From: Martin Schwidefsky Date: Mon, 19 Dec 2011 18:23:15 +0000 (+0100) Subject: Merge branch 'sched/core' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip... X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=612ef28a045efadb3a98d4492ead7806a146485d;p=GitHub%2FLineageOS%2FG12%2Fandroid_kernel_amlogic_linux-4.9.git Merge branch 'sched/core' of git://git./linux/kernel/git/tip/tip into cputime-tip Conflicts: drivers/cpufreq/cpufreq_conservative.c drivers/cpufreq/cpufreq_ondemand.c drivers/macintosh/rack-meter.c fs/proc/stat.c fs/proc/uptime.c kernel/sched/core.c --- 612ef28a045efadb3a98d4492ead7806a146485d diff --cc drivers/cpufreq/cpufreq_conservative.c index 7f31a031c0b5,118bff73fed3..235a340e81f2 --- a/drivers/cpufreq/cpufreq_conservative.c +++ b/drivers/cpufreq/cpufreq_conservative.c @@@ -95,26 -95,26 +95,26 @@@ static struct dbs_tuners .freq_step = 5, }; - static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, - cputime64_t *wall) + static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) { - cputime64_t idle_time; - cputime64_t cur_wall_time; - cputime64_t busy_time; + u64 idle_time; - cputime64_t cur_wall_time; ++ u64 cur_wall_time; + u64 busy_time; cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); - busy_time = kstat_cpu(cpu).cpustat.user; - busy_time += kstat_cpu(cpu).cpustat.system; - busy_time += kstat_cpu(cpu).cpustat.irq; - busy_time += kstat_cpu(cpu).cpustat.softirq; - busy_time += kstat_cpu(cpu).cpustat.steal; - busy_time += kstat_cpu(cpu).cpustat.nice; - busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER] + - kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; + ++ busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; ++ busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; - idle_time = cputime64_sub(cur_wall_time, busy_time); + idle_time = cur_wall_time - busy_time; if (wall) - *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time); + *wall = jiffies_to_usecs(cur_wall_time); - return (cputime64_t)jiffies_to_usecs(idle_time); + return jiffies_to_usecs(idle_time); } static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) diff --cc drivers/cpufreq/cpufreq_ondemand.c index 07cffe2f6cff,f3d327cee43f..3d679eee70a1 --- a/drivers/cpufreq/cpufreq_ondemand.c +++ b/drivers/cpufreq/cpufreq_ondemand.c @@@ -119,26 -119,26 +119,26 @@@ static struct dbs_tuners .powersave_bias = 0, }; - static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, - cputime64_t *wall) + static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) { - cputime64_t idle_time; - cputime64_t cur_wall_time; - cputime64_t busy_time; + u64 idle_time; - cputime64_t cur_wall_time; ++ u64 cur_wall_time; + u64 busy_time; cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); - busy_time = kstat_cpu(cpu).cpustat.user; - busy_time += kstat_cpu(cpu).cpustat.system; - busy_time += kstat_cpu(cpu).cpustat.irq; - busy_time += kstat_cpu(cpu).cpustat.softirq; - busy_time += kstat_cpu(cpu).cpustat.steal; - busy_time += kstat_cpu(cpu).cpustat.nice; - busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER] + - kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; + ++ busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; ++ busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; + busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; - idle_time = cputime64_sub(cur_wall_time, busy_time); + idle_time = cur_wall_time - busy_time; if (wall) - *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time); + *wall = jiffies_to_usecs(cur_wall_time); - return (cputime64_t)jiffies_to_usecs(idle_time); + return jiffies_to_usecs(idle_time); } static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) diff --cc fs/proc/uptime.c index ab515109fec9,0fb22e464e72..9610ac772d7e --- a/fs/proc/uptime.c +++ b/fs/proc/uptime.c @@@ -11,14 -11,11 +11,14 @@@ static int uptime_proc_show(struct seq_ { struct timespec uptime; struct timespec idle; - cputime64_t idletime; ++ u64 idletime; + u64 nsec; + u32 rem; int i; - u64 idletime = 0; + idletime = 0; for_each_possible_cpu(i) - idletime += kstat_cpu(i).cpustat.idle; - idletime += kcpustat_cpu(i).cpustat[CPUTIME_IDLE]; ++ idletime += (__force u64) kcpustat_cpu(i).cpustat[CPUTIME_IDLE]; do_posix_clock_monotonic_gettime(&uptime); monotonic_to_bootbased(&uptime); diff --cc kernel/sched/core.c index 000000000000,c7ea688faff4..cdf51a2adc26 mode 000000,100644..100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@@ -1,0 -1,8126 +1,8119 @@@ + /* + * kernel/sched/core.c + * + * Kernel scheduler and related syscalls + * + * Copyright (C) 1991-2002 Linus Torvalds + * + * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and + * make semaphores SMP safe + * 1998-11-19 Implemented schedule_timeout() and related stuff + * by Andrea Arcangeli + * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: + * hybrid priority-list and round-robin design with + * an array-switch method of distributing timeslices + * and per-CPU runqueues. Cleanups and useful suggestions + * by Davide Libenzi, preemptible kernel bits by Robert Love. + * 2003-09-03 Interactivity tuning by Con Kolivas. + * 2004-04-02 Scheduler domains code by Nick Piggin + * 2007-04-15 Work begun on replacing all interactivity tuning with a + * fair scheduling design by Con Kolivas. + * 2007-05-05 Load balancing (smp-nice) and other improvements + * by Peter Williams + * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith + * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri + * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, + * Thomas Gleixner, Mike Kravetz + */ + + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + #include + + #include + #include + #ifdef CONFIG_PARAVIRT + #include + #endif + + #include "sched.h" + #include "../workqueue_sched.h" + + #define CREATE_TRACE_POINTS + #include + + void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) + { + unsigned long delta; + ktime_t soft, hard, now; + + for (;;) { + if (hrtimer_active(period_timer)) + break; + + now = hrtimer_cb_get_time(period_timer); + hrtimer_forward(period_timer, now, period); + + soft = hrtimer_get_softexpires(period_timer); + hard = hrtimer_get_expires(period_timer); + delta = ktime_to_ns(ktime_sub(hard, soft)); + __hrtimer_start_range_ns(period_timer, soft, delta, + HRTIMER_MODE_ABS_PINNED, 0); + } + } + + DEFINE_MUTEX(sched_domains_mutex); + DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); + + static void update_rq_clock_task(struct rq *rq, s64 delta); + + void update_rq_clock(struct rq *rq) + { + s64 delta; + + if (rq->skip_clock_update > 0) + return; + + delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; + rq->clock += delta; + update_rq_clock_task(rq, delta); + } + + /* + * Debugging: various feature bits + */ + + #define SCHED_FEAT(name, enabled) \ + (1UL << __SCHED_FEAT_##name) * enabled | + + const_debug unsigned int sysctl_sched_features = + #include "features.h" + 0; + + #undef SCHED_FEAT + + #ifdef CONFIG_SCHED_DEBUG + #define SCHED_FEAT(name, enabled) \ + #name , + + static __read_mostly char *sched_feat_names[] = { + #include "features.h" + NULL + }; + + #undef SCHED_FEAT + + static int sched_feat_show(struct seq_file *m, void *v) + { + int i; + + for (i = 0; i < __SCHED_FEAT_NR; i++) { + if (!(sysctl_sched_features & (1UL << i))) + seq_puts(m, "NO_"); + seq_printf(m, "%s ", sched_feat_names[i]); + } + seq_puts(m, "\n"); + + return 0; + } + + #ifdef HAVE_JUMP_LABEL + + #define jump_label_key__true jump_label_key_enabled + #define jump_label_key__false jump_label_key_disabled + + #define SCHED_FEAT(name, enabled) \ + jump_label_key__##enabled , + + struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { + #include "features.h" + }; + + #undef SCHED_FEAT + + static void sched_feat_disable(int i) + { + if (jump_label_enabled(&sched_feat_keys[i])) + jump_label_dec(&sched_feat_keys[i]); + } + + static void sched_feat_enable(int i) + { + if (!jump_label_enabled(&sched_feat_keys[i])) + jump_label_inc(&sched_feat_keys[i]); + } + #else + static void sched_feat_disable(int i) { }; + static void sched_feat_enable(int i) { }; + #endif /* HAVE_JUMP_LABEL */ + + static ssize_t + sched_feat_write(struct file *filp, const char __user *ubuf, + size_t cnt, loff_t *ppos) + { + char buf[64]; + char *cmp; + int neg = 0; + int i; + + if (cnt > 63) + cnt = 63; + + if (copy_from_user(&buf, ubuf, cnt)) + return -EFAULT; + + buf[cnt] = 0; + cmp = strstrip(buf); + + if (strncmp(cmp, "NO_", 3) == 0) { + neg = 1; + cmp += 3; + } + + for (i = 0; i < __SCHED_FEAT_NR; i++) { + if (strcmp(cmp, sched_feat_names[i]) == 0) { + if (neg) { + sysctl_sched_features &= ~(1UL << i); + sched_feat_disable(i); + } else { + sysctl_sched_features |= (1UL << i); + sched_feat_enable(i); + } + break; + } + } + + if (i == __SCHED_FEAT_NR) + return -EINVAL; + + *ppos += cnt; + + return cnt; + } + + static int sched_feat_open(struct inode *inode, struct file *filp) + { + return single_open(filp, sched_feat_show, NULL); + } + + static const struct file_operations sched_feat_fops = { + .open = sched_feat_open, + .write = sched_feat_write, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, + }; + + static __init int sched_init_debug(void) + { + debugfs_create_file("sched_features", 0644, NULL, NULL, + &sched_feat_fops); + + return 0; + } + late_initcall(sched_init_debug); + #endif /* CONFIG_SCHED_DEBUG */ + + /* + * Number of tasks to iterate in a single balance run. + * Limited because this is done with IRQs disabled. + */ + const_debug unsigned int sysctl_sched_nr_migrate = 32; + + /* + * period over which we average the RT time consumption, measured + * in ms. + * + * default: 1s + */ + const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; + + /* + * period over which we measure -rt task cpu usage in us. + * default: 1s + */ + unsigned int sysctl_sched_rt_period = 1000000; + + __read_mostly int scheduler_running; + + /* + * part of the period that we allow rt tasks to run in us. + * default: 0.95s + */ + int sysctl_sched_rt_runtime = 950000; + + + + /* + * __task_rq_lock - lock the rq @p resides on. + */ + static inline struct rq *__task_rq_lock(struct task_struct *p) + __acquires(rq->lock) + { + struct rq *rq; + + lockdep_assert_held(&p->pi_lock); + + for (;;) { + rq = task_rq(p); + raw_spin_lock(&rq->lock); + if (likely(rq == task_rq(p))) + return rq; + raw_spin_unlock(&rq->lock); + } + } + + /* + * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. + */ + static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) + __acquires(p->pi_lock) + __acquires(rq->lock) + { + struct rq *rq; + + for (;;) { + raw_spin_lock_irqsave(&p->pi_lock, *flags); + rq = task_rq(p); + raw_spin_lock(&rq->lock); + if (likely(rq == task_rq(p))) + return rq; + raw_spin_unlock(&rq->lock); + raw_spin_unlock_irqrestore(&p->pi_lock, *flags); + } + } + + static void __task_rq_unlock(struct rq *rq) + __releases(rq->lock) + { + raw_spin_unlock(&rq->lock); + } + + static inline void + task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) + __releases(rq->lock) + __releases(p->pi_lock) + { + raw_spin_unlock(&rq->lock); + raw_spin_unlock_irqrestore(&p->pi_lock, *flags); + } + + /* + * this_rq_lock - lock this runqueue and disable interrupts. + */ + static struct rq *this_rq_lock(void) + __acquires(rq->lock) + { + struct rq *rq; + + local_irq_disable(); + rq = this_rq(); + raw_spin_lock(&rq->lock); + + return rq; + } + + #ifdef CONFIG_SCHED_HRTICK + /* + * Use HR-timers to deliver accurate preemption points. + * + * Its all a bit involved since we cannot program an hrt while holding the + * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a + * reschedule event. + * + * When we get rescheduled we reprogram the hrtick_timer outside of the + * rq->lock. + */ + + static void hrtick_clear(struct rq *rq) + { + if (hrtimer_active(&rq->hrtick_timer)) + hrtimer_cancel(&rq->hrtick_timer); + } + + /* + * High-resolution timer tick. + * Runs from hardirq context with interrupts disabled. + */ + static enum hrtimer_restart hrtick(struct hrtimer *timer) + { + struct rq *rq = container_of(timer, struct rq, hrtick_timer); + + WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); + + raw_spin_lock(&rq->lock); + update_rq_clock(rq); + rq->curr->sched_class->task_tick(rq, rq->curr, 1); + raw_spin_unlock(&rq->lock); + + return HRTIMER_NORESTART; + } + + #ifdef CONFIG_SMP + /* + * called from hardirq (IPI) context + */ + static void __hrtick_start(void *arg) + { + struct rq *rq = arg; + + raw_spin_lock(&rq->lock); + hrtimer_restart(&rq->hrtick_timer); + rq->hrtick_csd_pending = 0; + raw_spin_unlock(&rq->lock); + } + + /* + * Called to set the hrtick timer state. + * + * called with rq->lock held and irqs disabled + */ + void hrtick_start(struct rq *rq, u64 delay) + { + struct hrtimer *timer = &rq->hrtick_timer; + ktime_t time = ktime_add_ns(timer->base->get_time(), delay); + + hrtimer_set_expires(timer, time); + + if (rq == this_rq()) { + hrtimer_restart(timer); + } else if (!rq->hrtick_csd_pending) { + __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); + rq->hrtick_csd_pending = 1; + } + } + + static int + hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) + { + int cpu = (int)(long)hcpu; + + switch (action) { + case CPU_UP_CANCELED: + case CPU_UP_CANCELED_FROZEN: + case CPU_DOWN_PREPARE: + case CPU_DOWN_PREPARE_FROZEN: + case CPU_DEAD: + case CPU_DEAD_FROZEN: + hrtick_clear(cpu_rq(cpu)); + return NOTIFY_OK; + } + + return NOTIFY_DONE; + } + + static __init void init_hrtick(void) + { + hotcpu_notifier(hotplug_hrtick, 0); + } + #else + /* + * Called to set the hrtick timer state. + * + * called with rq->lock held and irqs disabled + */ + void hrtick_start(struct rq *rq, u64 delay) + { + __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, + HRTIMER_MODE_REL_PINNED, 0); + } + + static inline void init_hrtick(void) + { + } + #endif /* CONFIG_SMP */ + + static void init_rq_hrtick(struct rq *rq) + { + #ifdef CONFIG_SMP + rq->hrtick_csd_pending = 0; + + rq->hrtick_csd.flags = 0; + rq->hrtick_csd.func = __hrtick_start; + rq->hrtick_csd.info = rq; + #endif + + hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + rq->hrtick_timer.function = hrtick; + } + #else /* CONFIG_SCHED_HRTICK */ + static inline void hrtick_clear(struct rq *rq) + { + } + + static inline void init_rq_hrtick(struct rq *rq) + { + } + + static inline void init_hrtick(void) + { + } + #endif /* CONFIG_SCHED_HRTICK */ + + /* + * resched_task - mark a task 'to be rescheduled now'. + * + * On UP this means the setting of the need_resched flag, on SMP it + * might also involve a cross-CPU call to trigger the scheduler on + * the target CPU. + */ + #ifdef CONFIG_SMP + + #ifndef tsk_is_polling + #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) + #endif + + void resched_task(struct task_struct *p) + { + int cpu; + + assert_raw_spin_locked(&task_rq(p)->lock); + + if (test_tsk_need_resched(p)) + return; + + set_tsk_need_resched(p); + + cpu = task_cpu(p); + if (cpu == smp_processor_id()) + return; + + /* NEED_RESCHED must be visible before we test polling */ + smp_mb(); + if (!tsk_is_polling(p)) + smp_send_reschedule(cpu); + } + + void resched_cpu(int cpu) + { + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + if (!raw_spin_trylock_irqsave(&rq->lock, flags)) + return; + resched_task(cpu_curr(cpu)); + raw_spin_unlock_irqrestore(&rq->lock, flags); + } + + #ifdef CONFIG_NO_HZ + /* + * In the semi idle case, use the nearest busy cpu for migrating timers + * from an idle cpu. This is good for power-savings. + * + * We don't do similar optimization for completely idle system, as + * selecting an idle cpu will add more delays to the timers than intended + * (as that cpu's timer base may not be uptodate wrt jiffies etc). + */ + int get_nohz_timer_target(void) + { + int cpu = smp_processor_id(); + int i; + struct sched_domain *sd; + + rcu_read_lock(); + for_each_domain(cpu, sd) { + for_each_cpu(i, sched_domain_span(sd)) { + if (!idle_cpu(i)) { + cpu = i; + goto unlock; + } + } + } + unlock: + rcu_read_unlock(); + return cpu; + } + /* + * When add_timer_on() enqueues a timer into the timer wheel of an + * idle CPU then this timer might expire before the next timer event + * which is scheduled to wake up that CPU. In case of a completely + * idle system the next event might