + mask |= v; + } + + reg = &event->hw.branch_reg; + reg->idx = EXTRA_REG_LBR; + + /* + * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate + * in suppress mode. So LBR_SELECT should be set to + * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) + */ + reg->config = mask ^ x86_pmu.lbr_sel_mask; + + if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && + (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && + (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) + reg->config |= LBR_NO_INFO; + + return 0; +} + +int intel_pmu_setup_lbr_filter(struct perf_event *event) +{ + int ret = 0; + + /* + * no LBR on this PMU + */ + if (!x86_pmu.lbr_nr) + return -EOPNOTSUPP; + + /* + * setup SW LBR filter + */ + ret = intel_pmu_setup_sw_lbr_filter(event); + if (ret) + return ret; + + /* + * setup HW LBR filter, if any + */ + if (x86_pmu.lbr_sel_map) + ret = intel_pmu_setup_hw_lbr_filter(event); + + return ret; +} + +/* + * return the type of control flow change at address "from" + * intruction is not necessarily a branch (in case of interrupt). + * + * The branch type returned also includes the priv level of the + * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). + * + * If a branch type is unknown OR the instruction cannot be + * decoded (e.g., text page not present), then X86_BR_NONE is + * returned. + */ +static int branch_type(unsigned long from, unsigned long to, int abort) +{ + struct insn insn; + void *addr; + int bytes_read, bytes_left; + int ret = X86_BR_NONE; + int ext, to_plm, from_plm; + u8 buf[MAX_INSN_SIZE]; + int is64 = 0; + + to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; + from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; + + /* + * maybe zero if lbr did not fill up after a reset by the time + * we get a PMU interrupt + */ + if (from == 0 || to == 0) + return X86_BR_NONE; + + if (abort) + return X86_BR_ABORT | to_plm; + + if (from_plm == X86_BR_USER) { + /* + * can happen if measuring at the user level only + * and we interrupt in a kernel thread, e.g., idle. + */ + if (!current->mm) + return X86_BR_NONE; + + /* may fail if text not present */ + bytes_left = copy_from_user_nmi(buf, (void __user *)from, + MAX_INSN_SIZE); + bytes_read = MAX_INSN_SIZE - bytes_left; + if (!bytes_read) + return X86_BR_NONE; + + addr = buf; + } else { + /* + * The LBR logs any address in the IP, even if the IP just + * faulted. This means userspace can control the from address. + * Ensure we don't blindy read any address by validating it is + * a known text address. + */ + if (kernel_text_address(from)) { + addr = (void *)from; + /* + * Assume we can get the maximum possible size + * when grabbing kernel data. This is not + * _strictly_ true since we could possibly be + * executing up next to a memory hole, but + * it is very unlikely to be a problem. + */ + bytes_read = MAX_INSN_SIZE; + } else { + return X86_BR_NONE; + } + } + + /* + * decoder needs to know the ABI especially + * on 64-bit systems running 32-bit apps + */ +#ifdef CONFIG_X86_64 + is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); +#endif + insn_init(&insn, addr, bytes_read, is64); + insn_get_opcode(&insn); + if (!insn.opcode.got) + return X86_BR_ABORT; + + switch (insn.opcode.bytes[0]) { + case 0xf: + switch (insn.opcode.bytes[1]) { + case 0x05: /* syscall */ + case 0x34: /* sysenter */ + ret = X86_BR_SYSCALL; + break; + case 0x07: /* sysret */ + case 0x35: /* sysexit */ + ret = X86_BR_SYSRET; + break; + case 0x80 ... 0x8f: /* conditional */ + ret = X86_BR_JCC; + break; + default: + ret = X86_BR_NONE; + } + break; + case 0x70 ... 0x7f: /* conditional */ + ret = X86_BR_JCC; + break; + case 0xc2: /* near ret */ + case 0xc3: /* near ret */ + case 0xca: /* far ret */ + case 0xcb: /* far ret */ + ret = X86_BR_RET; + break; + case 0xcf: /* iret */ + ret = X86_BR_IRET; + break; + case 0xcc ... 0xce: /* int */ + ret = X86_BR_INT; + break; + case 0xe8: /* call near rel */ + insn_get_immediate(&insn); + if (insn.immediate1.value == 0) { + /* zero length call */ + ret = X86_BR_ZERO_CALL; + break; + } + case 0x9a: /* call far absolute */ + ret = X86_BR_CALL; + break; + case 0xe0 ... 0xe3: /* loop jmp */ + ret = X86_BR_JCC; + break; + case 0xe9 ... 0xeb: /* jmp */ + ret = X86_BR_JMP; + break; + case 0xff: /* call near absolute, call far absolute ind */ + insn_get_modrm(&insn); + ext = (insn.modrm.bytes[0] >> 3) & 0x7; + switch (ext) { + case 2: /* near ind call */ + case 3: /* far ind call */ + ret = X86_BR_IND_CALL; + break; + case 4: + case 5: + ret = X86_BR_IND_JMP; + break; + } + break; + default: + ret = X86_BR_NONE; + } + /* + * interrupts, traps, faults (and thus ring transition) may + * occur on any instructions. Thus, to classify them correctly, + * we need to first look at the from and to priv levels. If they + * are different and to is in the kernel, then it indicates + * a ring transition. If the from instruction is not a ring + * transition instr (syscall, systenter, int), then it means + * it was a irq, trap or fault. + * + * we have no way of detecting kernel to kernel faults. + */ + if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL + && ret != X86_BR_SYSCALL && ret != X86_BR_INT) + ret = X86_BR_IRQ; + + /* + * branch priv level determined by target as + * is done by HW when LBR_SELECT is implemented + */ + if (ret != X86_BR_NONE) + ret |= to_plm; + + return ret; +} + +/* + * implement actual branch filter based on user demand. + * Hardware may not exactly satisfy that request, thus + * we need to inspect opcodes. Mismatched branches are + * discarded. Therefore, the number of branches returned + * in PERF_SAMPLE_BRANCH_STACK sample may vary. + */ +static void +intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) +{ + u64 from, to; + int br_sel = cpuc->br_sel; + int i, j, type; + bool compress = false; + + /* if sampling all branches, then nothing to filter */ + if ((br_sel & X86_BR_ALL) == X86_BR_ALL) + return; + + for (i = 0; i < cpuc->lbr_stack.nr; i++) { + + from = cpuc->lbr_entries[i].from; + to = cpuc->lbr_entries[i].to; + + type = branch_type(from, to, cpuc->lbr_entries[i].abort); + if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { + if (cpuc->lbr_entries[i].in_tx) + type |= X86_BR_IN_TX; + else + type |= X86_BR_NO_TX; + } + + /* if type does not correspond, then discard */ + if (type == X86_BR_NONE || (br_sel & type) != type) { + cpuc->lbr_entries[i].from = 0; + compress = true; + } + } + + if (!compress) + return; + + /* remove all entries with from=0 */ + for (i = 0; i < cpuc->lbr_stack.nr; ) { + if (!cpuc->lbr_entries[i].from) { + j = i; + while (++j < cpuc->lbr_stack.nr) + cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; + cpuc->lbr_stack.nr--; + if (!cpuc->lbr_entries[i].from) + continue; + } + i++; + } +} + +/* + * Map interface branch filters onto LBR filters + */ +static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { + [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, + [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, + [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, + [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, + [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP + | LBR_IND_JMP | LBR_FAR, + /* + * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches + */ + [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = + LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, + /* + * NHM/WSM erratum: must include IND_JMP to capture IND_CALL + */ + [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, + [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, + [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, +}; + +static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { + [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, + [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, + [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, + [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, + [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, + [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL + | LBR_FAR, + [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, + [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, + [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, + [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, +}; + +static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { + [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, + [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, + [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, + [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, + [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, + [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL + | LBR_FAR, + [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, + [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, + [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL + | LBR_RETURN | LBR_CALL_STACK, + [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, + [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, +}; + +/* core */ +void __init intel_pmu_lbr_init_core(void) +{ + x86_pmu.lbr_nr = 4; + x86_pmu.lbr_tos = MSR_LBR_TOS; + x86_pmu.lbr_from = MSR_LBR_CORE_FROM; + x86_pmu.lbr_to = MSR_LBR_CORE_TO; + + /* + * SW branch filter usage: + * - compensate for lack of HW filter + */ + pr_cont("4-deep LBR, "); +} + +/* nehalem/westmere */ +void __init intel_pmu_lbr_init_nhm(void) +{ + x86_pmu.lbr_nr = 16; + x86_pmu.lbr_tos = MSR_LBR_TOS; + x86_pmu.lbr_from = MSR_LBR_NHM_FROM; + x86_pmu.lbr_to = MSR_LBR_NHM_TO; + + x86_pmu.lbr_sel_mask = LBR_SEL_MASK; + x86_pmu.lbr_sel_map = nhm_lbr_sel_map; + + /* + * SW branch filter usage: + * - workaround LBR_SEL errata (see above) + * - support syscall, sysret capture. + * That requires LBR_FAR but that means far + * jmp need to be filtered out + */ + pr_cont("16-deep LBR, "); +} + +/* sandy bridge */ +void __init intel_pmu_lbr_init_snb(void) +{ + x86_pmu.lbr_nr = 16; + x86_pmu.lbr_tos = MSR_LBR_TOS; + x86_pmu.lbr_from = MSR_LBR_NHM_FROM; + x86_pmu.lbr_to = MSR_LBR_NHM_TO; + + x86_pmu.lbr_sel_mask = LBR_SEL_MASK; + x86_pmu.lbr_sel_map = snb_lbr_sel_map; + + /* + * SW branch filter