From: Chuanxiao Dong Date: Tue, 27 Jul 2010 03:28:09 +0000 (+0800) Subject: mtd: denali.c: fix all "line over 80 characters" warnings X-Git-Tag: MMI-PSA29.97-13-9~22822^2~30 X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=bdca6daee20daf9c14f272fe1ab07990e881e518;p=GitHub%2FMotorolaMobilityLLC%2Fkernel-slsi.git mtd: denali.c: fix all "line over 80 characters" warnings Signed-off-by: Chuanxiao Dong Signed-off-by: David Woodhouse --- diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index 55a7a3940113..3ce11cc69721 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -36,8 +36,8 @@ MODULE_LICENSE("GPL"); static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; module_param(onfi_timing_mode, int, S_IRUGO); -MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates" - " use default timings"); +MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." + " -1 indicates use default timings"); #define DENALI_NAND_NAME "denali-nand" @@ -123,8 +123,10 @@ static int nand_debug_level = 0; /* forward declarations */ static void clear_interrupts(struct denali_nand_info *denali); -static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask); -static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask); +static uint32_t wait_for_irq(struct denali_nand_info *denali, + uint32_t irq_mask); +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask); static uint32_t read_interrupt_status(struct denali_nand_info *denali); #define DEBUG_DENALI 0 @@ -138,16 +140,19 @@ static void denali_write32(uint32_t value, void *addr) iowrite32(value, addr); #if DEBUG_DENALI - printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff)); + printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, + (uint32_t)((uint32_t)addr & 0x1fff)); #endif } -/* Certain operations for the denali NAND controller use an indexed mode to read/write - data. The operation is performed by writing the address value of the command to - the device memory followed by the data. This function abstracts this common - operation. +/* Certain operations for the denali NAND controller use + * an indexed mode to read/write data. The operation is + * performed by writing the address value of the command + * to the device memory followed by the data. This function + * abstracts this common operation. */ -static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) +static void index_addr(struct denali_nand_info *denali, + uint32_t address, uint32_t data) { denali_write32(address, denali->flash_mem); denali_write32(data, denali->flash_mem + 0x10); @@ -191,7 +196,8 @@ static void read_status(struct denali_nand_info *denali) write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); #if DEBUG_DENALI - printk(KERN_INFO "device reporting status value of 0x%2x\n", denali->buf.buf[0]); + printk(KERN_INFO "device reporting status value of 0x%2x\n", + denali->buf.buf[0]); #endif } @@ -227,8 +233,10 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) denali->flash_reg + intr_status_addresses[i]); for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { - denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET); - while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) & + denali_write32(device_reset_banks[i], + denali->flash_reg + DEVICE_RESET); + while (!(ioread32(denali->flash_reg + + intr_status_addresses[i]) & (reset_complete[i] | operation_timeout[i]))) ; if (ioread32(denali->flash_reg + intr_status_addresses[i]) & @@ -244,11 +252,12 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) return PASS; } -/* this routine calculates the ONFI timing values for a given mode and programs - * the clocking register accordingly. The mode is determined by the get_onfi_nand_para - routine. +/* this routine calculates the ONFI timing values for a given mode and + * programs the clocking register accordingly. The mode is determined by + * the get_onfi_nand_para routine. */ -static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode) +static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, + uint16_t mode) { uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; @@ -354,10 +363,11 @@ static void set_ecc_config(struct denali_nand_info *denali) denali_write32(8, denali->flash_reg + ECC_CORRECTION); #endif - if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE) - == 1) { + if ((ioread32(denali->flash_reg + ECC_CORRECTION) & + ECC_CORRECTION__VALUE) == 1) { denali->dev_info.wECCBytesPerSector = 4; - denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; + denali->dev_info.wECCBytesPerSector *= + denali->dev_info.wDevicesConnected; denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - denali->dev_info.wPageDataSize / @@ -373,8 +383,10 @@ static void set_ecc_config(struct denali_nand_info *denali) else denali->dev_info.wECCBytesPerSector += 1; - denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; - denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - + denali->dev_info.wECCBytesPerSector *= + denali->dev_info.wDevicesConnected; + denali->dev_info.wNumPageSpareFlag = + denali->dev_info.wPageSpareSize - denali->dev_info.wPageDataSize / (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * denali->dev_info.wECCBytesPerSector @@ -392,13 +404,15 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET); while (!