even be infinite time into the + * future. wake_up_idle_cpu() ensures that the CPU is woken up and + * leaves the inner idle loop so the newly added timer is taken into + * account when the CPU goes back to idle and evaluates the timer + * wheel for the next timer event. + */ + void wake_up_idle_cpu(int cpu) + { + struct rq *rq = cpu_rq(cpu); + + if (cpu == smp_processor_id()) + return; + + /* + * This is safe, as this function is called with the timer + * wheel base lock of (cpu) held. When the CPU is on the way + * to idle and has not yet set rq->curr to idle then it will + * be serialized on the timer wheel base lock and take the new + * timer into account automatically. + */ + if (rq->curr != rq->idle) + return; + + /* + * We can set TIF_RESCHED on the idle task of the other CPU + * lockless. The worst case is that the other CPU runs the + * idle task through an additional NOOP schedule() + */ + set_tsk_need_resched(rq->idle); + + /* NEED_RESCHED must be visible before we test polling */ + smp_mb(); + if (!tsk_is_polling(rq->idle)) + smp_send_reschedule(cpu); + } + + static inline bool got_nohz_idle_kick(void) + { + int cpu = smp_processor_id(); + return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); + } + + #else /* CONFIG_NO_HZ */ + + static inline bool got_nohz_idle_kick(void) + { + return false; + } + + #endif /* CONFIG_NO_HZ */ + + void sched_avg_update(struct rq *rq) + { + s64 period = sched_avg_period(); + + while ((s64)(rq->clock - rq->age_stamp) > period) { + /* + * Inline assembly required to prevent the compiler + * optimising this loop into a divmod call. + * See __iter_div_u64_rem() for another example of this. + */ + asm("" : "+rm" (rq->age_stamp)); + rq->age_stamp += period; + rq->rt_avg /= 2; + } + } + + #else /* !CONFIG_SMP */ + void resched_task(struct task_struct *p) + { + assert_raw_spin_locked(&task_rq(p)->lock); + set_tsk_need_resched(p); + } + #endif /* CONFIG_SMP */ + + #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ + (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) + /* + * Iterate task_group tree rooted at *from, calling @down when first entering a + * node and @up when leaving it for the final time. + * + * Caller must hold rcu_lock or sufficient equivalent. + */ + int walk_tg_tree_from(struct task_group *from, + tg_visitor down, tg_visitor up, void *data) + { + struct task_group *parent, *child; + int ret; + + parent = from; + + down: + ret = (*down)(parent, data); + if (ret) + goto out; + list_for_each_entry_rcu(child, &parent->children, siblings) { + parent = child; + goto down; + + up: + continue; + } + ret = (*up)(parent, data); + if (ret || parent == from) + goto out; + + child = parent; + parent = parent->parent; + if (parent) + goto up; + out: + return ret; + } + + int tg_nop(struct task_group *tg, void *data) + { + return 0; + } + #endif + + void update_cpu_load(struct rq *this_rq); + + static void set_load_weight(struct task_struct *p) + { + int prio = p->static_prio - MAX_RT_PRIO; + struct load_weight *load = &p->se.load; + + /* + * SCHED_IDLE tasks get minimal weight: + */ + if (p->policy == SCHED_IDLE) { + load->weight = scale_load(WEIGHT_IDLEPRIO); + load->inv_weight = WMULT_IDLEPRIO; + return; + } + + load->weight = scale_load(prio_to_weight[prio]); + load->inv_weight = prio_to_wmult[prio]; + } + + static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) + { + update_rq_clock(rq); + sched_info_queued(p); + p->sched_class->enqueue_task(rq, p, flags); + } + + static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) + { + update_rq_clock(rq); + sched_info_dequeued(p); + p->sched_class->dequeue_task(rq, p, flags); + } + + /* + * activate_task - move a task to the runqueue. + */ + void activate_task(struct rq *rq, struct task_struct *p, int flags) + { + if (task_contributes_to_load(p)) + rq->nr_uninterruptible--; + + enqueue_task(rq, p, flags); + } + + /* + * deactivate_task - remove a task from the runqueue. + */ + void deactivate_task(struct rq *rq, struct task_struct *p, int flags) + { + if (task_contributes_to_load(p)) + rq->nr_uninterruptible++; + + dequeue_task(rq, p, flags); + } + + #ifdef CONFIG_IRQ_TIME_ACCOUNTING + + /* + * There are no locks covering percpu hardirq/softirq time. + * They are only modified in account_system_vtime, on corresponding CPU + * with interrupts disabled. So, writes are safe. + * They are read and saved off onto struct rq in update_rq_clock(). + * This may result in other CPU reading this CPU's irq time and can + * race with irq/account_system_vtime on this CPU. We would either get old + * or new value with a side effect of accounting a slice of irq time to wrong + * task when irq is in progress while we read rq->clock. That is a worthy + * compromise in place of having locks on each irq in account_system_time. + */ + static DEFINE_PER_CPU(u64, cpu_hardirq_time); + static DEFINE_PER_CPU(u64, cpu_softirq_time); + + static DEFINE_PER_CPU(u64, irq_start_time); + static int sched_clock_irqtime; + + void enable_sched_clock_irqtime(void) + { + sched_clock_irqtime = 1; + } + + void disable_sched_clock_irqtime(void) + { + sched_clock_irqtime = 0; + } + + #ifndef CONFIG_64BIT + static DEFINE_PER_CPU(seqcount_t, irq_time_seq); + + static inline void irq_time_write_begin(void) + { + __this_cpu_inc(irq_time_seq.sequence); + smp_wmb(); + } + + static inline void irq_time_write_end(void) + { + smp_wmb(); + __this_cpu_inc(irq_time_seq.sequence); + } + + static inline u64 irq_time_read(int cpu) + { + u64 irq_time; + unsigned seq; + + do { + seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); + irq_time = per_cpu(cpu_softirq_time, cpu) + + per_cpu(cpu_hardirq_time, cpu); + } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); + + return irq_time; + } + #else /* CONFIG_64BIT */ + static inline void irq_time_write_begin(void) + { + } + + static inline void irq_time_write_end(void) + { + } + + static inline u64 irq_time_read(int cpu) + { + return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); + } + #endif /* CONFIG_64BIT */ + + /* + * Called before incrementing preempt_count on {soft,}irq_enter + * and before decrementing preempt_count on {soft,}irq_exit. + */ + void account_system_vtime(struct task_struct *curr) + { + unsigned long flags; + s64 delta; + int cpu; + + if (!sched_clock_irqtime) + return; + + local_irq_save(flags); + + cpu = smp_processor_id(); + delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); + __this_cpu_add(irq_start_time, delta); + + irq_time_write_begin(); + /* + * We do not account for softirq time from ksoftirqd here. + * We want to continue accounting softirq time to ksoftirqd thread + * in that case, so as not to confuse scheduler with a special task + * that do not consume any time, but still wants to run. + */ + if (hardirq_count()) + __this_cpu_add(cpu_hardirq_time, delta); + else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) + __this_cpu_add(cpu_softirq_time, delta); + + irq_time_write_end(); + local_irq_restore(flags); + } + EXPORT_SYMBOL_GPL(account_system_vtime); + + #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + + #ifdef CONFIG_PARAVIRT + static inline u64 steal_ticks(u64 steal) + { + if (unlikely(steal > NSEC_PER_SEC)) + return div_u64(steal, TICK_NSEC); + + return __iter_div_u64_rem(steal, TICK_NSEC, &steal); + } + #endif + + static void update_rq_clock_task(struct rq *rq, s64 delta) + { + /* + * In theory, the compile should just see 0 here, and optimize out the call + * to sched_rt_avg_update. But I don't trust it... + */ + #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) + s64 steal = 0, irq_delta = 0; + #endif + #ifdef CONFIG_IRQ_TIME_ACCOUNTING + irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; + + /* + * Since irq_time is only updated on {soft,}irq_exit, we might run into + * this case when a previous update_rq_clock() happened inside a + * {soft,}irq region. + * + * When this happens, we stop ->clock_task and only update the + * prev_irq_time stamp to account for the part that fit, so that a next + * update will consume the rest. This ensures ->clock_task is + * monotonic. + * + * It does however cause some slight miss-attribution of {soft,}irq + * time, a more accurate solution would be to update the irq_time using + * the current rq->clock timestamp, except that would require using + * atomic ops. + */ + if (irq_delta > delta) + irq_delta = delta; + + rq->prev_irq_time += irq_delta; + delta -= irq_delta; + #endif + #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING + if (static_branch((¶virt_steal_rq_enabled))) { + u64 st; + + steal = paravirt_steal_clock(cpu_of(rq)); + steal -= rq->prev_steal_time_rq; + + if (unlikely(steal > delta)) + steal = delta; + + st = steal_ticks(steal); + steal = st * TICK_NSEC; + + rq->prev_steal_time_rq += steal; + + delta -= steal; + } + #endif + + rq->clock_task += delta; + + #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) + if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) + sched_rt_avg_update(rq, irq_delta + steal); + #endif + } + + #ifdef CONFIG_IRQ_TIME_ACCOUNTING + static int irqtime_account_hi_update(void) + { + u64 *cpustat = kcpustat_this_cpu->cpustat; + unsigned long flags; + u64 latest_ns; + int ret = 0; + + local_irq_save(flags); + latest_ns = this_cpu_read(cpu_hardirq_time); - if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat[CPUTIME_IRQ])) ++ if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) + ret = 1; + local_irq_restore(flags); + return ret; + } + + static int irqtime_account_si_update(void) + { + u64 *cpustat = kcpustat_this_cpu->cpustat; + unsigned long flags; + u64 latest_ns; + int ret = 0; + + local_irq_save(flags); + latest_ns = this_cpu_read(cpu_softirq_time); - if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat[CPUTIME_SOFTIRQ])) ++ if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) + ret = 1; + local_irq_restore(flags); + return ret; + } + + #else /* CONFIG_IRQ_TIME_ACCOUNTING */ + + #define sched_clock_irqtime (0) + + #endif + + void sched_set_stop_task(int cpu, struct task_struct *stop) + { + struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; + struct task_struct *old_stop = cpu_rq(cpu)->stop; + + if (stop) { + /* + * Make it appear like a SCHED_FIFO task, its something + * userspace knows about and won't get confused about. + * + * Also, it will make PI more or less work without too + * much confusion -- but then, stop work should not + * rely on PI working anyway. + */ + sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); + + stop->sched_class = &stop_sched_class; + } + + cpu_rq(cpu)->stop = stop; + + if (old_stop) { + /* + * Reset it back to a normal scheduling class so that + * it can die in pieces. + */ + old_stop->sched_class = &rt_sched_class; + } + } + + /* + * __normal_prio - return the priority that is based on the static prio + */ + static inline int __normal_prio(struct task_struct *p) + { + return p->static_prio; + } + + /* + * Calculate the expected normal priority: i.e. priority + * without taking RT-inheritance into account. Might be + * boosted by interactivity modifiers. Changes upon fork, + * setprio syscalls, and whenever the interactivity + * estimator recalculates. + */ + static inline int normal_prio(struct task_struct *p) + { + int prio; + + if (task_has_rt_policy(p)) + prio = MAX_RT_PRIO-1 - p->rt_priority; + else + prio = __normal_prio(p); + return prio; + } + + /* + * Calculate the current priority, i.e. the priority + * taken into account by the scheduler. This value might + * be boosted by RT tasks, or might be boosted by + * interactivity modifiers. Will be RT if the task got + * RT-boosted. If not then it returns p->normal_prio. + */ + static int effective_prio(struct task_struct *p) + { + p->normal_prio = normal_prio(p); + /* + * If we are RT tasks or we were boosted to RT priority, + * keep the priority unchanged. Otherwise, update priority + * to the normal priority: + */ + if (!rt_prio(p->prio)) + return p->normal_prio; + return p->prio; + } + + /** + * task_curr - is this task currently executing on a CPU? + * @p: the task in question. + */ + inline int task_curr(const struct task_struct *p) + { + return cpu_curr(task_cpu(p)) == p; + } + + static inline void check_class_changed(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class, + int oldprio) + { + if (prev_class != p->sched_class) { + if (prev_class->switched_from) + prev_class->switched_from(rq, p); + p->sched_class->switched_to(rq, p); + } else if (oldprio != p->prio) + p->sched_class->prio_changed(rq, p, oldprio); + } + + void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) + { + const struct sched_class *class; + + if (p->sched_class == rq->curr->sched_class) { + rq->curr->sched_class->check_preempt_curr(rq, p, flags); + } else { + for_each_class(class) { + if (class == rq->curr->sched_class) + break; + if (class == p->sched_class) { + resched_task(rq->curr); + break; + } + } + } + + /* + * A queue event has occurred, and we're going to schedule. In + * this case, we can save a useless back to back clock update. + */ + if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) + rq->skip_clock_update = 1; + } + + #ifdef CONFIG_SMP + void set_task_cpu(struct task_struct *p, unsigned int new_cpu) + { + #ifdef CONFIG_SCHED_DEBUG + /* + * We should never call set_task_cpu() on a blocked task, + * ttwu() will sort out the placement. + */ + WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && + !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); + + #ifdef CONFIG_LOCKDEP + /* + * The caller should hold either p->pi_lock or rq->lock, when changing + * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. + * + * sched_move_task() holds both and thus holding either pins the cgroup, + * see set_task_rq(). + * + * Furthermore, all task_rq users should acquire both locks, see + * task_rq_lock(). + */ + WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || + lockdep_is_held(&task_rq(p)->lock))); + #endif + #endif + + trace_sched_migrate_task(p, new_cpu); + + if (task_cpu(p) != new_cpu) { + p->se.nr_migrations++; + perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); + } + + __set_task_cpu(p, new_cpu); + } + + struct migration_arg { + struct task_struct *task; + int dest_cpu; + }; + + static int migration_cpu_stop(void *data); + + /* + * wait_task_inactive - wait for a thread to unschedule. + * + * If @match_state is nonzero, it's the @p->state value just checked and + * not expected to change. If it changes, i.e. @p might have woken up, + * then return zero. When we succeed in waiting for @p to be off its CPU, + * we return a positive number (its total switch count). If a second call + * a short while later returns the same number, the caller can be sure that + * @p has remained unscheduled the whole time. + * + * The caller must ensure that the task *will* unschedule sometime soon, + * else this function might spin for a *long* time. This function can't + * be called with interrupts off, or it may introduce deadlock with + * smp_call_function() if an IPI is sent by the same process we are + * waiting to become inactive. + */ + unsigned long wait_task_inactive(struct task_struct *p, long match_state) + { + unsigned long flags; + int running, on_rq; + unsigned long ncsw; + struct rq *rq; + + for (;;) { + /* + * We do the initial early heuristics without holding + * any task-queue locks at all. We'll only try to get + * the runqueue lock when things look like they will + * work out! + */ + rq = task_rq(p); + + /* + * If the task is actively running on another CPU + * still, just relax and busy-wait without holding + * any locks. + * + * NOTE! Since we don't hold any locks, it's not + * even sure that "rq" stays as the right runqueue! + * But we don't care, since "task_running()" will + * return false if the runqueue has changed and p + * is actually now running somewhere else! + */ + while (task_running(rq, p)) { + if (match_state && unlikely(p->state != match_state)) + return 0; + cpu_relax(); + } + + /* + * Ok, time to look more closely! We need the rq + * lock now, to be *sure*. If we're wrong, we'll + * just go back and repeat. + */ + rq = task_rq_lock(p, &flags); + trace_sched_wait_task(p); + running = task_running(rq, p); + on_rq = p->on_rq; + ncsw = 0; + if (!match_state || p->state == match_state) + ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ + task_rq_unlock(rq, p, &flags); + + /* + * If it changed from the expected state, bail out now. + */ + if (unlikely(!ncsw)) + break; + + /* + * Was it really running after all now that we + * checked with the proper locks actually held? + * + * Oops. Go back and try again.. + */ + if (unlikely(running)) { + cpu_relax(); + continue; + } + + /* + * It's not enough that it's not actively running, + * it must be off the runqueue _entirely_, and not + * preempted! + * + * So if it was still runnable (but just not actively + * running right now), it's preempted, and we should + * yield - it could be a while. + */ + if (unlikely(on_rq)) { + ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); + + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_hrtimeout(&to, HRTIMER_MODE_REL); + continue; + } + + /* + * Ahh, all good. It wasn't running, and it wasn't + * runnable, which means that it will never become + * running in the future either. We're all done! + */ + break; + } + + return ncsw; + } + + /*** + * kick_process - kick a running thread to enter/exit the kernel + * @p: the to-be-kicked thread + * + * Cause a process which is running on another CPU to enter + * kernel-mode, without any delay. (to get signals handled.) + * + * NOTE: this function doesn't have to take the runqueue lock, + * because all it wants to ensure is that the remote task enters + * the kernel. If the IPI races and the task has been migrated + * to another CPU then no harm is done and the purpose has been + * achieved as well. + */ + void kick_process(struct task_struct *p) + { + int cpu; + + preempt_disable(); + cpu = task_cpu(p); + if ((cpu != smp_processor_id()) && task_curr(p)) + smp_send_reschedule(cpu); + preempt_enable(); + } + EXPORT_SYMBOL_GPL(kick_process); + #endif /* CONFIG_SMP */ + + #ifdef CONFIG_SMP + /* + * ->cpus_allowed is protected by both rq->lock and p->pi_lock + */ + static int select_fallback_rq(int cpu, struct task_struct *p) + { + int dest_cpu; + const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); + + /* Look for allowed, online CPU in same node. */ + for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) + if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) + return dest_cpu; + + /* Any allowed, online CPU? */ + dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); + if (dest_cpu < nr_cpu_ids) + return dest_cpu; + + /* No more Mr. Nice Guy. */ + dest_cpu = cpuset_cpus_allowed_fallback(p); + /* + * Don't tell them about moving exiting tasks or + * kernel threads (both mm NULL), since they never + * leave kernel. + */ + if (p->mm && printk_ratelimit()) { + printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", + task_pid_nr(p), p->comm, cpu); + } + + return dest_cpu; + } + + /* + * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. + */ + static inline + int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) + { + int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); + + /* + * In order not to call set_task_cpu() on a blocking task we need + * to rely on ttwu() to place the task on a valid ->cpus_allowed + * cpu. + * + * Since this is common to all placement strategies, this lives here. + * + * [ this allows ->select_task() to simply return task_cpu(p) and + * not worry about this generic constraint ] + */ + if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || + !cpu_online(cpu))) + cpu = select_fallback_rq(task_cpu(p), p); + + return cpu; + } + + static void update_avg(u64 *avg, u64 sample) + { + s64 diff = sample - *avg; + *avg += diff >> 3; + } + #endif + + static void + ttwu_stat(struct task_struct *p, int cpu, int wake_flags) + { + #ifdef CONFIG_SCHEDSTATS + struct rq *rq = this_rq(); + + #ifdef CONFIG_SMP + int this_cpu = smp_processor_id(); + + if (cpu == this_cpu) { + schedstat_inc(rq, ttwu_local); + schedstat_inc(p, se.statistics.nr_wakeups_local); + } else { + struct sched_domain *sd; + + schedstat_inc(p, se.statistics.nr_wakeups_remote); + rcu_read_lock(); + for_each_domain(this_cpu, sd) { + if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { + schedstat_inc(sd, ttwu_wake_remote); + break; + } + } + rcu_read_unlock(); + } + + if (wake_flags & WF_MIGRATED) + schedstat_inc(p, se.statistics.nr_wakeups_migrate); + + #endif /* CONFIG_SMP */ + + schedstat_inc(rq, ttwu_count); + schedstat_inc(p, se.statistics.nr_wakeups); + + if (wake_flags & WF_SYNC) + schedstat_inc(p, se.statistics.nr_wakeups_sync); + + #endif /* CONFIG_SCHEDSTATS */ + } + + static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) + { + activate_task(rq, p, en_flags); + p->on_rq = 1; + + /* if a worker is waking up, notify workqueue */ + if (p->flags & PF_WQ_WORKER) + wq_worker_waking_up(p, cpu_of(rq)); + } + + /* + * Mark the task runnable and perform wakeup-preemption. + */ + static void + ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) + { + trace_sched_wakeup(p, true); + check_preempt_curr(rq, p, wake_flags); + + p->state = TASK_RUNNING; + #ifdef CONFIG_SMP + if (p->sched_class->task_woken) + p->sched_class->task_woken(rq, p); + + if (rq->idle_stamp) { + u64 delta = rq->clock - rq->idle_stamp; + u64 max = 2*sysctl_sched_migration_cost; + + if (delta > max) + rq->avg_idle = max; + else + update_avg(&rq->avg_idle, delta); + rq->idle_stamp = 0; + } + #endif + } + + static void + ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) + { + #ifdef CONFIG_SMP + if (p->sched_contributes_to_load) + rq->nr_uninterruptible--; + #endif + + ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); + ttwu_do_wakeup(rq, p, wake_flags); + } + + /* + * Called in case the task @p isn't fully descheduled from its runqueue, + * in this case we must do a remote wakeup. Its a 'light' wakeup though, + * since all we need to do is flip p->state to TASK_RUNNING, since + * the task is still ->on_rq. + */ + static int ttwu_remote(struct task_struct *p, int wake_flags) + { + struct rq *rq; + int ret = 0; + + rq = __task_rq_lock(p); + if (p->on_rq) { + ttwu_do_wakeup(rq, p, wake_flags); + ret = 1; + } + __task_rq_unlock(rq); + + return ret; + } + + #ifdef CONFIG_SMP + static void sched_ttwu_pending(void) + { + struct rq *rq = this_rq(); + struct llist_node *llist = llist_del_all(&rq->wake_list); + struct task_struct *p; + + raw_spin_lock(&rq->lock); + + while (llist) { + p = llist_entry(llist, struct task_struct, wake_entry); + llist = llist_next(llist); + ttwu_do_activate(rq, p, 0); + } + + raw_spin_unlock(&rq->lock); + } + + void scheduler_ipi(void) + { + if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) + return; + + /* + * Not all reschedule IPI handlers call irq_enter/irq_exit, since + * traditionally all their work was done from the interrupt return + * path. Now that we actually do some work, we need to make sure + * we do call them. + * + * Some archs already do call them, luckily irq_enter/exit nest + * properly. + * + * Arguably we should visit all archs and update all handlers, + * however a fair share of IPIs are still resched only so this would + * somewhat pessimize the simple resched case. + */ + irq_enter(); + sched_ttwu_pending(); + + /* + * Check if someone kicked us for doing the nohz idle load balance. + */ + if (unlikely(got_nohz_idle_kick() && !need_resched())) { + this_rq()->idle_balance = 1; + raise_softirq_irqoff(SCHED_SOFTIRQ); + } + irq_exit(); + } + + static void ttwu_queue_remote(struct task_struct *p, int cpu) + { + if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) + smp_send_reschedule(cpu); + } + + #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW + static int ttwu_activate_remote(struct task_struct *p, int wake_flags) + { + struct rq *rq; + int ret = 0; + + rq = __task_rq_lock(p); + if (p->on_cpu) { + ttwu_activate(rq, p, ENQUEUE_WAKEUP); + ttwu_do_wakeup(rq, p, wake_flags); + ret = 1; + } + __task_rq_unlock(rq); + + return ret; + + } + #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ + #endif /* CONFIG_SMP */ + + static void ttwu_queue(struct task_struct *p, int cpu) + { + struct rq *rq = cpu_rq(cpu); + + #if defined(CONFIG_SMP) + if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) { + sched_clock_cpu(cpu); /* sync clocks x-cpu */ + ttwu_queue_remote(p, cpu); + return; + } + #endif + + raw_spin_lock(&rq->lock); + ttwu_do_activate(rq, p, 0); + raw_spin_unlock(&rq->lock); + } + + /** + * try_to_wake_up - wake up a thread + * @p: the thread to be awakened + * @state: the mask of task states that can be woken + * @wake_flags: wake modifier flags (WF_*) + * + * Put it on the run-queue if it's not already there. The "current" + * thread is always on the run-queue (except when the actual + * re-schedule is in progress), and as such you're allowed to do + * the simpler "current->state = TASK_RUNNING" to mark yourself + * runnable without the overhead of this. + * + * Returns %true if @p was woken up, %false if it was already running + * or @state didn't match @p's state. + */ + static int + try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) + { + unsigned long flags; + int cpu, success = 0; + + smp_wmb(); + raw_spin_lock_irqsave(&p->pi_lock, flags); + if (!(p->state & state)) + goto out; + + success = 1; /* we're going to change ->state */ + cpu = task_cpu(p); + + if (p->on_rq && ttwu_remote(p, wake_flags)) + goto stat; + + #ifdef CONFIG_SMP + /* + * If the owning (remote) cpu is still in the middle of schedule() with + * this task as prev, wait until its done referencing the task. + */ + while (p->on_cpu) { + #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW + /* + * In case the architecture enables interrupts in + * context_switch(), we cannot busy wait, since that + * would lead to deadlocks when an interrupt hits and + * tries to wake up @prev. So bail and do a complete + * remote wakeup. + */ + if (ttwu_activate_remote(p, wake_flags)) + goto stat; + #else + cpu_relax(); + #endif + } + /* + * Pairs with the smp_wmb() in finish_lock_switch(). + */ + smp_rmb(); + + p->sched_contributes_to_load = !!task_contributes_to_load(p); + p->state = TASK_WAKING; + + if (p->sched_class->task_waking) + p->sched_class->task_waking(p); + + cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); + if (task_cpu(p) != cpu) { + wake_flags |= WF_MIGRATED; + set_task_cpu(p, cpu); + } + #endif /* CONFIG_SMP */ + + ttwu_queue(p, cpu); + stat: + ttwu_stat(p, cpu, wake_flags); + out: + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + + return success; + } + + /** + * try_to_wake_up_local - try to wake up a local task with rq lock held + * @p: the thread to be awakened + * + * Put @p on the run-queue if it's not already there. The caller must + * ensure that this_rq() is locked, @p is bound to this_rq() and not + * the current task. + */ + static void try_to_wake_up_local(struct task_struct *p) + { + struct rq *rq = task_rq(p); + + BUG_ON(rq != this_rq()); + BUG_ON(p == current); + lockdep_assert_held(&rq->lock); + + if (!raw_spin_trylock(&p->pi_lock)) { + raw_spin_unlock(&rq->lock); + raw_spin_lock(&p->pi_lock); + raw_spin_lock(&rq->lock); + } + + if (!(p->state & TASK_NORMAL)) + goto out; + + if (!p->on_rq) + ttwu_activate(rq, p, ENQUEUE_WAKEUP); + + ttwu_do_wakeup(rq, p, 0); + ttwu_stat(p, smp_processor_id(), 0); + out: + raw_spin_unlock(&p->pi_lock); + } + + /** + * wake_up_process - Wake up a specific process + * @p: The process to be woken up. + * + * Attempt to wake up the nominated process and move it to the set of runnable + * processes. Returns 1 if the process was woken up, 0 if it was already + * running. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ + int wake_up_process(struct task_struct *p) + { + return try_to_wake_up(p, TASK_ALL, 0); + } + EXPORT_SYMBOL(wake_up_process); + + int wake_up_state(struct task_struct *p, unsigned int state) + { + return try_to_wake_up(p, state, 0); + } + + /* + * Perform scheduler related setup for a newly forked process p. + * p is forked by current. + * + * __sched_fork() is basic setup used by init_idle() too: + */ + static void __sched_fork(struct task_struct *p) + { + p->on_rq = 0; + + p->se.on_rq = 0; + p->se.exec_start = 0; + p->se.sum_exec_runtime = 0; + p->se.prev_sum_exec_runtime = 0; + p->se.nr_migrations = 0; + p->se.vruntime = 0; + INIT_LIST_HEAD(&p->se.group_node); + + #ifdef CONFIG_SCHEDSTATS + memset(&p->se.statistics, 0, sizeof(p->se.statistics)); + #endif + + INIT_LIST_HEAD(&p->rt.run_list); + + #ifdef CONFIG_PREEMPT_NOTIFIERS + INIT_HLIST_HEAD(&p->preempt_notifiers); + #endif + } + + /* + * fork()/clone()-time setup: + */ + void sched_fork(struct task_struct *p) + { + unsigned long flags; + int cpu = get_cpu(); + + __sched_fork(p); + /* + * We mark the process as running here. This guarantees that + * nobody will actually run it, and a signal or other external + * event cannot wake it up and insert it on the runqueue either. + */ + p->state = TASK_RUNNING; + + /* + * Make sure we do not leak PI boosting priority to the child. + */ + p->prio = current->normal_prio; + + /* + * Revert to default priority/policy on fork if requested. + */ + if (unlikely(p->sched_reset_on_fork)) { + if (task_has_rt_policy(p)) { + p->policy = SCHED_NORMAL; + p->static_prio = NICE_TO_PRIO(0); + p->rt_priority = 0; + } else if (PRIO_TO_NICE(p->static_prio) < 0) + p->static_prio = NICE_TO_PRIO(0); + + p->prio = p->normal_prio = __normal_prio(p); + set_load_weight(p); + + /* + * We don't need the reset flag anymore after the fork. It has + * fulfilled its duty: + */ + p->sched_reset_on_fork = 0; + } + + if (!rt_prio(p->prio)) + p->sched_class = &fair_sched_class; + + if (p->sched_class->task_fork) + p->sched_class->task_fork(p); + + /* + * The child is not yet in the pid-hash so no cgroup attach races, + * and the cgroup is pinned to this child due to cgroup_fork() + * is ran before sched_fork(). + * + * Silence PROVE_RCU. + */ + raw_spin_lock_irqsave(&p->pi_lock, flags); + set_task_cpu(p, cpu); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + + #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) + if (likely(sched_info_on())) + memset(&p->sched_info, 0, sizeof(p->sched_info)); + #endif + #if defined(CONFIG_SMP) + p->on_cpu = 0; + #endif + #ifdef CONFIG_PREEMPT_COUNT + /* Want to start with kernel preemption disabled. */ + task_thread_info(p)->preempt_count = 1; + #endif + #ifdef CONFIG_SMP + plist_node_init(&p->pushable_tasks, MAX_PRIO); + #endif + + put_cpu(); + } + + /* + * wake_up_new_task - wake up a newly created task for the first time. + * + * This function will do some initial scheduler statistics housekeeping + * that must be done for every newly created context, then puts the task + * on the runqueue and wakes it. + */ + void wake_up_new_task(struct task_struct *p) + { + unsigned long flags; + struct rq *rq; + + raw_spin_lock_irqsave(&p->pi_lock, flags); + #ifdef CONFIG_SMP + /* + * Fork balancing, do it here and not earlier because: + * - cpus_allowed can change in the fork path + * - any previously selected cpu might disappear through hotplug + */ + set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); + #endif + + rq = __task_rq_lock(p); + activate_task(rq, p, 0); + p->on_rq = 1; + trace_sched_wakeup_new(p, true); + check_preempt_curr(rq, p, WF_FORK); + #ifdef CONFIG_SMP + if (p->sched_class->task_woken) + p->sched_class->task_woken(rq, p); + #endif + task_rq_unlock(rq, p, &flags); + } + + #ifdef CONFIG_PREEMPT_NOTIFIERS + + /** + * preempt_notifier_register - tell me when current is being preempted & rescheduled + * @notifier: notifier struct to register + */ + void preempt_notifier_register(struct preempt_notifier *notifier) + { + hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); + } + EXPORT_SYMBOL_GPL(preempt_notifier_register); + + /** + * preempt_notifier_unregister - no longer interested in preemption notifications + * @notifier: notifier struct to unregister + * + * This is safe to call from within a preemption notifier. + */ + void preempt_notifier_unregister(struct preempt_notifier *notifier) + { + hlist_del(¬ifier->link); + } + EXPORT_SYMBOL_GPL(preempt_notifier_unregister); + + static void fire_sched_in_preempt_notifiers(struct task_struct *curr) + { + struct preempt_notifier *notifier; + struct hlist_node *node; + + hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) + notifier->ops->sched_in(notifier, raw_smp_processor_id()); + } + + static void + fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) + { + struct preempt_notifier *notifier; + struct hlist_node *node; + + hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) + notifier->ops->sched_out(notifier, next); + } + + #else /* !CONFIG_PREEMPT_NOTIFIERS */ + + static void fire_sched_in_preempt_notifiers(struct task_struct *curr) + { + } + + static void + fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) + { + } + + #endif /* CONFIG_PREEMPT_NOTIFIERS */ + + /** + * prepare_task_switch - prepare to switch tasks + * @rq: the runqueue preparing to switch + * @prev: the current task that is being switched out + * @next: the task we are going to switch to. + * + * This is called with the rq lock held and interrupts off. It must + * be paired with a subsequent finish_task_switch after the context + * switch. + * + * prepare_task_switch sets up locking and calls architecture specific + * hooks. + */ + static inline void + prepare_task_switch(struct rq *rq, struct task_struct *prev, + struct task_struct *next) + { + sched_info_switch(prev, next); + perf_event_task_sched_out(prev, next); + fire_sched_out_preempt_notifiers(prev, next); + prepare_lock_switch(rq, next); + prepare_arch_switch(next); + trace_sched_switch(prev, next); + } + + /** + * finish_task_switch - clean up after a task-switch + * @rq: runqueue associated with task-switch + * @prev: the thread we just switched away from. + * + * finish_task_switch must be called after the context switch, paired + * with a prepare_task_switch call before the context switch. + * finish_task_switch will reconcile locking set up by prepare_task_switch, + * and do any other architecture-specific cleanup actions. + * + * Note that we may have delayed dropping an mm in context_switch(). If + * so, we finish that here outside of the runqueue lock. (Doing it + * with the lock held can cause deadlocks; see schedule() for + * details.) + */ + static void finish_task_switch(struct rq *rq, struct task_struct *prev) + __releases(rq->lock) + { + struct mm_struct *mm = rq->prev_mm; + long prev_state; + + rq->prev_mm = NULL; + + /* + * A task struct has one reference for the use as "current". + * If a task dies, then it sets TASK_DEAD in tsk->state and calls + * schedule one last time. The schedule call will never return, and + * the scheduled task must drop that reference. + * The test for TASK_DEAD must occur while the runqueue locks are + * still held, otherwise prev could be scheduled on another cpu, die + * there before we look at prev->state, and then the reference would + * be dropped twice. + * Manfred Spraul + */ + prev_state = prev->state; + finish_arch_switch(prev); + #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW + local_irq_disable(); + #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ + perf_event_task_sched_in(prev, current); + #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW + local_irq_enable(); + #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ + finish_lock_switch(rq, prev); + + fire_sched_in_preempt_notifiers(current); + if (mm) + mmdrop(mm); + if (unlikely(prev_state == TASK_DEAD)) { + /* + * Remove function-return probe instances associated with this + * task and put them back on the free list. + */ + kprobe_flush_task(prev); + put_task_struct(prev); + } + } + + #ifdef CONFIG_SMP + + /* assumes rq->lock is held */ + static inline void pre_schedule(struct rq *rq, struct task_struct *prev) + { + if (prev->sched_class->pre_schedule) + prev->sched_class->pre_schedule(rq, prev); + } + + /* rq->lock is NOT held, but preemption is disabled */ + static inline void post_schedule(struct rq *rq) + { + if (rq->post_schedule) { + unsigned long flags; + + raw_spin_lock_irqsave(&rq->lock, flags); + if (rq->curr->sched_class->post_schedule) + rq->curr->sched_class->post_schedule(rq); + raw_spin_unlock_irqrestore(&rq->lock, flags); + + rq->post_schedule = 0; + } + } + + #else + + static inline void pre_schedule(struct rq *rq, struct task_struct *p) + { + } + + static inline void post_schedule(struct rq *rq) + { + } + + #endif + + /** + * schedule_tail - first thing a freshly forked thread must call. + * @prev: the thread we just switched away from. + */ + asmlinkage void schedule_tail(struct task_struct *prev) + __releases(rq->lock) + { + struct rq *rq = this_rq(); + + finish_task_switch(rq, prev); + + /* + * FIXME: do we need to worry about rq being invalidated by the + * task_switch? + */ + post_schedule(rq); + + #ifdef __ARCH_WANT_UNLOCKED_CTXSW + /* In this case, finish_task_switch does not reenable preemption */ + preempt_enable(); + #endif + if (current->set_child_tid) + put_user(task_pid_vnr(current), current->set_child_tid); + } + + /* + * context_switch - switch to the new MM and the new + * thread's register state. + */ + static inline void + context_switch(struct rq *rq, struct task_struct *prev, + struct task_struct *next) + { + struct mm_struct *mm, *oldmm; + + prepare_task_switch(rq, prev, next); + + mm = next->mm; + oldmm = prev->active_mm; + /* + * For paravirt, this is coupled with an exit in switch_to to + * combine the page table reload and the switch backend into + * one hypercall. + */ + arch_start_context_switch(prev); + + if (!mm) { + next->active_mm = oldmm; + atomic_inc(&oldmm->mm_count); + enter_lazy_tlb(oldmm, next); + } else + switch_mm(oldmm, mm, next); + + if (!prev->mm) { + prev->active_mm = NULL; + rq->prev_mm = oldmm; + } + /* + * Since the runqueue lock will be released by the next + * task (which is an invalid locking op but in the case + * of the scheduler it's an obvious special-case), so we + * do an early lockdep release here: + */ + #ifndef __ARCH_WANT_UNLOCKED_CTXSW + spin_release(&rq->lock.dep_map, 1, _THIS_IP_); + #endif + + /* Here we just switch the register state and the stack. */ + switch_to(prev, next, prev); + + barrier(); + /* + * this_rq must be evaluated again because prev may have moved + * CPUs since it called schedule(), thus the 'rq' on its stack + * frame will be invalid. + */ + finish_task_switch(this_rq(), prev); + } + + /* + * nr_running, nr_uninterruptible and nr_context_switches: + * + * externally visible scheduler statistics: current number of runnable + * threads, current number of uninterruptible-sleeping threads, total + * number of context switches performed since bootup. + */ + unsigned long nr_running(void) + { + unsigned long i, sum = 0; + + for_each_online_cpu(i) + sum += cpu_rq(i)->nr_running; + + return sum; + } + + unsigned long nr_uninterruptible(void) + { + unsigned long i, sum = 0; + + for_each_possible_cpu(i) + sum += cpu_rq(i)->nr_uninterruptible; + + /* + * Since we read the counters lockless, it might be slightly + * inaccurate. Do not allow it to go below zero though: + */ + if (unlikely((long)sum < 0)) + sum = 0; + + return sum; + } + + unsigned long long nr_context_switches(void) + { + int i; + unsigned long long sum = 0; + + for_each_possible_cpu(i) + sum += cpu_rq(i)->nr_switches; + + return sum; + } + + unsigned long nr_iowait(void) + { + unsigned long i, sum = 0; + + for_each_possible_cpu(i) + sum += atomic_read(&cpu_rq(i)->nr_iowait); + + return sum; + } + + unsigned long nr_iowait_cpu(int cpu) + { + struct rq *this = cpu_rq(cpu); + return atomic_read(&this->nr_iowait); + } + + unsigned long this_cpu_load(void) + { + struct rq *this = this_rq(); + return this->cpu_load[0]; + } + + + /* Variables and functions for calc_load */ + static atomic_long_t calc_load_tasks; + static unsigned long calc_load_update; + unsigned long avenrun[3]; + EXPORT_SYMBOL(avenrun); + + static long calc_load_fold_active(struct rq *this_rq) + { + long nr_active, delta = 0; + + nr_active = this_rq->nr_running; + nr_active += (long) this_rq->nr_uninterruptible; + + if (nr_active != this_rq->calc_load_active) { + delta = nr_active - this_rq->calc_load_active; + this_rq->calc_load_active = nr_active; + } + + return delta; + } + + static unsigned long + calc_load(unsigned long load, unsigned long exp, unsigned long active) + { + load *= exp; + load += active * (FIXED_1 - exp); + load += 1UL << (FSHIFT - 1); + return load >> FSHIFT; + } + + #ifdef CONFIG_NO_HZ + /* + * For NO_HZ we delay the active fold to the next LOAD_FREQ update. + * + * When making the ILB scale, we should try to pull this in as well. + */ + static atomic_long_t calc_load_tasks_idle; + + void calc_load_account_idle(struct rq *this_rq) + { + long delta; + + delta = calc_load_fold_active(this_rq); + if (delta) + atomic_long_add(delta, &calc_load_tasks_idle); + } + + static long calc_load_fold_idle(void) + { + long delta = 0; + + /* + * Its got a race, we don't care... + */ + if (atomic_long_read(&calc_load_tasks_idle)) + delta = atomic_long_xchg(&calc_load_tasks_idle, 0); + + return delta; + } + + /** + * fixed_power_int - compute: x^n, in O(log n) time + * + * @x: base of the power + * @frac_bits: fractional bits of @x + * @n: power to raise @x to. + * + * By exploiting the relation between the definition of the natural power + * function: x^n := x*x*...*x (x multiplied by itself for n times), and + * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, + * (where: n_i \elem {0, 1}, the binary vector representing n), + * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is + * of course trivially computable in O(log_2 n), the length of our binary + * vector. + */ + static unsigned long + fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) + { + unsigned long result = 1UL << frac_bits; + + if (n) for (;;) { + if (n & 1) { + result *= x; + result += 1UL << (frac_bits - 1); + result >>= frac_bits; + } + n >>= 1; + if (!n) + break; + x *= x; + x += 1UL << (frac_bits - 1); + x >>= frac_bits; + } + + return result; + } + + /* + * a1 = a0 * e + a * (1 - e) + * + * a2 = a1 * e + a * (1 - e) + * = (a0 * e + a * (1 - e)) * e + a * (1 - e) + * = a0 * e^2 + a * (1 - e) * (1 + e) + * + * a3 = a2 * e + a * (1 - e) + * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) + * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) + * + * ... + * + * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] + * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) + * = a0 * e^n + a * (1 - e^n) + * + * [1] application of the geometric series: + * + * n 1 - x^(n+1) + * S_n := \Sum x^i = ------------- + * i=0 1 - x + */ + static unsigned long + calc_load_n(unsigned long load, unsigned long exp, + unsigned long active, unsigned int n) + { + + return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); + } + + /* + * NO_HZ can leave us missing all per-cpu ticks calling + * calc_load_account_active(), but since an idle CPU folds its delta into + * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold + * in the pending idle delta if our idle period crossed a load cycle boundary. + * + * Once we've updated the global active value, we need to apply the exponential + * weights adjusted to the number of cycles missed. + */ + static void calc_global_nohz(unsigned long ticks) + { + long delta, active, n; + + if (time_before(jiffies, calc_load_update)) + return; + + /* + * If we crossed a calc_load_update boundary, make sure to fold + * any pending idle changes, the respective CPUs might have + * missed the tick driven calc_load_account_active() update + * due to NO_HZ. + */ + delta = calc_load_fold_idle(); + if (delta) + atomic_long_add(delta, &calc_load_tasks); + + /* + * If we were idle for multiple load cycles, apply them. + */ + if (ticks >= LOAD_FREQ) { + n = ticks / LOAD_FREQ; + + active = atomic_long_read(&calc_load_tasks); + active = active > 0 ? active * FIXED_1 : 0; + + avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); + avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); + avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); + + calc_load_update += n * LOAD_FREQ; + } + + /* + * Its possible the remainder of the above division also crosses + * a LOAD_FREQ period, the regular check in calc_global_load() + * which comes after this will take care of that. + * + * Consider us being 11 ticks before a cycle completion, and us + * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will + * age us 4 cycles, and the test in calc_global_load() will + * pick up the final one. + */ + } + #else + void calc_load_account_idle(struct rq *this_rq) + { + } + + static inline long calc_load_fold_idle(void) + { + return 0; + } + + static void calc_global_nohz(unsigned long ticks) + { + } + #endif + + /** + * get_avenrun - get the load average array + * @loads: pointer to dest load array + * @offset: offset to add + * @shift: shift count to shift the result left + * + * These values are estimates at best, so no need for locking. + */ + void get_avenrun(unsigned long *loads, unsigned long offset, int shift) + { + loads[0] = (avenrun[0] + offset) << shift; + loads[1] = (avenrun[1] + offset) << shift; + loads[2] = (avenrun[2] + offset) << shift; + } + + /* + * calc_load - update the avenrun load estimates 10 ticks after the + * CPUs have updated calc_load_tasks. + */ + void calc_global_load(unsigned long ticks) + { + long active; + + calc_global_nohz(ticks); + + if (time_before(jiffies, calc_load_update + 10)) + return; + + active = atomic_long_read(&calc_load_tasks); + active = active > 0 ? active * FIXED_1 : 0; + + avenrun[0] = calc_load(avenrun[0], EXP_1, active); + avenrun[1] = calc_load(avenrun[1], EXP_5, active); + avenrun[2] = calc_load(avenrun[2], EXP_15, active); + + calc_load_update += LOAD_FREQ; + } + + /* + * Called from update_cpu_load() to periodically update this CPU's + * active count. + */ + static void calc_load_account_active(struct rq *this_rq) + { + long delta; + + if (time_before(jiffies, this_rq->calc_load_update)) + return; + + delta = calc_load_fold_active(this_rq); + delta += calc_load_fold_idle(); + if (delta) + atomic_long_add(delta, &calc_load_tasks); + + this_rq->calc_load_update += LOAD_FREQ; + } + + /* + * The exact cpuload at various idx values, calculated at every tick would be + * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load + * + * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called + * on nth tick when cpu may be busy, then we have: + * load = ((2^idx - 1) / 2^idx)^(n-1) * load + * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load + * + * decay_load_missed() below does efficient calculation of + * load = ((2^idx - 1) / 2^idx)^(n-1) * load + * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load + * + * The calculation is approximated on a 128 point scale. + * degrade_zero_ticks is the number of ticks after which load at any + * particular idx is approximated to be zero. + * degrade_factor is a precomputed table, a row for each load idx. + * Each column corresponds to degradation factor for a power of two ticks, + * based on 128 point scale. + * Example: + * row 2, col 3 (=12) says that the degradation at load idx 2 after + * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). + * + * With this power of 2 load factors, we can degrade the load n times + * by looking at 1 bits in n and doing as many mult/shift instead of + * n mult/shifts needed by the exact degradation. + */ + #define DEGRADE_SHIFT 7 + static const unsigned char + degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; + static const unsigned char + degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { + {0, 0, 0, 0, 0, 0, 0, 0}, + {64, 32, 8, 0, 0, 0, 0, 0}, + {96, 72, 40, 12, 1, 0, 0}, + {112, 98, 75, 43, 15, 1, 0}, + {120, 112, 98, 76, 45, 16, 2} }; + + /* + * Update cpu_load for any missed ticks, due to tickless idle. The backlog + * would be when CPU is idle and so we just decay the old load without + * adding any new load. + */ + static unsigned long + decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) + { + int j = 0; + + if (!missed_updates) + return load; + + if (missed_updates >= degrade_zero_ticks[idx]) + return 0; + + if (idx == 1) + return load >> missed_updates; + + while (missed_updates) { + if (missed_updates % 2) + load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; + + missed_updates >>= 1; + j++; + } + return load; + } + + /* + * Update rq->cpu_load[] statistics. This function is usually called every + * scheduler tick (TICK_NSEC). With