usage: + * - support syscall, sysret capture. + * That requires LBR_FAR but that means far + * jmp need to be filtered out + */ + pr_cont("16-deep LBR, "); +} + +/* haswell */ +void intel_pmu_lbr_init_hsw(void) +{ + x86_pmu.lbr_nr = 16; + x86_pmu.lbr_tos = MSR_LBR_TOS; + x86_pmu.lbr_from = MSR_LBR_NHM_FROM; + x86_pmu.lbr_to = MSR_LBR_NHM_TO; + + x86_pmu.lbr_sel_mask = LBR_SEL_MASK; + x86_pmu.lbr_sel_map = hsw_lbr_sel_map; + + pr_cont("16-deep LBR, "); +} + +/* skylake */ +__init void intel_pmu_lbr_init_skl(void) +{ + x86_pmu.lbr_nr = 32; + x86_pmu.lbr_tos = MSR_LBR_TOS; + x86_pmu.lbr_from = MSR_LBR_NHM_FROM; + x86_pmu.lbr_to = MSR_LBR_NHM_TO; + + x86_pmu.lbr_sel_mask = LBR_SEL_MASK; + x86_pmu.lbr_sel_map = hsw_lbr_sel_map; + + /* + * SW branch filter usage: + * - support syscall, sysret capture. + * That requires LBR_FAR but that means far + * jmp need to be filtered out + */ + pr_cont("32-deep LBR, "); +} + +/* atom */ +void __init intel_pmu_lbr_init_atom(void) +{ + /* + * only models starting at stepping 10 seems + * to have an operational LBR which can freeze + * on PMU interrupt + */ + if (boot_cpu_data.x86_model == 28 + && boot_cpu_data.x86_mask < 10) { + pr_cont("LBR disabled due to erratum"); + return; + } + + x86_pmu.lbr_nr = 8; + x86_pmu.lbr_tos = MSR_LBR_TOS; + x86_pmu.lbr_from = MSR_LBR_CORE_FROM; + x86_pmu.lbr_to = MSR_LBR_CORE_TO; + + /* + * SW branch filter usage: + * - compensate for lack of HW filter + */ + pr_cont("8-deep LBR, "); +} + +/* Knights Landing */ +void intel_pmu_lbr_init_knl(void) +{ + x86_pmu.lbr_nr = 8; + x86_pmu.lbr_tos = MSR_LBR_TOS; + x86_pmu.lbr_from = MSR_LBR_NHM_FROM; + x86_pmu.lbr_to = MSR_LBR_NHM_TO; + + x86_pmu.lbr_sel_mask = LBR_SEL_MASK; + x86_pmu.lbr_sel_map = snb_lbr_sel_map; + + pr_cont("8-deep LBR, "); +} diff --git a/arch/x86/kernel/cpu/Makefile b/arch/x86/kernel/cpu/Makefile index 035bdb664d71..d52ed9b918b3 100644 --- a/arch/x86/kernel/cpu/Makefile +++ b/arch/x86/kernel/cpu/Makefile @@ -32,7 +32,6 @@ obj-$(CONFIG_CPU_SUP_UMC_32) += umc.o ifdef CONFIG_PERF_EVENTS obj-$(CONFIG_CPU_SUP_INTEL) += perf_event_p6.o perf_event_knc.o perf_event_p4.o -obj-$(CONFIG_CPU_SUP_INTEL) += perf_event_intel_lbr.o obj-$(CONFIG_CPU_SUP_INTEL) += perf_event_intel_rapl.o obj-$(CONFIG_CPU_SUP_INTEL) += perf_event_intel_pt.o diff --git a/arch/x86/kernel/cpu/perf_event_intel_lbr.c b/arch/x86/kernel/cpu/perf_event_intel_lbr.c deleted file mode 100644 index 653f88d25987..000000000000 --- a/arch/x86/kernel/cpu/perf_event_intel_lbr.c +++ /dev/null @@ -1,1062 +0,0 @@ -#include -#include - -#include -#include -#include - -#include "perf_event.h" - -enum { - LBR_FORMAT_32 = 0x00, - LBR_FORMAT_LIP = 0x01, - LBR_FORMAT_EIP = 0x02, - LBR_FORMAT_EIP_FLAGS = 0x03, - LBR_FORMAT_EIP_FLAGS2 = 0x04, - LBR_FORMAT_INFO = 0x05, - LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO, -}; - -static enum { - LBR_EIP_FLAGS = 1, - LBR_TSX = 2, -} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { - [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS, - [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, -}; - -/* - * Intel LBR_SELECT bits - * Intel Vol3a, April 2011, Section 16.7 Table 16-10 - * - * Hardware branch filter (not available on all CPUs) - */ -#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */ -#define LBR_USER_BIT 1 /* do not capture at ring > 0 */ -#define LBR_JCC_BIT 2 /* do not capture conditional branches */ -#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */ -#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */ -#define LBR_RETURN_BIT 5 /* do not capture near returns */ -#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */ -#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */ -#define LBR_FAR_BIT 8 /* do not capture far branches */ -#define LBR_CALL_STACK_BIT 9 /* enable call stack */ - -/* - * Following bit only exists in Linux; we mask it out before writing it to - * the actual MSR. But it helps the constraint perf code to understand - * that this is a separate configuration. - */ -#define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */ - -#define LBR_KERNEL (1 << LBR_KERNEL_BIT) -#define LBR_USER (1 << LBR_USER_BIT) -#define LBR_JCC (1 << LBR_JCC_BIT) -#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT) -#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT) -#define LBR_RETURN (1 << LBR_RETURN_BIT) -#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT) -#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT) -#define LBR_FAR (1 << LBR_FAR_BIT) -#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT) -#define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT) - -#define LBR_PLM (LBR_KERNEL | LBR_USER) - -#define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */ -#define LBR_NOT_SUPP -1 /* LBR filter not supported */ -#define LBR_IGN 0 /* ignored */ - -#define LBR_ANY \ - (LBR_JCC |\ - LBR_REL_CALL |\ - LBR_IND_CALL |\ - LBR_RETURN |\ - LBR_REL_JMP |\ - LBR_IND_JMP |\ - LBR_FAR) - -#define LBR_FROM_FLAG_MISPRED (1ULL << 63) -#define LBR_FROM_FLAG_IN_TX (1ULL << 62) -#define LBR_FROM_FLAG_ABORT (1ULL << 