From: Akinobu Mita Date: Sun, 26 Mar 2006 09:39:26 +0000 (-0800) Subject: [PATCH] bitops: m32r: use generic bitops X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=6d9f937b559d664b6f222cb91eca9c6802bfe89a;p=GitHub%2Fmt8127%2Fandroid_kernel_alcatel_ttab.git [PATCH] bitops: m32r: use generic bitops - remove __{,test_and_}{set,clear,change}_bit() and test_bit() - remove ffz() - remove find_{next,first}{,_zero}_bit() - remove __ffs() - remove generic_fls() - remove generic_fls64() - remove sched_find_first_bit() - remove generic_ffs() - remove generic_hweight{32,16,8}() - remove ext2_{set,clear,test,find_first_zero,find_next_zero}_bit() - remove ext2_{set,clear}_bit_atomic() - remove minix_{test,set,test_and_clear,test,find_first_zero}_bit() Signed-off-by: Akinobu Mita Cc: Hirokazu Takata Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- diff --git a/arch/m32r/Kconfig b/arch/m32r/Kconfig index a3dcc3fab4b7..05c864c6c2d9 100644 --- a/arch/m32r/Kconfig +++ b/arch/m32r/Kconfig @@ -214,6 +214,14 @@ config RWSEM_XCHGADD_ALGORITHM bool default n +config GENERIC_FIND_NEXT_BIT + bool + default y + +config GENERIC_HWEIGHT + bool + default y + config GENERIC_CALIBRATE_DELAY bool default y diff --git a/include/asm-m32r/bitops.h b/include/asm-m32r/bitops.h index f8e993e0bbc0..902a366101a5 100644 --- a/include/asm-m32r/bitops.h +++ b/include/asm-m32r/bitops.h @@ -62,25 +62,6 @@ static __inline__ void set_bit(int nr, volatile void * addr) local_irq_restore(flags); } -/** - * __set_bit - Set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike set_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __inline__ void __set_bit(int nr, volatile void * addr) -{ - __u32 mask; - volatile __u32 *a = addr; - - a += (nr >> 5); - mask = (1 << (nr & 0x1F)); - *a |= mask; -} - /** * clear_bit - Clears a bit in memory * @nr: Bit to clear @@ -118,38 +99,9 @@ static __inline__ void clear_bit(int nr, volatile void * addr) local_irq_restore(flags); } -static __inline__ void __clear_bit(int nr, volatile unsigned long * addr) -{ - unsigned long mask; - volatile unsigned long *a = addr; - - a += (nr >> 5); - mask = (1 << (nr & 0x1F)); - *a &= ~mask; -} - #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() -/** - * __change_bit - Toggle a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike change_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __inline__ void __change_bit(int nr, volatile void * addr) -{ - __u32 mask; - volatile __u32 *a = addr; - - a += (nr >> 5); - mask = (1 << (nr & 0x1F)); - *a ^= mask; -} - /** * change_bit - Toggle a bit in memory * @nr: Bit to clear @@ -220,28 +172,6 @@ static __inline__ int test_and_set_bit(int nr, volatile void * addr) return (oldbit != 0); } -/** - * __test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_set_bit(int nr, volatile void * addr) -{ - __u32 mask, oldbit; - volatile __u32 *a = addr; - - a += (nr >> 5); - mask = (1 << (nr & 0x1F)); - oldbit = (*a & mask); - *a |= mask; - - return (oldbit != 0); -} - /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set @@ -279,42 +209,6 @@ static __inline__ int test_and_clear_bit(int nr, volatile void * addr) return (oldbit != 0); } -/** - * __test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) -{ - __u32 mask, oldbit; - volatile __u32 *a = addr; - - a += (nr >> 5); - mask = (1 << (nr & 0x1F)); - oldbit = (*a & mask); - *a &= ~mask; - - return (oldbit != 0); -} - -/* WARNING: non atomic and it can be reordered! */ -static __inline__ int __test_and_change_bit(int nr, volatile void * addr) -{ - __u32 mask, oldbit; - volatile __u32 *a = addr; - - a += (nr >> 5); - mask = (1 << (nr & 0x1F)); - oldbit = (*a & mask); - *a ^= mask; - - return (oldbit != 0); -} - /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to set @@ -350,353 +244,26 @@ static __inline__ int test_and_change_bit(int nr, volatile void * addr) return (oldbit != 0); } -/** - * test_bit - Determine whether a bit is set - * @nr: bit number to test - * @addr: Address to start counting from - */ -static __inline__ int test_bit(int nr, const volatile void * addr) -{ - __u32 mask; - const volatile __u32 *a = addr; - - a += (nr >> 5); - mask = (1 << (nr & 0x1F)); - - return ((*a & mask) != 0); -} - -/** - * ffz - find first zero in word. - * @word: The word to search - * - * Undefined if no zero exists, so code should check against ~0UL first. - */ -static __inline__ unsigned long ffz(unsigned long word) -{ - int k; - - word = ~word; - k = 0; - if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } - if (!