tickless idle this will not be called + * every tick. We fix it up based on jiffies. + */ + void update_cpu_load(struct rq *this_rq) + { + unsigned long this_load = this_rq->load.weight; + unsigned long curr_jiffies = jiffies; + unsigned long pending_updates; + int i, scale; + + this_rq->nr_load_updates++; + + /* Avoid repeated calls on same jiffy, when moving in and out of idle */ + if (curr_jiffies == this_rq->last_load_update_tick) + return; + + pending_updates = curr_jiffies - this_rq->last_load_update_tick; + this_rq->last_load_update_tick = curr_jiffies; + + /* Update our load: */ + this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ + for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { + unsigned long old_load, new_load; + + /* scale is effectively 1 << i now, and >> i divides by scale */ + + old_load = this_rq->cpu_load[i]; + old_load = decay_load_missed(old_load, pending_updates - 1, i); + new_load = this_load; + /* + * Round up the averaging division if load is increasing. This + * prevents us from getting stuck on 9 if the load is 10, for + * example. + */ + if (new_load > old_load) + new_load += scale - 1; + + this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; + } + + sched_avg_update(this_rq); + } + + static void update_cpu_load_active(struct rq *this_rq) + { + update_cpu_load(this_rq); + + calc_load_account_active(this_rq); + } + + #ifdef CONFIG_SMP + + /* + * sched_exec - execve() is a valuable balancing opportunity, because at + * this point the task has the smallest effective memory and cache footprint. + */ + void sched_exec(void) + { + struct task_struct *p = current; + unsigned long flags; + int dest_cpu; + + raw_spin_lock_irqsave(&p->pi_lock, flags); + dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); + if (dest_cpu == smp_processor_id()) + goto unlock; + + if (likely(cpu_active(dest_cpu))) { + struct migration_arg arg = { p, dest_cpu }; + + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); + return; + } + unlock: + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + } + + #endif + + DEFINE_PER_CPU(struct kernel_stat, kstat); + DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); + + EXPORT_PER_CPU_SYMBOL(kstat); + EXPORT_PER_CPU_SYMBOL(kernel_cpustat); + + /* + * Return any ns on the sched_clock that have not yet been accounted in + * @p in case that task is currently running. + * + * Called with task_rq_lock() held on @rq. + */ + static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) + { + u64 ns = 0; + + if (task_current(rq, p)) { + update_rq_clock(rq); + ns = rq->clock_task - p->se.exec_start; + if ((s64)ns < 0) + ns = 0; + } + + return ns; + } + + unsigned long long task_delta_exec(struct task_struct *p) + { + unsigned long flags; + struct rq *rq; + u64 ns = 0; + + rq = task_rq_lock(p, &flags); + ns = do_task_delta_exec(p, rq); + task_rq_unlock(rq, p, &flags); + + return ns; + } + + /* + * Return accounted runtime for the task. + * In case the task is currently running, return the runtime plus current's + * pending runtime that have not been accounted yet. + */ + unsigned long long task_sched_runtime(struct task_struct *p) + { + unsigned long flags; + struct rq *rq; + u64 ns = 0; + + rq = task_rq_lock(p, &flags); + ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); + task_rq_unlock(rq, p, &flags); + + return ns; + } + + #ifdef CONFIG_CGROUP_CPUACCT + struct cgroup_subsys cpuacct_subsys; + struct cpuacct root_cpuacct; + #endif + + static inline void task_group_account_field(struct task_struct *p, int index, + u64 tmp) + { + #ifdef CONFIG_CGROUP_CPUACCT + struct kernel_cpustat *kcpustat; + struct cpuacct *ca; + #endif + /* + * Since all updates are sure to touch the root cgroup, we + * get ourselves ahead and touch it first. If the root cgroup + * is the only cgroup, then nothing else should be necessary. + * + */ + __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; + + #ifdef CONFIG_CGROUP_CPUACCT + if (unlikely(!cpuacct_subsys.active)) + return; + + rcu_read_lock(); + ca = task_ca(p); + while (ca && (ca != &root_cpuacct)) { + kcpustat = this_cpu_ptr(ca->cpustat); + kcpustat->cpustat[index] += tmp; + ca = parent_ca(ca); + } + rcu_read_unlock(); + #endif + } + + + /* + * Account user cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @cputime: the cpu time spent in user space since the last update + * @cputime_scaled: cputime scaled by cpu frequency + */ + void account_user_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) + { + int index; + + /* Add user time to process. */ - p->utime = cputime_add(p->utime, cputime); - p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); ++ p->utime += cputime; ++ p->utimescaled += cputime_scaled; + account_group_user_time(p, cputime); + + index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; + + /* Add user time to cpustat. */ - task_group_account_field(p, index, cputime); ++ task_group_account_field(p, index, (__force u64) cputime); + + /* Account for user time used */ + acct_update_integrals(p); + } + + /* + * Account guest cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @cputime: the cpu time spent in virtual machine since the last update + * @cputime_scaled: cputime scaled by cpu frequency + */ + static void account_guest_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) + { - u64 tmp; + u64 *cpustat = kcpustat_this_cpu->cpustat; + - tmp = cputime_to_cputime64(cputime); - + /* Add guest time to process. */ - p->utime = cputime_add(p->utime, cputime); - p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); ++ p->utime += cputime; ++ p->utimescaled += cputime_scaled; + account_group_user_time(p, cputime); - p->gtime = cputime_add(p->gtime, cputime); ++ p->gtime += cputime; + + /* Add guest time to cpustat. */ + if (TASK_NICE(p) > 0) { - cpustat[CPUTIME_NICE] += tmp; - cpustat[CPUTIME_GUEST_NICE] += tmp; ++ cpustat[CPUTIME_NICE] += (__force u64) cputime; ++ cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; + } else { - cpustat[CPUTIME_USER] += tmp; - cpustat[CPUTIME_GUEST] += tmp; ++ cpustat[CPUTIME_USER] += (__force u64) cputime; ++ cpustat[CPUTIME_GUEST] += (__force u64) cputime; + } + } + + /* + * Account system cpu time to a process and desired cpustat field + * @p: the process that the cpu time gets accounted to + * @cputime: the cpu time spent in kernel space since the last update + * @cputime_scaled: cputime scaled by cpu frequency + * @target_cputime64: pointer to cpustat field that has to be updated + */ + static inline + void __account_system_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled, int index) + { + /* Add system time to process. */ - p->stime = cputime_add(p->stime, cputime); - p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); ++ p->stime += cputime; ++ p->stimescaled += cputime_scaled; + account_group_system_time(p, cputime); + + /* Add system time to cpustat. */ - task_group_account_field(p, index, cputime); ++ task_group_account_field(p, index, (__force u64) cputime); + + /* Account for system time used */ + acct_update_integrals(p); + } + + /* + * Account system cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @hardirq_offset: the offset to subtract from hardirq_count() + * @cputime: the cpu time spent in kernel space since the last update + * @cputime_scaled: cputime scaled by cpu frequency + */ + void account_system_time(struct task_struct *p, int hardirq_offset, + cputime_t cputime, cputime_t cputime_scaled) + { + int index; + + if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { + account_guest_time(p, cputime, cputime_scaled); + return; + } + + if (hardirq_count() - hardirq_offset) + index = CPUTIME_IRQ; + else if (in_serving_softirq()) + index = CPUTIME_SOFTIRQ; + else + index = CPUTIME_SYSTEM; + + __account_system_time(p, cputime, cputime_scaled, index); + } + + /* + * Account for involuntary wait time. + * @cputime: the cpu time spent in involuntary wait + */ + void account_steal_time(cputime_t cputime) + { + u64 *cpustat = kcpustat_this_cpu->cpustat; - u64 cputime64 = cputime_to_cputime64(cputime); + - cpustat[CPUTIME_STEAL] += cputime64; ++ cpustat[CPUTIME_STEAL] += (__force u64) cputime; + } + + /* + * Account for idle time. + * @cputime: the cpu time spent in idle wait + */ + void account_idle_time(cputime_t cputime) + { + u64 *cpustat = kcpustat_this_cpu->cpustat; - u64 cputime64 = cputime_to_cputime64(cputime); + struct rq *rq = this_rq(); + + if (atomic_read(&rq->nr_iowait) > 0) - cpustat[CPUTIME_IOWAIT] += cputime64; ++ cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; + else - cpustat[CPUTIME_IDLE] += cputime64; ++ cpustat[CPUTIME_IDLE] += (__force u64) cputime; + } + + static __always_inline bool steal_account_process_tick(void) + { + #ifdef CONFIG_PARAVIRT + if (static_branch(¶virt_steal_enabled)) { + u64 steal, st = 0; + + steal = paravirt_steal_clock(smp_processor_id()); + steal -= this_rq()->prev_steal_time; + + st = steal_ticks(steal); + this_rq()->prev_steal_time += st * TICK_NSEC; + + account_steal_time(st); + return st; + } + #endif + return false; + } + + #ifndef CONFIG_VIRT_CPU_ACCOUNTING + + #ifdef CONFIG_IRQ_TIME_ACCOUNTING + /* + * Account a tick to a process and cpustat + * @p: the process that the cpu time gets accounted to + * @user_tick: is the tick from userspace + * @rq: the pointer to rq + * + * Tick demultiplexing follows the order + * - pending hardirq update + * - pending softirq update + * - user_time + * - idle_time + * - system time + * - check for guest_time + * - else account as system_time + * + * Check for hardirq is done both for system and user time as there is + * no timer going off while we are on hardirq and hence we may never get an + * opportunity to update it solely in system time. + * p->stime and friends are only updated on system time and not on irq + * softirq as those do not count in task exec_runtime any more. + */ + static void irqtime_account_process_tick(struct task_struct *p, int user_tick, + struct rq *rq) + { + cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - u64 tmp = cputime_to_cputime64(cputime_one_jiffy); + u64 *cpustat = kcpustat_this_cpu->cpustat; + + if (steal_account_process_tick()) + return; + + if (irqtime_account_hi_update()) { - cpustat[CPUTIME_IRQ] += tmp; ++ cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; + } else if (irqtime_account_si_update()) { - cpustat[CPUTIME_SOFTIRQ] += tmp; ++ cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; + } else if (this_cpu_ksoftirqd() == p) { + /* + * ksoftirqd time do not get accounted in cpu_softirq_time. + * So, we have to handle it separately here. + * Also, p->stime needs to be updated for ksoftirqd. + */ + __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, + CPUTIME_SOFTIRQ); + } else if (user_tick) { + account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); + } else if (p == rq->idle) { + account_idle_time(cputime_one_jiffy); + } else if (p->flags & PF_VCPU) { /* System time or guest time */ + account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); + } else { + __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, + CPUTIME_SYSTEM); + } + } + + static void irqtime_account_idle_ticks(int ticks) + { + int i; + struct rq *rq = this_rq(); + + for (i = 0; i < ticks; i++) + irqtime_account_process_tick(current, 0, rq); + } + #else /* CONFIG_IRQ_TIME_ACCOUNTING */ + static void irqtime_account_idle_ticks(int ticks) {} + static void irqtime_account_process_tick(struct task_struct *p, int user_tick, + struct rq *rq) {} + #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + + /* + * Account a single tick of cpu time. + * @p: the process that the cpu time gets accounted to + * @user_tick: indicates if the tick is a user or a system tick + */ + void account_process_tick(struct task_struct *p, int user_tick) + { + cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); + struct rq *rq = this_rq(); + + if (sched_clock_irqtime) { + irqtime_account_process_tick(p, user_tick, rq); + return; + } + + if (steal_account_process_tick()) + return; + + if (user_tick) + account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); + else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) + account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, + one_jiffy_scaled); + else + account_idle_time(cputime_one_jiffy); + } + + /* + * Account multiple ticks of steal time. + * @p: the process from which the cpu time has been stolen + * @ticks: number of stolen ticks + */ + void account_steal_ticks(unsigned long ticks) + { + account_steal_time(jiffies_to_cputime(ticks)); + } + + /* + * Account multiple ticks of idle time. + * @ticks: number of stolen ticks + */ + void account_idle_ticks(unsigned long ticks) + { + + if (sched_clock_irqtime) { + irqtime_account_idle_ticks(ticks); + return; + } + + account_idle_time(jiffies_to_cputime(ticks)); + } + + #endif + + /* + * Use precise platform statistics if available: + */ + #ifdef CONFIG_VIRT_CPU_ACCOUNTING + void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) + { + *ut = p->utime; + *st = p->stime; + } + + void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) + { + struct task_cputime cputime; + + thread_group_cputime(p, &cputime); + + *ut = cputime.utime; + *st = cputime.stime; + } + #else + + #ifndef nsecs_to_cputime + # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) + #endif + + void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) + { - cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); ++ cputime_t rtime, utime = p->utime, total = utime + p->stime; + + /* + * Use CFS's precise accounting: + */ + rtime = nsecs_to_cputime(p->se.sum_exec_runtime); + + if (total) { - u64 temp = rtime; ++ u64 temp = (__force u64) rtime; + - temp *= utime; - do_div(temp, total); - utime = (cputime_t)temp; ++ temp *= (__force u64) utime; ++ do_div(temp, (__force u32) total); ++ utime = (__force cputime_t) temp; + } else + utime = rtime; + + /* + * Compare with previous values, to keep monotonicity: + */ + p->prev_utime = max(p->prev_utime, utime); - p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); ++ p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); + + *ut = p->prev_utime; + *st = p->prev_stime; + } + + /* + * Must be called with siglock held. + */ + void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) + { + struct signal_struct *sig = p->signal; + struct task_cputime cputime; + cputime_t rtime, utime, total; + + thread_group_cputime(p, &cputime); + - total = cputime_add(cputime.utime, cputime.stime); ++ total = cputime.utime + cputime.stime; + rtime = nsecs_to_cputime(cputime.sum_exec_runtime); + + if (total) { - u64 temp = rtime; ++ u64 temp = (__force u64) rtime; + - temp *= cputime.utime; - do_div(temp, total); - utime = (cputime_t)temp; ++ temp *= (__force u64) cputime.utime; ++ do_div(temp, (__force u32) total); ++ utime = (__force cputime_t) temp; + } else + utime = rtime; + + sig->prev_utime = max(sig->prev_utime, utime); - sig->prev_stime = max(sig->prev_stime, - cputime_sub(rtime, sig->prev_utime)); ++ sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); + + *ut = sig->prev_utime; + *st = sig->prev_stime; + } + #endif + + /* + * This function gets called by the timer code, with HZ frequency. + * We call it with interrupts disabled. + */ + void scheduler_tick(void) + { + int cpu = smp_processor_id(); + struct rq *rq = cpu_rq(cpu); + struct task_struct *curr = rq->curr; + + sched_clock_tick(); + + raw_spin_lock(&rq->lock); + update_rq_clock(rq); + update_cpu_load_active(rq); + curr->sched_class->task_tick(rq, curr, 0); + raw_spin_unlock(&rq->lock); + + perf_event_task_tick(); + + #ifdef CONFIG_SMP + rq->idle_balance = idle_cpu(cpu); + trigger_load_balance(rq, cpu); + #endif + } + + notrace unsigned long get_parent_ip(unsigned long addr) + { + if (in_lock_functions(addr)) { + addr = CALLER_ADDR2; + if (in_lock_functions(addr)) + addr = CALLER_ADDR3; + } + return addr; + } + + #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ + defined(CONFIG_PREEMPT_TRACER)) + + void __kprobes add_preempt_count(int val) + { + #ifdef CONFIG_DEBUG_PREEMPT + /* + * Underflow? + */ + if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) + return; + #endif + preempt_count() += val; + #ifdef CONFIG_DEBUG_PREEMPT + /* + * Spinlock count overflowing soon? + */ + DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= + PREEMPT_MASK - 10); + #endif + if (preempt_count() == val) + trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); + } + EXPORT_SYMBOL(add_preempt_count); + + void __kprobes sub_preempt_count(int val) + { + #ifdef CONFIG_DEBUG_PREEMPT + /* + * Underflow? + */ + if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) + return; + /* + * Is the spinlock portion underflowing? + */ + if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && + !(preempt_count() & PREEMPT_MASK))) + return; + #endif + + if (preempt_count() == val) + trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); + preempt_count() -= val; + } + EXPORT_SYMBOL(sub_preempt_count); + + #endif + + /* + * Print scheduling while atomic bug: + */ + static noinline void __schedule_bug(struct task_struct *prev) + { + struct pt_regs *regs = get_irq_regs(); + + printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", + prev->comm, prev->pid, preempt_count()); + + debug_show_held_locks(prev); + print_modules(); + if (irqs_disabled()) + print_irqtrace_events(prev); + + if (regs) + show_regs(regs); + else + dump_stack(); + } + + /* + * Various schedule()-time debugging checks and statistics: + */ + static inline void schedule_debug(struct task_struct *prev) + { + /* + * Test if we are atomic. Since do_exit() needs to call into + * schedule() atomically, we ignore that path for now. + * Otherwise, whine if we are scheduling when we should not be. + */ + if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) + __schedule_bug(prev); + rcu_sleep_check(); + + profile_hit(SCHED_PROFILING, __builtin_return_address(0)); + + schedstat_inc(this_rq(), sched_count); + } + + static void put_prev_task(struct rq *rq, struct task_struct *prev) + { + if (prev->on_rq || rq->skip_clock_update < 0) + update_rq_clock(rq); + prev->sched_class->put_prev_task(rq, prev); + } + + /* + * Pick up the highest-prio task: + */ + static inline struct task_struct * + pick_next_task(struct rq *rq) + { + const struct sched_class *class; + struct task_struct *p; + + /* + * Optimization: we know that if all tasks are in + * the fair class we can call that function directly: + */ + if (likely(rq->nr_running == rq->cfs.h_nr_running)) { + p = fair_sched_class.pick_next_task(rq); + if (likely(p)) + return p; + } + + for_each_class(class) { + p = class->pick_next_task(rq); + if (p) + return p; + } + + BUG(); /* the idle class will always have a runnable task */ + } + + /* + * __schedule() is the main scheduler function. + */ + static void __sched __schedule(void) + { + struct task_struct *prev, *next; + unsigned long *switch_count; + struct rq *rq; + int cpu; + + need_resched: + preempt_disable(); + cpu = smp_processor_id(); + rq = cpu_rq(cpu); + rcu_note_context_switch(cpu); + prev = rq->curr; + + schedule_debug(prev); + + if (sched_feat(HRTICK)) + hrtick_clear(rq); + + raw_spin_lock_irq(&rq->lock); + + switch_count = &prev->nivcsw; + if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { + if (unlikely(signal_pending_state(prev->state, prev))) { + prev->state = TASK_RUNNING; + } else { + deactivate_task(rq, prev, DEQUEUE_SLEEP); + prev->on_rq = 0; + + /* + * If a worker went to sleep, notify and ask workqueue + * whether it wants to wake up a task to maintain + * concurrency. + */ + if (prev->flags & PF_WQ_WORKER) { + struct task_struct *to_wakeup; + + to_wakeup = wq_worker_sleeping(prev, cpu); + if (to_wakeup) + try_to_wake_up_local(to_wakeup); + } + } + switch_count = &prev->nvcsw; + } + + pre_schedule(rq, prev); + + if (unlikely(!rq->nr_running)) + idle_balance(cpu, rq); + + put_prev_task(rq, prev); + next = pick_next_task(rq); + clear_tsk_need_resched(prev); + rq->skip_clock_update = 0; + + if (likely(prev != next)) { + rq->nr_switches++; + rq->curr = next; + ++*switch_count; + + context_switch(rq, prev, next); /* unlocks the rq */ + /* + * The context switch have flipped the stack from under us + * and restored the local variables which were saved when + * this task called schedule() in the past. prev == current + * is still correct, but it can be moved to another cpu/rq. + */ + cpu = smp_processor_id(); + rq = cpu_rq(cpu); + } else + raw_spin_unlock_irq(&rq->lock); + + post_schedule(rq); + + preempt_enable_no_resched(); + if (need_resched()) + goto need_resched; + } + + static inline void sched_submit_work(struct task_struct *tsk) + { + if (!tsk->state) + return; + /* + * If we are going to sleep and we have plugged IO queued, + * make sure to submit it to avoid deadlocks. + */ + if (blk_needs_flush_plug(tsk)) + blk_schedule_flush_plug(tsk); + } + + asmlinkage void __sched schedule(void) + { + struct task_struct *tsk = current; + + sched_submit_work(tsk); + __schedule(); + } + EXPORT_SYMBOL(schedule); + + #ifdef CONFIG_MUTEX_SPIN_ON_OWNER + + static inline bool owner_running(struct mutex *lock, struct task_struct *owner) + { + if (lock->owner != owner) + return false; + + /* + * Ensure we emit the owner->on_cpu, dereference _after_ checking + * lock->owner still matches owner, if that fails, owner might + * point to free()d memory, if it still matches, the rcu_read_lock() + * ensures the memory stays valid. + */ + barrier(); + + return owner->on_cpu; + } + + /* + * Look out! "owner" is an entirely speculative pointer + * access and not reliable. + */ + int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) + { + if (!sched_feat(OWNER_SPIN)) + return 0; + + rcu_read_lock(); + while (owner_running(lock, owner)) { + if (need_resched()) + break; + + arch_mutex_cpu_relax(); + } + rcu_read_unlock(); + + /* + * We break out the loop above on need_resched() and when the + * owner changed, which is a sign for heavy contention. Return + * success only when lock->owner is NULL. + */ + return lock->owner == NULL; + } + #endif + + #ifdef CONFIG_PREEMPT + /* + * this is the entry point to schedule() from in-kernel preemption + * off of preempt_enable. Kernel preemptions off return from interrupt + * occur there and call schedule directly. + */ + asmlinkage void __sched notrace preempt_schedule(void) + { + struct thread_info *ti = current_thread_info(); + + /* + * If there is a non-zero preempt_count or interrupts are disabled, + * we do not want to preempt the current task. Just return.. + */ + if (likely(ti->preempt_count || irqs_disabled())) + return; + + do { + add_preempt_count_notrace(PREEMPT_ACTIVE); + __schedule(); + sub_preempt_count_notrace(PREEMPT_ACTIVE); + + /* + * Check again in case we missed a preemption opportunity + * between schedule and now. + */ + barrier(); + } while (need_resched()); + } + EXPORT_SYMBOL(preempt_schedule); + + /* + * this is the entry point to schedule() from kernel preemption + * off of irq context. + * Note, that this is called and return with irqs disabled. This will + * protect us against recursive calling from irq. + */ + asmlinkage void __sched preempt_schedule_irq(void) + { + struct thread_info *ti = current_thread_info(); + + /* Catch callers which need to be fixed */ + BUG_ON(ti->preempt_count || !irqs_disabled()); + + do { + add_preempt_count(PREEMPT_ACTIVE); + local_irq_enable(); + __schedule(); + local_irq_disable(); + sub_preempt_count(PREEMPT_ACTIVE); + + /* + * Check again in case we missed a preemption opportunity + * between schedule and now. + */ + barrier(); + } while (need_resched()); + } + + #endif /* CONFIG_PREEMPT */ + + int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, + void *key) + { + return try_to_wake_up(curr->private, mode, wake_flags); + } + EXPORT_SYMBOL(default_wake_function); + + /* + * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just + * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve + * number) then we wake all the non-exclusive tasks and one exclusive task. + * + * There are circumstances in which we can try to wake a task which has already + * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns + * zero in this (rare) case, and we handle it by continuing to scan the queue. + */ + static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, int wake_flags, void *key) + { + wait_queue_t *curr, *next; + + list_for_each_entry_safe(curr, next, &q->task_list, task_list) { + unsigned flags = curr->flags; + + if (curr->func(curr, mode, wake_flags, key) && + (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) + break; + } + } + + /** + * __wake_up - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: is directly passed to the wakeup function + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ + void __wake_up(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, void *key) + { + unsigned long flags; + + spin_lock_irqsave(&q->lock, flags); + __wake_up_common(q, mode, nr_exclusive, 0, key); + spin_unlock_irqrestore(&q->lock, flags); + } + EXPORT_SYMBOL(__wake_up); + + /* + * Same as __wake_up but called with the spinlock in wait_queue_head_t held. + */ + void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) + { + __wake_up_common(q, mode, 1, 0, NULL); + } + EXPORT_SYMBOL_GPL(__wake_up_locked); + + void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) + { + __wake_up_common(q, mode, 1, 0, key); + } + EXPORT_SYMBOL_GPL(__wake_up_locked_key); + + /** + * __wake_up_sync_key - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: opaque value to be passed to wakeup targets + * + * The sync wakeup differs that the waker knows that it will schedule + * away soon, so while the target thread will be woken up, it will not + * be migrated to another CPU - ie. the two threads are 'synchronized' + * with each other. This can prevent needless bouncing between CPUs. + * + * On UP it can prevent extra preemption. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ + void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, void *key) + { + unsigned long flags; + int wake_flags = WF_SYNC; + + if (unlikely(!q)) + return; + + if (unlikely(!nr_exclusive)) + wake_flags = 0; + + spin_lock_irqsave(&q->lock, flags); + __wake_up_common(q, mode, nr_exclusive, wake_flags, key); + spin_unlock_irqrestore(&q->lock, flags); + } + EXPORT_SYMBOL_GPL(__wake_up_sync_key); + + /* + * __wake_up_sync - see __wake_up_sync_key() + */ + void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) + { + __wake_up_sync_key(q, mode, nr_exclusive, NULL); + } + EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ + + /** + * complete: - signals a single thread waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up a single thread waiting on this completion. Threads will be + * awakened in the same order in which they were queued. + * + * See also complete_all(), wait_for_completion() and related routines. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ + void complete(struct completion *x) + { + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done++; + __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); + spin_unlock_irqrestore(&x->wait.lock, flags); + } + EXPORT_SYMBOL(complete); + + /** + * complete_all: - signals all threads waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up all threads waiting on this particular completion event. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ + void complete_all(struct completion *x) + { + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done += UINT_MAX/2; + __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); + spin_unlock_irqrestore(&x->wait.lock, flags); + } + EXPORT_SYMBOL(complete_all); + + static inline long __sched + do_wait_for_common(struct completion *x, long timeout, int state) + { + if (!x->done) { + DECLARE_WAITQUEUE(wait, current); + + __add_wait_queue_tail_exclusive(&x->wait, &wait); + do { + if (signal_pending_state(state, current)) { + timeout = -ERESTARTSYS; + break; + } + __set_current_state(state); + spin_unlock_irq(&x->wait.lock); + timeout = schedule_timeout(timeout); + spin_lock_irq(&x->wait.lock); + } while (!x->done && timeout); + __remove_wait_queue(&x->wait, &wait); + if (!x->done) + return timeout; + } + x->done--; + return timeout ?: 1; + } + + static long __sched + wait_for_common(struct completion *x, long timeout, int state) + { + might_sleep(); + + spin_lock_irq(&x->wait.lock); + timeout = do_wait_for_common(x, timeout, state); + spin_unlock_irq(&x->wait.lock); + return timeout; + } + + /** + * wait_for_completion: - waits for completion of a task + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It is NOT + * interruptible and there is no timeout. + * + * See also similar routines (i.e. wait_for_completion_timeout()) with timeout + * and interrupt capability. Also see complete(). + */ + void __sched wait_for_completion(struct completion *x) + { + wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); + } + EXPORT_SYMBOL(wait_for_completion); + + /** + * wait_for_completion_timeout: - waits for completion of a task (w/timeout) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. The timeout is in jiffies. It is not + * interruptible. + * + * The return value is 0 if timed out, and positive (at least 1, or number of + * jiffies left till timeout) if completed. + */ + unsigned long __sched + wait_for_completion_timeout(struct completion *x, unsigned long timeout) + { + return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); + } + EXPORT_SYMBOL(wait_for_completion_timeout); + + /** + * wait_for_completion_interruptible: - waits for completion of a task (w/intr) + * @x: holds the state of this particular completion + * + * This waits for completion of a specific task to be signaled. It is + * interruptible. + * + * The return value is -ERESTARTSYS if interrupted, 0 if completed. + */ + int __sched wait_for_completion_interruptible(struct completion *x) + { + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); + if (t == -ERESTARTSYS) + return t; + return 0; + } + EXPORT_SYMBOL(wait_for_completion_interruptible); + + /** + * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. It is interruptible. The timeout is in jiffies. + * + * The return value is -ERESTARTSYS if interrupted, 0 if timed out, + * positive (at least 1, or number of jiffies left till timeout) if completed. + */ + long __sched + wait_for_completion_interruptible_timeout(struct completion *x, + unsigned long timeout) + { + return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); + } + EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); + + /** + * wait_for_completion_killable: - waits for completion of a task (killable) + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It can be + * interrupted by a kill signal. + * + * The return value is -ERESTARTSYS if interrupted, 0 if completed. + */ + int __sched wait_for_completion_killable(struct completion *x) + { + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); + if (t == -ERESTARTSYS) + return t; + return 0; + } + EXPORT_SYMBOL(wait_for_completion_killable); + + /** + * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be + * signaled or for a specified timeout to expire. It can be + * interrupted by a kill signal. The timeout is in jiffies. + * + * The return value is -ERESTARTSYS if interrupted, 0 if timed out, + * positive (at least 1, or number of jiffies left till timeout) if completed. + */ + long __sched + wait_for_completion_killable_timeout(struct completion *x, + unsigned long timeout) + { + return wait_for_common(x, timeout, TASK_KILLABLE); + } + EXPORT_SYMBOL(wait_for_completion_killable_timeout); + + /** + * try_wait_for_completion - try to decrement a completion without blocking + * @x: completion structure + * + * Returns: 0 if a decrement cannot be done without blocking + * 1 if a decrement succeeded. + * + * If a completion is being used as a counting completion, + * attempt to decrement the counter without blocking. This + * enables us to avoid waiting if the resource the completion + * is protecting is not available. + */ + bool try_wait_for_completion(struct completion *x) + { + unsigned long flags; + int ret = 1; + + spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; + else + x->done--; + spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; + } + EXPORT_SYMBOL(try_wait_for_completion); + + /** + * completion_done - Test to see if a completion has any waiters + * @x: completion structure + * + * Returns: 0 if there are waiters (wait_for_completion() in progress) + * 