((ioread32(denali->flash_reg + INTR_STATUS0) & - INTR_STATUS0__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS0) & - INTR_STATUS0__TIME_OUT))) + INTR_STATUS0__RST_COMP) | + (ioread32(denali->flash_reg + INTR_STATUS0) & + INTR_STATUS0__TIME_OUT))) ; - if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) { - denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET); + if (ioread32(denali->flash_reg + INTR_STATUS0) & + INTR_STATUS0__RST_COMP) { + denali_write32(DEVICE_RESET__BANK1, + denali->flash_reg + DEVICE_RESET); while (!((ioread32(denali->flash_reg + INTR_STATUS1) & INTR_STATUS1__RST_COMP) | (ioread32(denali->flash_reg + INTR_STATUS1) & @@ -419,10 +433,12 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) INTR_STATUS2__RST_COMP) { denali_write32(DEVICE_RESET__BANK3, denali->flash_reg + DEVICE_RESET); - while (!((ioread32(denali->flash_reg + INTR_STATUS3) & - INTR_STATUS3__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS3) & - INTR_STATUS3__TIME_OUT))) + while (!((ioread32(denali->flash_reg + + INTR_STATUS3) & + INTR_STATUS3__RST_COMP) | + (ioread32(denali->flash_reg + + INTR_STATUS3) & + INTR_STATUS3__TIME_OUT))) ; } else { printk(KERN_ERR "Getting a time out for bank 2!\n"); @@ -432,10 +448,14 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) } } - denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0); - denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1); - denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2); - denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3); + denali_write32(INTR_STATUS0__TIME_OUT, + denali->flash_reg + INTR_STATUS0); + denali_write32(INTR_STATUS1__TIME_OUT, + denali->flash_reg + INTR_STATUS1); + denali_write32(INTR_STATUS2__TIME_OUT, + denali->flash_reg + INTR_STATUS2); + denali_write32(INTR_STATUS3__TIME_OUT, + denali->flash_reg + INTR_STATUS3); denali->dev_info.wONFIDevFeatures = ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES); @@ -448,8 +468,10 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS; - blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L); - blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U); + blks_lun_l = ioread32(denali->flash_reg + + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L); + blks_lun_h = ioread32(denali->flash_reg + + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U); blockperlun = (blks_lun_h << 16) | blks_lun_l; @@ -460,7 +482,8 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) return FAIL; for (i = 5; i > 0; i--) { - if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) + if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + (0x01 << i)) break; } @@ -495,7 +518,8 @@ static void get_samsung_nand_para(struct denali_nand_info *denali) index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90); index_addr(denali, (uint32_t)(MODE_11 | 1), 0); for (i = 0; i < 5; i++) - index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]); + index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), + &id_bytes[i]); nand_dbg_print(NAND_DBG_DEBUG, "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", @@ -515,7 +539,8 @@ static void get_samsung_nand_para(struct denali_nand_info *denali) no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2); plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4); - blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4); + blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & + 0x30) >> 4); capacity = (uint64_t)128 * plane_size * no_of_planes; do_div(capacity, blk_size); @@ -534,7 +559,8 @@ static void get_toshiba_nand_para(struct denali_nand_info *denali) denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + denali_write32(tmp, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); #if SUPPORT_15BITECC denali_write32(15, denali->flash_reg + ECC_CORRECTION); #elif SUPPORT_8BITECC @@ -573,10 +599,14 @@ static void get_hynix_nand_para(struct denali_nand_info *denali) denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED); - spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED); - denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); - denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + main_size = 4096 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + spare_size = 224 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + denali_write32(main_size, + denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); + denali_write32(spare_size, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); denali_write32(0, denali->flash_reg + DEVICE_WIDTH); #if SUPPORT_15BITECC denali_write32(15, denali->flash_reg + ECC_CORRECTION); @@ -619,7 +649,8 @@ static void find_valid_banks(struct denali_nand_info *denali) for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) { index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); - index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); + index_addr_read_data(denali, + (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); nand_dbg_print(NAND_DBG_DEBUG, "Return 1st ID for bank[%d]: %x\n", i, id[i]); @@ -671,7 +702,8 @@ static void detect_partition_feature(struct denali_nand_info *denali) (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) & MAX_BLK_ADDR_1__VALUE); - denali->dev_info.wTotalBlocks *= denali->total_used_banks; + denali->dev_info.wTotalBlocks *= + denali->total_used_banks; if (denali->dev_info.wSpectraEndBlock >= denali->dev_info.wTotalBlocks) { @@ -683,8 +715,10 @@ static void detect_partition_feature(struct denali_nand_info *denali) denali->dev_info.wSpectraEndBlock - denali->dev_info.wSpectraStartBlock + 1; } else { - denali->dev_info.wTotalBlocks *= denali->total_used_banks; - denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; + denali->dev_info.wTotalBlocks *= + denali->total_used_banks; + denali->dev_info.wSpectraStartBlock = + SPECTRA_START_BLOCK; denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; denali->dev_info.wDataBlockNum = @@ -694,7 +728,8 @@ static void detect_partition_feature(struct denali_nand_info *denali) } else { denali->dev_info.wTotalBlocks *= denali->total_used_banks; denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; - denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; + denali->dev_info.wSpectraEndBlock = + denali->dev_info.wTotalBlocks - 1; denali->dev_info.wDataBlockNum = denali->dev_info.wSpectraEndBlock - denali->dev_info.wSpectraStartBlock + 1; @@ -776,13 +811,19 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); - denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID); - denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID); - denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0); - denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1); - denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2); + denali->dev_info.wDeviceMaker = + ioread32(denali->flash_reg + MANUFACTURER_ID); + denali->dev_info.wDeviceID = + ioread32(denali->flash_reg + DEVICE_ID); + denali->dev_info.bDeviceParam0 = + ioread32(denali->flash_reg + DEVICE_PARAM_0); + denali->dev_info.bDeviceParam1 = + ioread32(denali->flash_reg + DEVICE_PARAM_1); + denali->dev_info.bDeviceParam2 = + ioread32(denali->flash_reg + DEVICE_PARAM_2); - denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c; + denali->dev_info.MLCDevice = + ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c; if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ @@ -831,7 +872,8 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) denali->dev_info.wPageSpareSize = ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); - denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK); + denali->dev_info.wPagesPerBlock = + ioread32(denali->flash_reg + PAGES_PER_BLOCK); denali->dev_info.wPageSize = denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize; @@ -840,11 +882,13 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) denali->dev_info.wBlockDataSize = denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize; - denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH); + denali->dev_info.wDeviceWidth = + ioread32(denali->flash_reg + DEVICE_WIDTH); denali->dev_info.wDeviceType = ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8); - denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED); + denali->dev_info.wDevicesConnected = + ioread32(denali->flash_reg + DEVICES_CONNECTED); denali->dev_info.wSpareSkipBytes = ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) * @@ -933,7 +977,8 @@ static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) free_irq(irqnum, denali); } -static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask) +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask) { denali_write32(int_mask, denali->flash_reg + INTR_EN0); denali_write32(int_mask, denali->flash_reg + INTR_EN1); @@ -950,7 +995,8 @@ static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) } /* Interrupts are cleared by writing a 1 to the appropriate status bit */ -static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask) +static inline void clear_interrupt(struct denali_nand_info *denali, + uint32_t irq_mask) { uint32_t intr_status_reg = 0; @@ -1013,9 +1059,11 @@ static irqreturn_t denali_isr(int irq, void *dev_id) if (is_flash_bank_valid(denali->flash_bank)) { /* check to see if controller generated * the interrupt, since this is a shared interrupt */ - if ((irq_status = denali_irq_detected(denali)) != 0) { + irq_status = denali_irq_detected(denali); + if (irq_status != 0) { #if DEBUG_DENALI - denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status; + denali->irq_debug_array[denali->idx++] = + 