61) - -/* - * x86control flow change classification - * x86control flow changes include branches, interrupts, traps, faults - */ -enum { - X86_BR_NONE = 0, /* unknown */ - - X86_BR_USER = 1 << 0, /* branch target is user */ - X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ - - X86_BR_CALL = 1 << 2, /* call */ - X86_BR_RET = 1 << 3, /* return */ - X86_BR_SYSCALL = 1 << 4, /* syscall */ - X86_BR_SYSRET = 1 << 5, /* syscall return */ - X86_BR_INT = 1 << 6, /* sw interrupt */ - X86_BR_IRET = 1 << 7, /* return from interrupt */ - X86_BR_JCC = 1 << 8, /* conditional */ - X86_BR_JMP = 1 << 9, /* jump */ - X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ - X86_BR_IND_CALL = 1 << 11,/* indirect calls */ - X86_BR_ABORT = 1 << 12,/* transaction abort */ - X86_BR_IN_TX = 1 << 13,/* in transaction */ - X86_BR_NO_TX = 1 << 14,/* not in transaction */ - X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ - X86_BR_CALL_STACK = 1 << 16,/* call stack */ - X86_BR_IND_JMP = 1 << 17,/* indirect jump */ -}; - -#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) -#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) - -#define X86_BR_ANY \ - (X86_BR_CALL |\ - X86_BR_RET |\ - X86_BR_SYSCALL |\ - X86_BR_SYSRET |\ - X86_BR_INT |\ - X86_BR_IRET |\ - X86_BR_JCC |\ - X86_BR_JMP |\ - X86_BR_IRQ |\ - X86_BR_ABORT |\ - X86_BR_IND_CALL |\ - X86_BR_IND_JMP |\ - X86_BR_ZERO_CALL) - -#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) - -#define X86_BR_ANY_CALL \ - (X86_BR_CALL |\ - X86_BR_IND_CALL |\ - X86_BR_ZERO_CALL |\ - X86_BR_SYSCALL |\ - X86_BR_IRQ |\ - X86_BR_INT) - -static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); - -/* - * We only support LBR implementations that have FREEZE_LBRS_ON_PMI - * otherwise it becomes near impossible to get a reliable stack. - */ - -static void __intel_pmu_lbr_enable(bool pmi) -{ - struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); - u64 debugctl, lbr_select = 0, orig_debugctl; - - /* - * No need to unfreeze manually, as v4 can do that as part - * of the GLOBAL_STATUS ack. - */ - if (pmi && x86_pmu.version >= 4) - return; - - /* - * No need to reprogram LBR_SELECT in a PMI, as it - * did not change. - */ - if (cpuc->lbr_sel) - lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; - if (!pmi && cpuc->lbr_sel) - wrmsrl(MSR_LBR_SELECT, lbr_select); - - rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); - orig_debugctl = debugctl; - debugctl |= DEBUGCTLMSR_LBR; - /* - * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. - * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions - * may cause superfluous increase/decrease of LBR_TOS. - */ - if (!(lbr_select & LBR_CALL_STACK)) - debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; - if (orig_debugctl != debugctl) - wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); -} - -static void __intel_pmu_lbr_disable(void) -{ - u64 debugctl; - - rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); - debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); - wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); -} - -static void intel_pmu_lbr_reset_32(void) -{ - int i; - - for (i = 0; i < x86_pmu.lbr_nr; i++) - wrmsrl(x86_pmu.lbr_from + i, 0); -} - -static void intel_pmu_lbr_reset_64(void) -{ - int i; - - for (i = 0; i < x86_pmu.lbr_nr; i++) { - wrmsrl(x86_pmu.lbr_from + i, 0); - wrmsrl(x86_pmu.lbr_to + i, 0); - if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) - wrmsrl(MSR_LBR_INFO_0 + i, 0); - } -} - -void intel_pmu_lbr_reset(void) -{ - if (!x86_pmu.lbr_nr) - return; - - if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) - intel_pmu_lbr_reset_32(); - else - intel_pmu_lbr_reset_64(); -} - -/* - * TOS = most recently recorded branch - */ -static inline u64 intel_pmu_lbr_tos(void) -{ - u64 tos; - - rdmsrl(x86_pmu.lbr_tos, tos); - return tos; -} - -enum { - LBR_NONE, - LBR_VALID, -}; - -static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx) -{ - int i; - unsigned lbr_idx, mask; - u64 tos; - - if (task_ctx->lbr_callstack_users == 0 || - task_ctx->lbr_stack_state == LBR_NONE) { - intel_pmu_lbr_reset(); - return; - } - - mask = x86_pmu.lbr_nr - 1; - tos = task_ctx->tos; - for (i = 0; i < tos; i++) { - lbr_idx = (tos - i) & mask; - wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]); - wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]); - if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) - wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); - } - wrmsrl(x86_pmu.lbr_tos, tos); - task_ctx->lbr_stack_state = LBR_NONE; -} - -static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx) -{ - int i; - unsigned lbr_idx, mask; - u64 tos; - - if (task_ctx->lbr_callstack_users == 0) { - task_ctx->lbr_stack_state = LBR_NONE; - return; - } - - mask = x86_pmu.lbr_nr - 1; - tos = intel_pmu_lbr_tos(); - for (i = 0; i < tos; i++) { - lbr_idx = (tos - i) & mask; - rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]); - rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]); - if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) - rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); - } - task_ctx->tos = tos; - task_ctx->lbr_stack_state = LBR_VALID; -} - -void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) -{ - struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); - struct x86_perf_task_context *task_ctx; - - /* - * If LBR callstack feature is enabled and the stack was saved when - * the task was scheduled out, restore the stack. Otherwise flush - * the LBR stack. - */ - task_ctx = ctx ? ctx->task_ctx_data : NULL; - if (task_ctx) { - if (sched_in) { - __intel_pmu_lbr_restore(task_ctx); - cpuc->lbr_context = ctx; - } else { - __intel_pmu_lbr_save(task_ctx); - } - return; - } - - /* - * When sampling the branck stack in system-wide, it may be - * necessary to flush the stack on context switch. This happens - * when the branch stack does not tag its entries with the pid - * of the current task. Otherwise it becomes impossible to - * associate a branch entry with a task. This ambiguity is more - * likely to appear when the branch stack supports priv level - * filtering and the user sets it to monitor only at the user - * level (which could be a useful measurement in system-wide - * mode). In that case, the risk is high of having a branch - * stack with branch from multiple tasks. - */ - if (sched_in) { - intel_pmu_lbr_reset(); - cpuc->lbr_context = ctx; - } -} - -static inline bool branch_user_callstack(unsigned br_sel) -{ - return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); -} - -void intel_pmu_lbr_enable(struct perf_event *event) -{ - struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); - struct x86_perf_task_context *task_ctx; - - if (!x86_pmu.lbr_nr) - return; - - /* - * Reset the LBR stack if we changed task context to - * avoid data leaks. - */ - if (event->ctx->task && cpuc->lbr_context != event->ctx) { - intel_pmu_lbr_reset(); - cpuc->lbr_context = event->ctx; - } - cpuc->br_sel = event->hw.branch_reg.reg; - - if (branch_user_callstack(cpuc->br_sel) && event->ctx && - event->ctx->task_ctx_data) { - task_ctx = event->ctx->task_ctx_data; - task_ctx->lbr_callstack_users++; - } - - cpuc->lbr_users++; - perf_sched_cb_inc(event->ctx->pmu); -} - -void intel_pmu_lbr_disable(struct perf_event *event) -{ - struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); - struct x86_perf_task_context *task_ctx; - - if (!x86_pmu.lbr_nr) - return; - - if (branch_user_callstack(cpuc->br_sel) && event->ctx && - event->ctx->task_ctx_data) { - task_ctx = event->ctx->task_ctx_data; - task_ctx->lbr_callstack_users--; - } - - cpuc->lbr_users--; - WARN_ON_ONCE(cpuc->lbr_users < 0); - perf_sched_cb_dec(event->ctx->pmu); - - if (cpuc->enabled && !cpuc->lbr_users) { - __intel_pmu_lbr_disable(); - /* avoid stale pointer */ - cpuc->lbr_context = NULL; - } -} - -void intel_pmu_lbr_enable_all(bool pmi) -{ - struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); - - if (cpuc->lbr_users) - __intel_pmu_lbr_enable(pmi); -} - -void intel_pmu_lbr_disable_all(void) -{ - struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); - - if (cpuc->lbr_users) - __intel_pmu_lbr_disable(); -} - -static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) -{ - unsigned long mask = x86_pmu.lbr_nr - 1; - u64 tos = intel_pmu_lbr_tos(); - int i; - - for (i = 0; i < x86_pmu.lbr_nr; i++) { - unsigned long lbr_idx = (tos - i) & mask; - union { - struct { - u32 from; - u32 to; - }; - u64 lbr; - } msr_lastbranch; - - rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); - - cpuc->lbr_entries[i].from = msr_lastbranch.from; - cpuc->lbr_entries[i].to = msr_lastbranch.to; - cpuc->lbr_entries[i].mispred = 0; - cpuc->lbr_entries[i].predicted = 0; - cpuc->lbr_entries[i].reserved = 0; - } - cpuc->lbr_stack.nr = i; -} - -/* - * Due to lack of segmentation in Linux the effective address (offset) - * is the same as the linear address, allowing us to merge the LIP and EIP - * LBR formats. - */ -static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) -{ - bool need_info = false; - unsigned long mask = x86_pmu.lbr_nr - 1; - int lbr_format = x86_pmu.intel_cap.lbr_format; - u64 tos = intel_pmu_lbr_tos(); - int i; - int out = 0; - int num = x86_pmu.lbr_nr; - - if (cpuc->lbr_sel) { - need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); - if (cpuc->lbr_sel->config & LBR_CALL_STACK) - num = tos; - } - - for (i = 0; i < num; i++) { - unsigned long lbr_idx = (tos - i) & mask; - u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; - int skip = 0; - u16 cycles = 0; - int lbr_flags = lbr_desc[lbr_format]; - - rdmsrl(x86_pmu.lbr_from + lbr_idx, from); - rdmsrl(x86_pmu.lbr_to + lbr_idx, to); - - if (lbr_format == LBR_FORMAT_INFO && need_info) { - u64 info; - - rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info); - mis = !!(info & LBR_INFO_MISPRED); - pred = !mis; - in_tx = !!(info & LBR_INFO_IN_TX); - abort = !!(info & LBR_INFO_ABORT); - cycles = (info & LBR_INFO_CYCLES); - } - if (lbr_flags & LBR_EIP_FLAGS) { - mis = !!(from & LBR_FROM_FLAG_MISPRED); - pred = !mis; - skip = 1; - } - if (lbr_flags & LBR_TSX) { - in_tx = !!(from & LBR_FROM_FLAG_IN_TX); - abort = !!