1 if there are no waiters. + * + */ + bool completion_done(struct completion *x) + { + unsigned long flags; + int ret = 1; + + spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; + spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; + } + EXPORT_SYMBOL(completion_done); + + static long __sched + sleep_on_common(wait_queue_head_t *q, int state, long timeout) + { + unsigned long flags; + wait_queue_t wait; + + init_waitqueue_entry(&wait, current); + + __set_current_state(state); + + spin_lock_irqsave(&q->lock, flags); + __add_wait_queue(q, &wait); + spin_unlock(&q->lock); + timeout = schedule_timeout(timeout); + spin_lock_irq(&q->lock); + __remove_wait_queue(q, &wait); + spin_unlock_irqrestore(&q->lock, flags); + + return timeout; + } + + void __sched interruptible_sleep_on(wait_queue_head_t *q) + { + sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); + } + EXPORT_SYMBOL(interruptible_sleep_on); + + long __sched + interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) + { + return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); + } + EXPORT_SYMBOL(interruptible_sleep_on_timeout); + + void __sched sleep_on(wait_queue_head_t *q) + { + sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); + } + EXPORT_SYMBOL(sleep_on); + + long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) + { + return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); + } + EXPORT_SYMBOL(sleep_on_timeout); + + #ifdef CONFIG_RT_MUTEXES + + /* + * rt_mutex_setprio - set the current priority of a task + * @p: task + * @prio: prio value (kernel-internal form) + * + * This function changes the 'effective' priority of a task. It does + * not touch ->normal_prio like __setscheduler(). + * + * Used by the rt_mutex code to implement priority inheritance logic. + */ + void rt_mutex_setprio(struct task_struct *p, int prio) + { + int oldprio, on_rq, running; + struct rq *rq; + const struct sched_class *prev_class; + + BUG_ON(prio < 0 || prio > MAX_PRIO); + + rq = __task_rq_lock(p); + + trace_sched_pi_setprio(p, prio); + oldprio = p->prio; + prev_class = p->sched_class; + on_rq = p->on_rq; + running = task_current(rq, p); + if (on_rq) + dequeue_task(rq, p, 0); + if (running) + p->sched_class->put_prev_task(rq, p); + + if (rt_prio(prio)) + p->sched_class = &rt_sched_class; + else + p->sched_class = &fair_sched_class; + + p->prio = prio; + + if (running) + p->sched_class->set_curr_task(rq); + if (on_rq) + enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); + + check_class_changed(rq, p, prev_class, oldprio); + __task_rq_unlock(rq); + } + + #endif + + void set_user_nice(struct task_struct *p, long nice) + { + int old_prio, delta, on_rq; + unsigned long flags; + struct rq *rq; + + if (TASK_NICE(p) == nice || nice < -20 || nice > 19) + return; + /* + * We have to be careful, if called from sys_setpriority(), + * the task might be in the middle of scheduling on another CPU. + */ + rq = task_rq_lock(p, &flags); + /* + * The RT priorities are set via sched_setscheduler(), but we still + * allow the 'normal' nice value to be set - but as expected + * it wont have any effect on scheduling until the task is + * SCHED_FIFO/SCHED_RR: + */ + if (task_has_rt_policy(p)) { + p->static_prio = NICE_TO_PRIO(nice); + goto out_unlock; + } + on_rq = p->on_rq; + if (on_rq) + dequeue_task(rq, p, 0); + + p->static_prio = NICE_TO_PRIO(nice); + set_load_weight(p); + old_prio = p->prio; + p->prio = effective_prio(p); + delta = p->prio - old_prio; + + if (on_rq) { + enqueue_task(rq, p, 0); + /* + * If the task increased its priority or is running and + * lowered its priority, then reschedule its CPU: + */ + if (delta < 0 || (delta > 0 && task_running(rq, p))) + resched_task(rq->curr); + } + out_unlock: + task_rq_unlock(rq, p, &flags); + } + EXPORT_SYMBOL(set_user_nice); + + /* + * can_nice - check if a task can reduce its nice value + * @p: task + * @nice: nice value + */ + int can_nice(const struct task_struct *p, const int nice) + { + /* convert nice value [19,-20] to rlimit style value [1,40] */ + int nice_rlim = 20 - nice; + + return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || + capable(CAP_SYS_NICE)); + } + + #ifdef __ARCH_WANT_SYS_NICE + + /* + * sys_nice - change the priority of the current process. + * @increment: priority increment + * + * sys_setpriority is a more generic, but much slower function that + * does similar things. + */ + SYSCALL_DEFINE1(nice, int, increment) + { + long nice, retval; + + /* + * Setpriority might change our priority at the same moment. + * We don't have to worry. Conceptually one call occurs first + * and we have a single winner. + */ + if (increment < -40) + increment = -40; + if (increment > 40) + increment = 40; + + nice = TASK_NICE(current) + increment; + if (nice < -20) + nice = -20; + if (nice > 19) + nice = 19; + + if (increment < 0 && !can_nice(current, nice)) + return -EPERM; + + retval = security_task_setnice(current, nice); + if (retval) + return retval; + + set_user_nice(current, nice); + return 0; + } + + #endif + + /** + * task_prio - return the priority value of a given task. + * @p: the task in question. + * + * This is the priority value as seen by users in /proc. + * RT tasks are offset by -200. Normal tasks are centered + * around 0, value goes from -16 to +15. + */ + int task_prio(const struct task_struct *p) + { + return p->prio - MAX_RT_PRIO; + } + + /** + * task_nice - return the nice value of a given task. + * @p: the task in question. + */ + int task_nice(const struct task_struct *p) + { + return TASK_NICE(p); + } + EXPORT_SYMBOL(task_nice); + + /** + * idle_cpu - is a given cpu idle currently? + * @cpu: the processor in question. + */ + int idle_cpu(int cpu) + { + struct rq *rq = cpu_rq(cpu); + + if (rq->curr != rq->idle) + return 0; + + if (rq->nr_running) + return 0; + + #ifdef CONFIG_SMP + if (!llist_empty(&rq->wake_list)) + return 0; + #endif + + return 1; + } + + /** + * idle_task - return the idle task for a given cpu. + * @cpu: the processor in question. + */ + struct task_struct *idle_task(int cpu) + { + return cpu_rq(cpu)->idle; + } + + /** + * find_process_by_pid - find a process with a matching PID value. + * @pid: the pid in question. + */ + static struct task_struct *find_process_by_pid(pid_t pid) + { + return pid ? find_task_by_vpid(pid) : current; + } + + /* Actually do priority change: must hold rq lock. */ + static void + __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) + { + p->policy = policy; + p->rt_priority = prio; + p->normal_prio = normal_prio(p); + /* we are holding p->pi_lock already */ + p->prio = rt_mutex_getprio(p); + if (rt_prio(p->prio)) + p->sched_class = &rt_sched_class; + else + p->sched_class = &fair_sched_class; + set_load_weight(p); + } + + /* + * check the target process has a UID that matches the current process's + */ + static bool check_same_owner(struct task_struct *p) + { + const struct cred *cred = current_cred(), *pcred; + bool match; + + rcu_read_lock(); + pcred = __task_cred(p); + if (cred->user->user_ns == pcred->user->user_ns) + match = (cred->euid == pcred->euid || + cred->euid == pcred->uid); + else + match = false; + rcu_read_unlock(); + return match; + } + + static int __sched_setscheduler(struct task_struct *p, int policy, + const struct sched_param *param, bool user) + { + int retval, oldprio, oldpolicy = -1, on_rq, running; + unsigned long flags; + const struct sched_class *prev_class; + struct rq *rq; + int reset_on_fork; + + /* may grab non-irq protected spin_locks */ + BUG_ON(in_interrupt()); + recheck: + /* double check policy once rq lock held */ + if (policy < 0) { + reset_on_fork = p->sched_reset_on_fork; + policy = oldpolicy = p->policy; + } else { + reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); + policy &= ~SCHED_RESET_ON_FORK; + + if (policy != SCHED_FIFO && policy != SCHED_RR && + policy != SCHED_NORMAL && policy != SCHED_BATCH && + policy != SCHED_IDLE) + return -EINVAL; + } + + /* + * Valid priorities for SCHED_FIFO and SCHED_RR are + * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, + * SCHED_BATCH and SCHED_IDLE is 0. + */ + if (param->sched_priority < 0 || + (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || + (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) + return -EINVAL; + if (rt_policy(policy) != (param->sched_priority != 0)) + return -EINVAL; + + /* + * Allow unprivileged RT tasks to decrease priority: + */ + if (user && !capable(CAP_SYS_NICE)) { + if (rt_policy(policy)) { + unsigned long rlim_rtprio = + task_rlimit(p, RLIMIT_RTPRIO); + + /* can't set/change the rt policy */ + if (policy != p->policy && !rlim_rtprio) + return -EPERM; + + /* can't increase priority */ + if (param->sched_priority > p->rt_priority && + param->sched_priority > rlim_rtprio) + return -EPERM; + } + + /* + * Treat SCHED_IDLE as nice 20. Only allow a switch to + * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. + */ + if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { + if (!can_nice(p, TASK_NICE(p))) + return -EPERM; + } + + /* can't change other user's priorities */ + if (!check_same_owner(p)) + return -EPERM; + + /* Normal users shall not reset the sched_reset_on_fork flag */ + if (p->sched_reset_on_fork && !reset_on_fork) + return -EPERM; + } + + if (user) { + retval = security_task_setscheduler(p); + if (retval) + return retval; + } + + /* + * make sure no PI-waiters arrive (or leave) while we are + * changing the priority of the task: + * + * To be able to change p->policy safely, the appropriate + * runqueue lock must be held. + */ + rq = task_rq_lock(p, &flags); + + /* + * Changing the policy of the stop threads its a very bad idea + */ + if (p == rq->stop) { + task_rq_unlock(rq, p, &flags); + return -EINVAL; + } + + /* + * If not changing anything there's no need to proceed further: + */ + if (unlikely(policy == p->policy && (!rt_policy(policy) || + param->sched_priority == p->rt_priority))) { + + __task_rq_unlock(rq); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + return 0; + } + + #ifdef CONFIG_RT_GROUP_SCHED + if (user) { + /* + * Do not allow realtime tasks into groups that have no runtime + * assigned. + */ + if (rt_bandwidth_enabled() && rt_policy(policy) && + task_group(p)->rt_bandwidth.rt_runtime == 0 && + !task_group_is_autogroup(task_group(p))) { + task_rq_unlock(rq, p, &flags); + return -EPERM; + } + } + #endif + + /* recheck policy now with rq lock held */ + if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { + policy = oldpolicy = -1; + task_rq_unlock(rq, p, &flags); + goto recheck; + } + on_rq = p->on_rq; + running = task_current(rq, p); + if (on_rq) + deactivate_task(rq, p, 0); + if (running) + p->sched_class->put_prev_task(rq, p); + + p->sched_reset_on_fork = reset_on_fork; + + oldprio = p->prio; + prev_class = p->sched_class; + __setscheduler(rq, p, policy, param->sched_priority); + + if (running) + p->sched_class->set_curr_task(rq); + if (on_rq) + activate_task(rq, p, 0); + + check_class_changed(rq, p, prev_class, oldprio); + task_rq_unlock(rq, p, &flags); + + rt_mutex_adjust_pi(p); + + return 0; + } + + /** + * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * NOTE that the task may be already dead. + */ + int sched_setscheduler(struct task_struct *p, int policy, + const struct sched_param *param) + { + return __sched_setscheduler(p, policy, param, true); + } + EXPORT_SYMBOL_GPL(sched_setscheduler); + + /** + * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Just like sched_setscheduler, only don't bother checking if the + * current context has permission. For example, this is needed in + * stop_machine(): we create temporary high priority worker threads, + * but our caller might not have that capability. + */ + int sched_setscheduler_nocheck(struct task_struct *p, int policy, + const struct sched_param *param) + { + return __sched_setscheduler(p, policy, param, false); + } + + static int + do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) + { + struct sched_param lparam; + struct task_struct *p; + int retval; + + if (!param || pid < 0) + return -EINVAL; + if (copy_from_user(&lparam, param, sizeof(struct sched_param))) + return -EFAULT; + + rcu_read_lock(); + retval = -ESRCH; + p = find_process_by_pid(pid); + if (p != NULL) + retval = sched_setscheduler(p, policy, &lparam); + rcu_read_unlock(); + + return retval; + } + + /** + * sys_sched_setscheduler - set/change the scheduler policy and RT priority + * @pid: the pid in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + */ + SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, + struct sched_param __user *, param) + { + /* negative values for policy are not valid */ + if (policy < 0) + return -EINVAL; + + return do_sched_setscheduler(pid, policy, param); + } + + /** + * sys_sched_setparam - set/change the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the new RT priority. + */ + SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) + { + return do_sched_setscheduler(pid, -1, param); + } + + /** + * sys_sched_getscheduler - get the policy (scheduling class) of a thread + * @pid: the pid in question. + */ + SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) + { + struct task_struct *p; + int retval; + + if (pid < 0) + return -EINVAL; + + retval = -ESRCH; + rcu_read_lock(); + p = find_process_by_pid(pid); + if (p) { + retval = security_task_getscheduler(p); + if (!retval) + retval = p->policy + | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); + } + rcu_read_unlock(); + return retval; + } + + /** + * sys_sched_getparam - get the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the RT priority. + */ + SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) + { + struct sched_param lp; + struct task_struct *p; + int retval; + + if (!param || pid < 0) + return -EINVAL; + + rcu_read_lock(); + p = find_process_by_pid(pid); + retval = -ESRCH; + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + lp.sched_priority = p->rt_priority; + rcu_read_unlock(); + + /* + * This one might sleep, we cannot do it with a spinlock held ... + */ + retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; + + return retval; + + out_unlock: + rcu_read_unlock(); + return retval; + } + + long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) + { + cpumask_var_t cpus_allowed, new_mask; + struct task_struct *p; + int retval; + + get_online_cpus(); + rcu_read_lock(); + + p = find_process_by_pid(pid); + if (!p) { + rcu_read_unlock(); + put_online_cpus(); + return -ESRCH; + } + + /* Prevent p going away */ + get_task_struct(p); + rcu_read_unlock(); + + if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_put_task; + } + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_free_cpus_allowed; + } + retval = -EPERM; + if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE)) + goto out_unlock; + + retval = security_task_setscheduler(p); + if (retval) + goto out_unlock; + + cpuset_cpus_allowed(p, cpus_allowed); + cpumask_and(new_mask, in_mask, cpus_allowed); + again: + retval = set_cpus_allowed_ptr(p, new_mask); + + if (!retval) { + cpuset_cpus_allowed(p, cpus_allowed); + if (!cpumask_subset(new_mask, cpus_allowed)) { + /* + * We must have raced with a concurrent cpuset + * update. Just reset the cpus_allowed to the + * cpuset's cpus_allowed + */ + cpumask_copy(new_mask, cpus_allowed); + goto again; + } + } + out_unlock: + free_cpumask_var(new_mask); + out_free_cpus_allowed: + free_cpumask_var(cpus_allowed); + out_put_task: + put_task_struct(p); + put_online_cpus(); + return retval; + } + + static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, + struct cpumask *new_mask) + { + if (len < cpumask_size()) + cpumask_clear(new_mask); + else if (len > cpumask_size()) + len = cpumask_size(); + + return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; + } + + /** + * sys_sched_setaffinity - set the cpu affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to the new cpu mask + */ + SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) + { + cpumask_var_t new_mask; + int retval; + + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) + return -ENOMEM; + + retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); + if (retval == 0) + retval = sched_setaffinity(pid, new_mask); + free_cpumask_var(new_mask); + return retval; + } + + long