0x10000000 | irq_status; denali->idx %= 32; printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status); @@ -1048,12 +1096,14 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) #if DEBUG_DENALI printk(KERN_INFO "waiting for 0x%x\n", irq_mask); #endif - comp_res = wait_for_completion_timeout(&denali->complete, timeout); + comp_res = + wait_for_completion_timeout(&denali->complete, timeout); spin_lock_irq(&denali->irq_lock); intr_status = denali->irq_status; #if DEBUG_DENALI - denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status; + denali->irq_debug_array[denali->idx++] = + 0x20000000 | (irq_mask << 16) | intr_status; denali->idx %= 32; #endif @@ -1061,7 +1111,9 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) denali->irq_status &= ~irq_mask; spin_unlock_irq(&denali->irq_lock); #if DEBUG_DENALI - if (retry) printk(KERN_INFO "status on retry = 0x%x\n", intr_status); + if (retry) + printk(KERN_INFO "status on retry = 0x%x\n", + intr_status); #endif /* our interrupt was detected */ break; @@ -1071,8 +1123,10 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) spin_unlock_irq(&denali->irq_lock); #if DEBUG_DENALI print_irq_log(denali); - printk(KERN_INFO "received irq nobody cared: irq_status = 0x%x," - " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res); + printk(KERN_INFO "received irq nobody cared:" + " irq_status = 0x%x, irq_mask = 0x%x," + " timeout = %ld\n", intr_status, + irq_mask, comp_res); #endif retry = true; } @@ -1101,15 +1155,18 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, /* Enable spare area/ECC per user's request. */ denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); - denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); + denali_write32(transfer_spare_flag, + denali->flash_reg + TRANSFER_SPARE_REG); } /* sends a pipeline command operation to the controller. See the Denali NAND controller's user guide for more information (section 4.2.3.6). */ -static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, - bool transfer_spare, int access_type, - int op) +static int denali_send_pipeline_cmd(struct denali_nand_info *denali, + bool ecc_en, + bool transfer_spare, + int access_type, + int op) { int status = PASS; uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, @@ -1123,7 +1180,9 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en #if DEBUG_DENALI spin_lock_irq(&denali->irq_lock); - denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4); + denali->irq_debug_array[denali->idx++] = + 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | + (access_type << 4); denali->idx %= 32; spin_unlock_irq(&denali->irq_lock); #endif @@ -1157,16 +1216,19 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en cmd = MODE_01 | addr; denali_write32(cmd, denali->flash_mem); } else { - index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count); + index_addr(denali, (uint32_t)cmd, + 0x2000 | op | page_count); /* wait for command to be accepted - * can always use status0 bit as the mask is identical for each + * can always use status0 bit as the + * mask is identical for each * bank. */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { printk(KERN_ERR "cmd, page, addr on timeout " - "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr); + "(0x%x, 0x%x, 0x%x)\n", cmd, + denali->page, addr); status = FAIL; } else { cmd = MODE_01 | addr; @@ -1178,8 +1240,9 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en } /* helper function that simply writes a buffer to the flash */ -static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, - int len) +static int write_data_to_flash_mem(struct denali_nand_info *denali, + const uint8_t *buf, + int len) { uint32_t i = 0, *buf32; @@ -1195,8 +1258,9 @@ static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_ } /* helper function that simply reads a buffer from the flash */ -static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, - int len) +static int read_data_from_flash_mem(struct denali_nand_info *denali, + uint8_t *buf, + int len) { uint32_t i = 0, *buf32; @@ -1234,7 +1298,8 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) #if DEBUG_DENALI spin_lock_irq(&denali->irq_lock); - denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize; + denali->irq_debug_array[denali->idx++] = + 0x80000000 | mtd->oobsize; denali->idx %= 32; spin_unlock_irq(&denali->irq_lock); #endif @@ -1258,7 +1323,8 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0; + uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, + irq_status = 0, addr = 0x0, cmd = 0x0; denali->page = page; @@ -1275,7 +1341,8 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) - printk(KERN_ERR "page on OOB timeout %d\n", denali->page); + printk(KERN_ERR "page on OOB timeout %d\n", + denali->page); /* We set the device back to MAIN_ACCESS here as I observed * instability with the controller if you do a block erase @@ -1289,7 +1356,8 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) #if