(from & LBR_FROM_FLAG_ABORT); - skip = 3; - } - from = (u64)((((s64)from) << skip) >> skip); - - /* - * Some CPUs report duplicated abort records, - * with the second entry not having an abort bit set. - * Skip them here. This loop runs backwards, - * so we need to undo the previous record. - * If the abort just happened outside the window - * the extra entry cannot be removed. - */ - if (abort && x86_pmu.lbr_double_abort && out > 0) - out--; - - cpuc->lbr_entries[out].from = from; - cpuc->lbr_entries[out].to = to; - cpuc->lbr_entries[out].mispred = mis; - cpuc->lbr_entries[out].predicted = pred; - cpuc->lbr_entries[out].in_tx = in_tx; - cpuc->lbr_entries[out].abort = abort; - cpuc->lbr_entries[out].cycles = cycles; - cpuc->lbr_entries[out].reserved = 0; - out++; - } - cpuc->lbr_stack.nr = out; -} - -void intel_pmu_lbr_read(void) -{ - struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); - - if (!cpuc->lbr_users) - return; - - if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) - intel_pmu_lbr_read_32(cpuc); - else - intel_pmu_lbr_read_64(cpuc); - - intel_pmu_lbr_filter(cpuc); -} - -/* - * SW filter is used: - * - in case there is no HW filter - * - in case the HW filter has errata or limitations - */ -static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) -{ - u64 br_type = event->attr.branch_sample_type; - int mask = 0; - - if (br_type & PERF_SAMPLE_BRANCH_USER) - mask |= X86_BR_USER; - - if (br_type & PERF_SAMPLE_BRANCH_KERNEL) - mask |= X86_BR_KERNEL; - - /* we ignore BRANCH_HV here */ - - if (br_type & PERF_SAMPLE_BRANCH_ANY) - mask |= X86_BR_ANY; - - if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) - mask |= X86_BR_ANY_CALL; - - if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) - mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; - - if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) - mask |= X86_BR_IND_CALL; - - if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) - mask |= X86_BR_ABORT; - - if (br_type & PERF_SAMPLE_BRANCH_IN_TX) - mask |= X86_BR_IN_TX; - - if (br_type & PERF_SAMPLE_BRANCH_NO_TX) - mask |= X86_BR_NO_TX; - - if (br_type & PERF_SAMPLE_BRANCH_COND) - mask |= X86_BR_JCC; - - if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { - if (!x86_pmu_has_lbr_callstack()) - return -EOPNOTSUPP; - if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) - return -EINVAL; - mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | - X86_BR_CALL_STACK; - } - - if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) - mask |= X86_BR_IND_JMP; - - if (br_type & PERF_SAMPLE_BRANCH_CALL) - mask |= X86_BR_CALL | X86_BR_ZERO_CALL; - /* - * stash actual user request into reg, it may - * be used by fixup code for some CPU - */ - event->hw.branch_reg.reg = mask; - return 0; -} - -/* - * setup the HW LBR filter - * Used only when available, may not be enough to disambiguate - * all branches, may need the help of the SW filter - */ -static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) -{ - struct hw_perf_event_extra *reg; - u64 br_type = event->attr.branch_sample_type; - u64 mask = 0, v; - int i; - - for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { - if (!(br_type & (1ULL << i))) - continue; - - v = x86_pmu.lbr_sel_map[i]; - if (v == LBR_NOT_SUPP) - return -EOPNOTSUPP; - - if (v != LBR_IGN) - mask |= v; - } - - reg = &event->hw.branch_reg; - reg->idx = EXTRA_REG_LBR; - - /* - * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate - * in suppress mode. So LBR_SELECT should be set to - * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) - */ - reg->config = mask ^ x86_pmu.lbr_sel_mask; - - if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && - (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && - (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) - reg->config |= LBR_NO_INFO; - - return 0; -} - -int intel_pmu_setup_lbr_filter(struct perf_event *event) -{ - int ret = 0; - - /* - * no LBR on this PMU - */ - if (!x86_pmu.lbr_nr) - return -EOPNOTSUPP; - - /* - * setup SW LBR filter - */ - ret = intel_pmu_setup_sw_lbr_filter(event); - if (ret) - return ret; - - /* - * setup HW LBR filter, if any - */ - if (x86_pmu.lbr_sel_map) - ret = intel_pmu_setup_hw_lbr_filter(event); - - return ret; -} - -/* - * return the type of control flow change at address "from" - * intruction is not necessarily a branch (in case of interrupt). - * - * The branch type returned also includes the priv level of the - * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). - * - * If a branch type is unknown OR the instruction cannot be - * decoded (e.g., text page not present), then X86_BR_NONE is - * returned. - */ -static int branch_type(unsigned long from, unsigned long to, int abort) -{ - struct insn insn; - void *addr; - int bytes_read, bytes_left; - int ret = X86_BR_NONE; - int ext, to_plm, from_plm; - u8 buf[MAX_INSN_SIZE]; - int is64 = 0; - - to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; - from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; - - /* - * maybe zero if lbr did not fill up after a reset by the time - * we get a