(word & 0x000000ff)) { k += 8; word >>= 8; } - if (!(word & 0x0000000f)) { k += 4; word >>= 4; } - if (!(word & 0x00000003)) { k += 2; word >>= 2; } - if (!(word & 0x00000001)) { k += 1; } - - return k; -} - -/** - * find_first_zero_bit - find the first zero bit in a memory region - * @addr: The address to start the search at - * @size: The maximum size to search - * - * Returns the bit-number of the first zero bit, not the number of the byte - * containing a bit. - */ - -#define find_first_zero_bit(addr, size) \ - find_next_zero_bit((addr), (size), 0) - -/** - * find_next_zero_bit - find the first zero bit in a memory region - * @addr: The address to base the search on - * @offset: The bitnumber to start searching at - * @size: The maximum size to search - */ -static __inline__ int find_next_zero_bit(const unsigned long *addr, - int size, int offset) -{ - const unsigned long *p = addr + (offset >> 5); - unsigned long result = offset & ~31UL; - unsigned long tmp; - - if (offset >= size) - return size; - size -= result; - offset &= 31UL; - if (offset) { - tmp = *(p++); - tmp |= ~0UL >> (32-offset); - if (size < 32) - goto found_first; - if (~tmp) - goto found_middle; - size -= 32; - result += 32; - } - while (size & ~31UL) { - if (~(tmp = *(p++))) - goto found_middle; - result += 32; - size -= 32; - } - if (!size) - return result; - tmp = *p; - -found_first: - tmp |= ~0UL << size; -found_middle: - return result + ffz(tmp); -} - -/** - * __ffs - find first bit in word. - * @word: The word to search - * - * Undefined if no bit exists, so code should check against 0 first. - */ -static __inline__ unsigned long __ffs(unsigned long word) -{ - int k = 0; - - if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } - if (!(word & 0x000000ff)) { k += 8; word >>= 8; } - if (!(word & 0x0000000f)) { k += 4; word >>= 4; } - if (!(word & 0x00000003)) { k += 2; word >>= 2; } - if (!(word & 0x00000001)) { k += 1;} - - return k; -} - -/* - * fls: find last bit set. - */ -#define fls(x) generic_fls(x) -#define fls64(x) generic_fls64(x) +#include +#include +#include +#include +#include #ifdef __KERNEL__ -/* - * Every architecture must define this function. It's the fastest - * way of searching a 140-bit bitmap where the first 100 bits are - * unlikely to be set. It's guaranteed that at least one of the 140 - * bits is cleared. - */ -static inline int sched_find_first_bit(unsigned long *b) -{ - if (unlikely(b[0])) - return __ffs(b[0]); - if (unlikely(b[1])) - return __ffs(b[1]) + 32; - if (unlikely(b[2])) - return __ffs(b[2]) + 64; - if (b[3]) - return __ffs(b[3]) + 96; - return __ffs(b[4]) + 128; -} - -/** - * find_next_bit - find the first set bit in a memory region - * @addr: The address to base the search on - * @offset: The bitnumber to start searching at - * @size: The maximum size to search - */ -static inline unsigned long find_next_bit(const unsigned long *addr, - unsigned long size, unsigned long offset) -{ - unsigned int *p = ((unsigned int *) addr) + (offset >> 5); - unsigned int result = offset & ~31UL; - unsigned int tmp; - - if (offset >= size) - return size; - size -= result; - offset &= 31UL; - if (offset) { - tmp = *p++; - tmp &= ~0UL << offset; - if (size < 32) - goto found_first; - if (tmp) - goto found_middle; - size -= 32; - result += 32; - } - while (size >= 32) { - if ((tmp = *p++) != 0) - goto found_middle; - result += 32; - size -= 32; - } - if (!size) - return result; - tmp = *p; - -found_first: - tmp &= ~0UL >> (32 - size); - if (tmp == 0UL) /* Are any bits set? */ - return result + size; /* Nope. */ -found_middle: - return result + __ffs(tmp); -} - -/** - * find_first_bit - find the first set bit in a memory region - * @addr: The address to start the search at - * @size: The maximum size to search - * - * Returns the bit-number of the first set bit, not the number of the byte - * containing a bit. - */ -#define find_first_bit(addr, size) \ - find_next_bit((addr), (size), 0) - -/** - * ffs - find first bit set - * @x: the word to search - * - * This is defined the same way as - * the libc and compiler builtin ffs routines, therefore - * differs in spirit from the above ffz (man ffs). - */ -#define ffs(x) generic_ffs(x) - -/** - * hweightN - returns the hamming weight of a N-bit word - * @x: the word to weigh - * - * The Hamming Weight of a number is the total number of bits set in it. - */ - -#define hweight32(x) generic_hweight32(x) -#define hweight16(x) generic_hweight16(x) -#define hweight8(x) generic_hweight8(x) +#include +#include +#include +#include #endif /* __KERNEL__ */ #ifdef __KERNEL__ -/* - * ext2_XXXX function - * orig: include/asm-sh/bitops.h - */ - -#ifdef __LITTLE_ENDIAN__ -#define ext2_set_bit __test_and_set_bit -#define ext2_clear_bit __test_and_clear_bit -#define ext2_test_bit test_bit -#define ext2_find_first_zero_bit find_first_zero_bit -#define ext2_find_next_zero_bit find_next_zero_bit -#else -static inline int ext2_set_bit(int nr, volatile void * addr) -{ - __u8 mask, oldbit; - volatile __u8 *a = addr; - - a += (nr >> 3); - mask = (1 << (nr & 0x07)); - oldbit = (*a & mask); - *a |= mask; - - return (oldbit != 0); -} - -static inline int ext2_clear_bit(int nr, volatile void * addr) -{ - __u8 mask, oldbit; - volatile __u8 *a = addr; - - a += (nr >> 3); - mask = (1 << (nr & 0x07)); - oldbit = (*a & mask); - *a &= ~mask; - - return (oldbit != 0); -} - -static inline int ext2_test_bit(int nr, const volatile void * addr) -{ - __u32 mask; - const volatile __u8 *a = addr; - - a += (nr >> 3); - mask = (1 << (nr & 0x07)); - - return ((mask & *a) != 0); -} - -#define ext2_find_first_zero_bit(addr, size) \ - ext2_find_next_zero_bit((addr), (size), 0) - -static inline unsigned long ext2_find_next_zero_bit(void *addr, - unsigned long size, unsigned long offset) -{ - unsigned long *p = ((unsigned long *) addr) + (offset >> 5); - unsigned long result = offset & ~31UL; - unsigned long tmp; - - if (offset >= size) - return size; - size -= result; - offset &= 31UL; - if(offset) { - /* We hold the little endian value in tmp, but then the - * shift is illegal. So we could keep a big endian value - * in tmp, like this: - * - * tmp = __swab32(*(p++)); - * tmp |= ~0UL >> (32-offset); - * - * but this would decrease preformance, so we change the - * shift: - */ - tmp = *(p++); - tmp |= __swab32(~0UL >> (32-offset)); - if(size < 32) - goto found_first; - if(~tmp) - goto found_middle; - size -= 32; - result += 32; - } - while(size & ~31UL) { - if(~(tmp = *(p++))) - goto found_middle; - result += 32; - size -= 32; - } - if(!size) - return result; - tmp = *p; - -found_first: - /* tmp is little endian, so we would have to swab the shift, - * see above. But then we have to swab tmp below for ffz, so - * we might as well do this here. - */ - return result + ffz(__swab32(tmp) | (~0UL << size)); -found_middle: - return result + ffz(__swab32(tmp)); -} -#endif - -#define ext2_set_bit_atomic(lock, nr, addr) \ - ({ \ - int ret; \ - spin_lock(lock); \ - ret = ext2_set_bit((nr), (addr)); \ - spin_unlock(lock); \ - ret; \ - }) - -#define ext2_clear_bit_atomic(lock, nr, addr) \ - ({ \ - int ret; \ - spin_lock(lock); \ - ret = ext2_clear_bit((nr), (addr)); \ - spin_unlock(lock); \ - ret; \ - }) - -/* Bitmap functions for the minix filesystem. */ -#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) -#define minix_set_bit(nr,addr) __set_bit(nr,addr) -#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) -#define minix_test_bit(nr,addr) test_bit(nr,addr) -#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) +#include +#include +#include #endif /* __KERNEL__ */