DEBUG_DENALI spin_lock_irq(&denali->irq_lock); - denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize; + denali->irq_debug_array[denali->idx++] = + 0x60000000 | mtd->oobsize; denali->idx %= 32; spin_unlock_irq(&denali->irq_lock); #endif @@ -1358,15 +1426,17 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, } } else { /* if the error is not correctable, need to - * look at the page to see if it is an erased page. - * if so, then it's not a real ECC error */ + * look at the page to see if it is an erased + * page. if so, then it's not a real ECC error + * */ check_erased_page = true; } #if DEBUG_DENALI - printk(KERN_INFO "Detected ECC error in page %d: err_addr = 0x%08x," - " info to fix is 0x%08x\n", denali->page, err_address, - err_correction_info); + printk(KERN_INFO "Detected ECC error in page %d:" + " err_addr = 0x%08x, info to fix is" + " 0x%08x\n", denali->page, err_address, + err_correction_info); #endif } while (!ECC_LAST_ERR(err_correction_info)); } @@ -1451,10 +1521,11 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { - printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer); + printk(KERN_ERR "timeout on write_page" + " (type = %d)\n", raw_xfer); denali->status = - (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : - PASS; + (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? + NAND_STATUS_FAIL : PASS; } denali_enable_dma(denali, false); @@ -1637,8 +1708,8 @@ static void denali_erase(struct mtd_info *mtd, int page) irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | INTR_STATUS0__ERASE_FAIL); - denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : - PASS; + denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? + NAND_STATUS_FAIL : PASS; } static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, @@ -1661,11 +1732,16 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, /* write manufacturer information into nand buffer for NAND subsystem to fetch. */ - write_byte_to_buf(denali, denali->dev_info.wDeviceMaker); - write_byte_to_buf(denali, denali->dev_info.wDeviceID); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam0); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam1); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam2); + write_byte_to_buf(denali, + denali->dev_info.wDeviceMaker); + write_byte_to_buf(denali, + denali->dev_info.wDeviceID); + write_byte_to_buf(denali, + denali->dev_info.bDeviceParam0); + write_byte_to_buf(denali, + denali->dev_info.bDeviceParam1); + write_byte_to_buf(denali, + denali->dev_info.bDeviceParam2); } else { int i; for (i = 0; i < 5; i++) @@ -1683,7 +1759,8 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, /* TODO: Read OOB data */ break; default: - printk(KERN_ERR ": unsupported command received 0x%x\n", cmd); + printk(KERN_ERR ": unsupported command" + " received 0x%x\n", cmd); break; } } @@ -1718,7 +1795,8 @@ static void denali_hw_init(struct denali_nand_info *denali) denali_irq_init(denali); NAND_Flash_Reset(denali); denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); - denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE); + denali_write32(CHIP_EN_DONT_CARE__FLAG, + denali->flash_reg + CHIP_ENABLE_DONT_CARE); denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); @@ -1824,8 +1902,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) * ONFI timing mode 1 and below. */ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { - printk(KERN_ERR "Intel CE4100 only supports ONFI timing mode 1 " - "or below\n"); + printk(KERN_ERR "Intel CE4100 only supports" + " ONFI timing mode 1 or below\n"); ret = -EINVAL; goto failed_enable; } @@ -1844,7 +1922,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) mem_base = csr_base + csr_len; mem_len = csr_len; nand_dbg_print(NAND_DBG_WARN, - "Spectra: No second BAR for PCI device; assuming %08Lx\n", + "Spectra: No second" + " BAR for PCI device;" + " assuming %08Lx\n", (uint64_t)csr_base); } } @@ -1856,8 +1936,10 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) printk(KERN_ERR "Spectra: no usable DMA configuration\n"); goto failed_enable; } - denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, - PCI_DMA_BIDIRECTIONAL); + denali->buf.dma_buf = + pci_map_single(dev, denali->buf.buf, + DENALI_BUF_SIZE, + PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) { printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); @@ -1997,7 +2079,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ret = add_mtd_device(&denali->mtd); if (ret) { - printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret); + printk(KERN_ERR "Spectra: Failed to register" + " MTD device: %d\n", ret); goto failed_nand; } return 0; @@ -2051,7 +2134,8 @@ static struct pci_driver denali_pci_driver = { static int __devinit denali_init(void) { - printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__); + printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", + __DATE__, __TIME__); return pci_register_driver(&denali_pci_driver); }