PMU interrupt - */ - if (from == 0 || to == 0) - return X86_BR_NONE; - - if (abort) - return X86_BR_ABORT | to_plm; - - if (from_plm == X86_BR_USER) { - /* - * can happen if measuring at the user level only - * and we interrupt in a kernel thread, e.g., idle. - */ - if (!current->mm) - return X86_BR_NONE; - - /* may fail if text not present */ - bytes_left = copy_from_user_nmi(buf, (void __user *)from, - MAX_INSN_SIZE); - bytes_read = MAX_INSN_SIZE - bytes_left; - if (!bytes_read) - return X86_BR_NONE; - - addr = buf; - } else { - /* - * The LBR logs any address in the IP, even if the IP just - * faulted. This means userspace can control the from address. - * Ensure we don't blindy read any address by validating it is - * a known text address. - */ - if (kernel_text_address(from)) { - addr = (void *)from; - /* - * Assume we can get the maximum possible size - * when grabbing kernel data. This is not - * _strictly_ true since we could possibly be - * executing up next to a memory hole, but - * it is very unlikely to be a problem. - */ - bytes_read = MAX_INSN_SIZE; - } else { - return X86_BR_NONE; - } - } - - /* - * decoder needs to know the ABI especially - * on 64-bit systems running 32-bit apps - */ -#ifdef CONFIG_X86_64 - is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); -#endif - insn_init(&insn, addr, bytes_read, is64); - insn_get_opcode(&insn); - if (!insn.opcode.got) - return X86_BR_ABORT; - - switch (insn.opcode.bytes[0]) { - case 0xf: - switch (insn.opcode.bytes[1]) { - case 0x05: /* syscall */ - case 0x34: /* sysenter */ - ret = X86_BR_SYSCALL; - break; - case 0x07: /* sysret */ - case 0x35: /* sysexit */ - ret = X86_BR_SYSRET; - break; - case 0x80 ... 0x8f: /* conditional */ - ret = X86_BR_JCC; - break; - default: - ret = X86_BR_NONE; - } - break; - case 0x70 ... 0x7f: /* conditional */ - ret = X86_BR_JCC; - break; - case 0xc2: /* near ret */ - case 0xc3: /* near ret */ - case 0xca: /* far ret */ - case 0xcb: /* far ret */ - ret = X86_BR_RET; - break; - case 0xcf: /* iret */ - ret = X86_BR_IRET; - break; - case 0xcc ... 0xce: /* int */ - ret = X86_BR_INT; - break; - case 0xe8: /* call near rel */ - insn_get_immediate(&insn); - if (insn.immediate1.value == 0) { - /* zero length call */ - ret = X86_BR_ZERO_CALL; - break; - } - case 0x9a: /* call far absolute */ - ret = X86_BR_CALL; - break; - case 0xe0 ... 0xe3: /* loop jmp */ - ret = X86_BR_JCC; - break; - case 0xe9 ... 0xeb: /* jmp */ - ret = X86_BR_JMP; - break; - case 0xff: /* call near absolute, call far absolute ind */ - insn_get_modrm(&insn); - ext = (insn.modrm.bytes[0] >> 3) & 0x7; - switch (ext) { - case 2: /* near ind call */ - case 3: /* far ind call */ - ret = X86_BR_IND_CALL; - break; - case 4: - case 5: - ret = X86_BR_IND_JMP; - break; - } - break; - default: - ret = X86_BR_NONE; - } - /* - * interrupts, traps, faults (and thus ring transition) may - * occur on any instructions. Thus, to classify them correctly, - * we need to first look at the from and to priv levels. If they - * are different and to is in the kernel, then it indicates - * a ring transition. If the from instruction is not a ring - * transition instr (syscall, systenter, int), then it means - * it was a irq, trap or fault. - * - * we have no way of detecting kernel to kernel faults. - */ - if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL - && ret != X86_BR_SYSCALL && ret != X86_BR_INT) - ret = X86_BR_IRQ; - - /* - * branch priv level determined by target as - * is done by HW when LBR_SELECT is implemented - */ - if (ret != X86_BR_NONE) - ret |= to_plm; - - return ret; -} - -/* - * implement actual branch filter based on user demand. - * Hardware may not exactly satisfy that request, thus - * we need to inspect opcodes. Mismatched branches are - * discarded. Therefore, the number of branches returned - * in PERF_SAMPLE_BRANCH_STACK sample may vary. - */ -static void -intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) -{ - u64 from, to; - int br_sel = cpuc->br_sel; - int i, j, type; - bool compress = false; - - /* if sampling all branches, then nothing to filter */ - if ((br_sel & X86_BR_ALL) == X86_BR_ALL) - return; - - for (i = 0; i < cpuc->lbr_stack.nr; i++) { - - from = cpuc->lbr_entries[i].from; - to = cpuc->lbr_entries[i].to; - - type = branch_type(from, to, cpuc->lbr_entries[i].abort); - if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { - if (cpuc->lbr_entries[i].in_tx) - type |= X86_BR_IN_TX; - else - type |= X86_BR_NO_TX; - } - - /* if type does not correspond, then discard */ - if (type == X86_BR_NONE || (br_sel & type) != type) { - cpuc->lbr_entries[i].from = 0; - compress = true; - } - } - - if (!compress) - return; - - /* remove all entries with from=0 */ - for (i = 0; i < cpuc->lbr_stack.nr; ) { - if (!cpuc->lbr_entries[i].from) { - j = i; - while (++j < cpuc->lbr_stack.nr) - cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; - cpuc->lbr_stack.nr--; - if (!cpuc->lbr_entries[i].from) - continue; - } - i++; - } -} - -/* - * Map interface branch filters onto LBR filters - */ -static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { - [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, - [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, - [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, - [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, - [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP - | LBR_IND_JMP | LBR_FAR, - /* - * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches - */ - [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = - LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, - /* - * NHM/WSM erratum: must include IND_JMP to capture IND_CALL - */ - [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, - [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, - [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, -}; - -static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { - [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, - [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, - [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, - [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, - [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, - [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL - | LBR_FAR, - [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, - [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, - [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, - [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, -}; - -static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { - [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, - [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, - [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, - [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, - [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, - [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL - | LBR_FAR, - [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, - [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, - [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL - | LBR_RETURN | LBR_CALL_STACK, - [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, - [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, -}; - -/* core */ -void __init intel_pmu_lbr_init_core(void) -{ - x86_pmu.lbr_nr = 4; - x86_pmu.lbr_tos = MSR_LBR_TOS; - x86_pmu.lbr_from = MSR_LBR_CORE_FROM; - x86_pmu.lbr_to = MSR_LBR_CORE_TO; - - /* - * SW branch filter usage: - * - compensate for lack of HW filter - */ - pr_cont("4-deep LBR, "); -} - -/* nehalem/westmere */ -void __init intel_pmu_lbr_init_nhm(void) -{ - x86_pmu.lbr_nr = 16; - x86_pmu.lbr_tos = MSR_LBR_TOS; - x86_pmu.lbr_from = MSR_LBR_NHM_FROM; - x86_pmu.lbr_to = MSR_LBR_NHM_TO; - - x86_pmu.lbr_sel_mask = LBR_SEL_MASK; - x86_pmu.lbr_sel_map = nhm_lbr_sel_map; - - /* - * SW branch filter usage: - * - workaround LBR_SEL errata (see above) - * - support syscall, sysret capture. - * That requires LBR_FAR but that means far - * jmp need to be filtered out - */ - pr_cont("16-deep LBR, "); -} - -/* sandy bridge */ -void __init intel_pmu_lbr_init_snb(void) -{ - x86_pmu.lbr_nr = 16; - x86_pmu.lbr_tos = MSR_LBR_TOS; - x86_pmu.lbr_from = MSR_LBR_NHM_FROM; - x86_pmu.lbr_to = MSR_LBR_NHM_TO; - - x86_pmu.lbr_sel_mask = LBR_SEL_MASK; - x86_pmu.lbr_sel_map = snb_lbr_sel_map; - - /* - * SW branch filter usage: - * - support syscall, sysret capture. - * That requires LBR_FAR but that means far - * jmp need to be filtered out - */ - pr_cont("16-deep LBR, "); -} - -/* haswell */ -void intel_pmu_lbr_init_hsw(void) -{ - x86_pmu.lbr_nr = 16; - x86_pmu.lbr_tos = MSR_LBR_TOS; - x86_pmu.lbr_from = MSR_LBR_NHM_FROM; - x86_pmu.lbr_to = MSR_LBR_NHM_TO; - - x86_pmu.lbr_sel_mask = LBR_SEL_MASK; - x86_pmu.lbr_sel_map = hsw_lbr_sel_map; - - pr_cont("16-deep LBR, "); -} - -/* skylake */ -__init void intel_pmu_lbr_init_skl(void) -{ - x86_pmu.lbr_nr = 32; - x86_pmu.lbr_tos = MSR_LBR_TOS; - x86_pmu.lbr_from = MSR_LBR_NHM_FROM; - x86_pmu.lbr_to = MSR_LBR_NHM_TO; - - x86_pmu.lbr_sel_mask = LBR_SEL_MASK; - x86_pmu.lbr_sel_map = hsw_lbr_sel_map; - - /* - * SW branch filter usage: - * - support syscall, sysret capture. - * That requires LBR_FAR but that means far - * jmp need to be filtered out - */ - pr_cont("32-deep LBR, "); -} - -/* atom */ -void __init intel_pmu_lbr_init_atom(void) -{ - /* - * only models starting at stepping 10 seems - * to have an operational LBR which can freeze - * on PMU interrupt - */ - if (boot_cpu_data.x86_model == 28 - && boot_cpu_data.x86_mask < 10) { - pr_cont("LBR disabled due to erratum"); - return; - } - - x86_pmu.lbr_nr = 8; - x86_pmu.lbr_tos = MSR_LBR_TOS; - x86_pmu.lbr_from = MSR_LBR_CORE_FROM; - x86_pmu.lbr_to = MSR_LBR_CORE_TO; - - /* - * SW branch filter usage: - * - compensate for lack of HW filter - */ - pr_cont("8-deep LBR, "); -} - -/* Knights Landing */ -void intel_pmu_lbr_init_knl(void) -{ - x86_pmu.lbr_nr = 8; - x86_pmu.lbr_tos = MSR_LBR_TOS; - x86_pmu.lbr_from = MSR_LBR_NHM_FROM; - x86_pmu.lbr_to = MSR_LBR_NHM_TO; - - x86_pmu.lbr_sel_mask = LBR_SEL_MASK; - x86_pmu.lbr_sel_map = snb_lbr_sel_map; - - pr_cont("8-deep LBR, "); -}