sched_getaffinity(pid_t pid, struct cpumask *mask) + { + struct task_struct *p; + unsigned long flags; + int retval; + + get_online_cpus(); + rcu_read_lock(); + + retval = -ESRCH; + p = find_process_by_pid(pid); + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + raw_spin_lock_irqsave(&p->pi_lock, flags); + cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + + out_unlock: + rcu_read_unlock(); + put_online_cpus(); + + return retval; + } + + /** + * sys_sched_getaffinity - get the cpu affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to hold the current cpu mask + */ + SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) + { + int ret; + cpumask_var_t mask; + + if ((len * BITS_PER_BYTE) < nr_cpu_ids) + return -EINVAL; + if (len & (sizeof(unsigned long)-1)) + return -EINVAL; + + if (!alloc_cpumask_var(&mask, GFP_KERNEL)) + return -ENOMEM; + + ret = sched_getaffinity(pid, mask); + if (ret == 0) { + size_t retlen = min_t(size_t, len, cpumask_size()); + + if (copy_to_user(user_mask_ptr, mask, retlen)) + ret = -EFAULT; + else + ret = retlen; + } + free_cpumask_var(mask); + + return ret; + } + + /** + * sys_sched_yield - yield the current processor to other threads. + * + * This function yields the current CPU to other tasks. If there are no + * other threads running on this CPU then this function will return. + */ + SYSCALL_DEFINE0(sched_yield) + { + struct rq *rq = this_rq_lock(); + + schedstat_inc(rq, yld_count); + current->sched_class->yield_task(rq); + + /* + * Since we are going to call schedule() anyway, there's + * no need to preempt or enable interrupts: + */ + __release(rq->lock); + spin_release(&rq->lock.dep_map, 1, _THIS_IP_); + do_raw_spin_unlock(&rq->lock); + preempt_enable_no_resched(); + + schedule(); + + return 0; + } + + static inline int should_resched(void) + { + return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); + } + + static void __cond_resched(void) + { + add_preempt_count(PREEMPT_ACTIVE); + __schedule(); + sub_preempt_count(PREEMPT_ACTIVE); + } + + int __sched _cond_resched(void) + { + if (should_resched()) { + __cond_resched(); + return 1; + } + return 0; + } + EXPORT_SYMBOL(_cond_resched); + + /* + * __cond_resched_lock() - if a reschedule is pending, drop the given lock, + * call schedule, and on return reacquire the lock. + * + * This works OK both with and without CONFIG_PREEMPT. We do strange low-level + * operations here to prevent schedule() from being called twice (once via + * spin_unlock(), once by hand). + */ + int __cond_resched_lock(spinlock_t *lock) + { + int resched = should_resched(); + int ret = 0; + + lockdep_assert_held(lock); + + if (spin_needbreak(lock) || resched) { + spin_unlock(lock); + if (resched) + __cond_resched(); + else + cpu_relax(); + ret = 1; + spin_lock(lock); + } + return ret; + } + EXPORT_SYMBOL(__cond_resched_lock); + + int __sched __cond_resched_softirq(void) + { + BUG_ON(!in_softirq()); + + if (should_resched()) { + local_bh_enable(); + __cond_resched(); + local_bh_disable(); + return 1; + } + return 0; + } + EXPORT_SYMBOL(__cond_resched_softirq); + + /** + * yield - yield the current processor to other threads. + * + * This is a shortcut for kernel-space yielding - it marks the + * thread runnable and calls sys_sched_yield(). + */ + void __sched yield(void) + { + set_current_state(TASK_RUNNING); + sys_sched_yield(); + } + EXPORT_SYMBOL(yield); + + /** + * yield_to - yield the current processor to another thread in + * your thread group, or accelerate that thread toward the + * processor it's on. + * @p: target task + * @preempt: whether task preemption is allowed or not + * + * It's the caller's job to ensure that the target task struct + * can't go away on us before we can do any checks. + * + * Returns true if we indeed boosted the target task. + */ + bool __sched yield_to(struct task_struct *p, bool preempt) + { + struct task_struct *curr = current; + struct rq *rq, *p_rq; + unsigned long flags; + bool yielded = 0; + + local_irq_save(flags); + rq = this_rq(); + + again: + p_rq = task_rq(p); + double_rq_lock(rq, p_rq); + while (task_rq(p) != p_rq) { + double_rq_unlock(rq, p_rq); + goto again; + } + + if (!curr->sched_class->yield_to_task) + goto out; + + if (curr->sched_class != p->sched_class) + goto out; + + if (task_running(p_rq, p) || p->state) + goto out; + + yielded = curr->sched_class->yield_to_task(rq, p, preempt); + if (yielded) { + schedstat_inc(rq, yld_count); + /* + * Make p's CPU reschedule; pick_next_entity takes care of + * fairness. + */ + if (preempt && rq != p_rq) + resched_task(p_rq->curr); + } else { + /* + * We might have set it in task_yield_fair(), but are + * not going to schedule(), so don't want to skip + * the next update. + */ + rq->skip_clock_update = 0; + } + + out: + double_rq_unlock(rq, p_rq); + local_irq_restore(flags); + + if (yielded) + schedule(); + + return yielded; + } + EXPORT_SYMBOL_GPL(yield_to); + + /* + * This task is about to go to sleep on IO. Increment rq->nr_iowait so + * that process accounting knows that this is a task in IO wait state. + */ + void __sched io_schedule(void) + { + struct rq *rq = raw_rq(); + + delayacct_blkio_start(); + atomic_inc(&rq->nr_iowait); + blk_flush_plug(current); + current->in_iowait = 1; + schedule(); + current->in_iowait = 0; + atomic_dec(&rq->nr_iowait); + delayacct_blkio_end(); + } + EXPORT_SYMBOL(io_schedule); + + long __sched io_schedule_timeout(long timeout) + { + struct rq *rq = raw_rq(); + long ret; + + delayacct_blkio_start(); + atomic_inc(&rq->nr_iowait); + blk_flush_plug(current); + current->in_iowait = 1; + ret = schedule_timeout(timeout); + current->in_iowait = 0; + atomic_dec(&rq->nr_iowait); + delayacct_blkio_end(); + return ret; + } + + /** + * sys_sched_get_priority_max - return maximum RT priority. + * @policy: scheduling class. + * + * this syscall returns the maximum rt_priority that can be used + * by a given scheduling class. + */ + SYSCALL_DEFINE1(sched_get_priority_max, int, policy) + { + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = MAX_USER_RT_PRIO-1; + break; + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_IDLE: + ret = 0; + break; + } + return ret; + } + + /** + * sys_sched_get_priority_min - return minimum RT priority. + * @policy: scheduling class. + * + * this syscall returns the minimum rt_priority that can be used + * by a given scheduling class. + */ + SYSCALL_DEFINE1(sched_get_priority_min, int, policy) + { + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = 1; + break; + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_IDLE: + ret = 0; + } + return ret; + } + + /** + * sys_sched_rr_get_interval - return the default timeslice of a process. + * @pid: pid of the process. + * @interval: userspace pointer to the timeslice value. + * + * this syscall writes the default timeslice value of a given process + * into the user-space timespec buffer. A value of '0' means infinity. + */ + SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, + struct timespec __user *, interval) + { + struct task_struct *p; + unsigned int time_slice; + unsigned long flags; + struct rq *rq; + int retval; + struct timespec t; + + if (pid < 0) + return -EINVAL; + + retval = -ESRCH; + rcu_read_lock(); + p = find_process_by_pid(pid); + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + rq = task_rq_lock(p, &flags); + time_slice = p->sched_class->get_rr_interval(rq, p); + task_rq_unlock(rq, p, &flags); + + rcu_read_unlock(); + jiffies_to_timespec(time_slice, &t); + retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; + return retval; + + out_unlock: + rcu_read_unlock(); + return retval; + } + + static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; + + void sched_show_task(struct task_struct *p) + { + unsigned long free = 0; + unsigned state; + + state = p->state ? __ffs(p->state) + 1 : 0; + printk(KERN_INFO "%-15.15s %c", p->comm, + state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); + #if BITS_PER_LONG == 32 + if (state == TASK_RUNNING) + printk(KERN_CONT " running "); + else + printk(KERN_CONT " %08lx ", thread_saved_pc(p)); + #else + if (state == TASK_RUNNING) + printk(KERN_CONT " running task "); + else + printk(KERN_CONT " %016lx ", thread_saved_pc(p)); + #endif + #ifdef CONFIG_DEBUG_STACK_USAGE + free = stack_not_used(p); + #endif + printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, + task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), + (unsigned long)task_thread_info(p)->flags); + + show_stack(p, NULL); + } + + void show_state_filter(unsigned long state_filter) + { + struct task_struct *g, *p; + + #if BITS_PER_LONG == 32 + printk(KERN_INFO + " task PC stack pid father\n"); + #else + printk(KERN_INFO + " task PC stack pid father\n"); + #endif + rcu_read_lock(); + do_each_thread(g, p) { + /* + * reset the NMI-timeout, listing all files on a slow + * console might take a lot of time: + */ + touch_nmi_watchdog(); + if (!state_filter || (p->state & state_filter)) + sched_show_task(p); + } while_each_thread(g, p); + + touch_all_softlockup_watchdogs(); + + #ifdef CONFIG_SCHED_DEBUG + sysrq_sched_debug_show(); + #endif + rcu_read_unlock(); + /* + * Only show locks if all tasks are dumped: + */ + if (!state_filter) + debug_show_all_locks(); + } + + void __cpuinit init_idle_bootup_task(struct task_struct *idle) + { + idle->sched_class = &idle_sched_class; + } + + /** + * init_idle - set up an idle thread for a given CPU + * @idle: task in question + * @cpu: cpu the idle task belongs to + * + * NOTE: this function does not set the idle thread's NEED_RESCHED + * flag, to make booting more robust. + */ + void __cpuinit init_idle(struct task_struct *idle, int cpu) + { + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + raw_spin_lock_irqsave(&rq->lock, flags); + + __sched_fork(idle); + idle->state = TASK_RUNNING; + idle->se.exec_start = sched_clock(); + + do_set_cpus_allowed(idle, cpumask_of(cpu)); + /* + * We're having a chicken and egg problem, even though we are + * holding rq->lock, the cpu isn't yet set to this cpu so the + * lockdep check in task_group() will fail. + * + * Similar case to sched_fork(). / Alternatively we could + * use task_rq_lock() here and obtain the other rq->lock. + * + * Silence PROVE_RCU + */ + rcu_read_lock(); + __set_task_cpu(idle, cpu); + rcu_read_unlock(); + + rq->curr = rq->idle = idle; + #if defined(CONFIG_SMP) + idle->on_cpu = 1; + #endif + raw_spin_unlock_irqrestore(&rq->lock, flags); + + /* Set the preempt count _outside_ the spinlocks! */ + task_thread_info(idle)->preempt_count = 0; + + /* + * The idle tasks have their own, simple scheduling class: + */ + idle->sched_class = &idle_sched_class; + ftrace_graph_init_idle_task(idle, cpu); + #if defined(CONFIG_SMP) + sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); + #endif + } + + #ifdef CONFIG_SMP + void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) + { + if (p->sched_class && p->sched_class->set_cpus_allowed) + p->sched_class->set_cpus_allowed(p, new_mask); + + cpumask_copy(&p->cpus_allowed, new_mask); + p->rt.nr_cpus_allowed = cpumask_weight(new_mask); + } + + /* + * This is how migration works: + * + * 1) we invoke migration_cpu_stop() on the target CPU using + * stop_one_cpu(). + * 2) stopper starts to run (implicitly forcing the migrated thread + * off the CPU) + * 3) it checks whether the migrated task is still in the wrong runqueue. + * 4) if it's in the wrong runqueue then the migration thread removes + * it and puts it into the right queue. + * 5) stopper completes and stop_one_cpu() returns and the migration + * is done. + */ + + /* + * Change a given task's CPU affinity. Migrate the thread to a + * proper CPU and schedule it away if the CPU it's executing on + * is removed from the allowed bitmask. + * + * NOTE: the caller must have a valid reference to the task, the + * task must not exit() & deallocate itself prematurely. The + * call is not atomic; no spinlocks may be held. + */ + int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) + { + unsigned long flags; + struct rq *rq; + unsigned int dest_cpu; + int ret = 0; + + rq = task_rq_lock(p, &flags); + + if (cpumask_equal(&p->cpus_allowed, new_mask)) + goto out; + + if (!cpumask_intersects(new_mask, cpu_active_mask)) { + ret = -EINVAL; + goto out; + } + + if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { + ret = -EINVAL; + goto out; + } + + do_set_cpus_allowed(p, new_mask); + + /* Can the task run on the task's current CPU? If so, we're done */ + if (cpumask_test_cpu(task_cpu(p), new_mask)) + goto out; + + dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); + if (p->on_rq) { + struct migration_arg arg = { p, dest_cpu }; + /* Need help from migration thread: drop lock and wait. */ + task_rq_unlock(rq, p, &flags); + stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); + tlb_migrate_finish(p->mm); + return 0; + } + out: + task_rq_unlock(rq, p, &flags); + + return ret; + } + EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); + + /* + * Move (not current) task off this cpu, onto dest cpu. We're doing + * this because either it can't run here any more (set_cpus_allowed() + * away from this CPU, or CPU going down), or because we're + * attempting to rebalance this task on exec (sched_exec). + * + * So we race with normal scheduler movements, but that's OK, as long + * as the task is no longer on this CPU. + * + * Returns non-zero if task was successfully migrated. + */ + static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) + { + struct rq *rq_dest, *rq_src; + int ret = 0; + + if (unlikely(!cpu_active(dest_cpu))) + return ret; + + rq_src = cpu_rq(src_cpu); + rq_dest = cpu_rq(dest_cpu); + + raw_spin_lock(&p->pi_lock); + double_rq_lock(rq_src, rq_dest); + /* Already moved. */ + if (task_cpu(p) != src_cpu) + goto done; + /* Affinity changed (again). */ + if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) + goto fail; + + /* + * If we're not on a rq, the next wake-up will ensure we're + * placed properly. + */ + if (p->on_rq) { + deactivate_task(rq_src, p, 0); + set_task_cpu(p, dest_cpu); + activate_task(rq_dest, p, 0); + check_preempt_curr(rq_dest, p, 0); + } + done: + ret = 1; + fail: + double_rq_unlock(rq_src, rq_dest); + raw_spin_unlock(&p->pi_lock); + return ret; + } + + /* + * migration_cpu_stop - this will be executed by a highprio stopper thread + * and performs thread migration by bumping thread off CPU then + * 'pushing' onto another runqueue. + */ + static int migration_cpu_stop(void *data) + { + struct migration_arg *arg = data; + + /* + * The original target cpu might have gone down and we might + * be on another cpu but it doesn't matter. + */ + local_irq_disable(); + __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); + local_irq_enable(); + return 0; + } + + #ifdef CONFIG_HOTPLUG_CPU + + /* + * Ensures that the idle task is using init_mm right before its cpu goes + * offline. + */ + void idle_task_exit(void) + { + struct mm_struct *mm = current->active_mm; + + BUG_ON(cpu_online(smp_processor_id())); + + if (mm != &init_mm) + switch_mm(mm, &init_mm, current); + mmdrop(mm); + } + + /* + * While a dead CPU has no uninterruptible tasks queued at this point, + * it might still have a nonzero ->nr_uninterruptible counter, because + * for performance reasons the counter is not stricly tracking tasks to + * their home CPUs. So we just add the counter to another CPU's counter, + * to keep the global sum constant after CPU-down: + */ + static void migrate_nr_uninterruptible(struct rq *rq_src) + { + struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); + + rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; + rq_src->nr_uninterruptible = 0; + } + + /* + * remove the tasks which were accounted by rq from calc_load_tasks. + */ + static void calc_global_load_remove(struct rq *rq) + { + atomic_long_sub(rq->calc_load_active, &calc_load_tasks); + rq->calc_load_active = 0; + } + + /* + * Migrate all tasks from the rq, sleeping tasks will be migrated by + * try_to_wake_up()->select_task_rq(). + * + * Called with rq->lock held even though we'er in stop_machine() and + * there's no concurrency possible, we hold the required locks anyway + * because of lock validation efforts. + */ + static void migrate_tasks(unsigned int dead_cpu) + { + struct rq *rq = cpu_rq(dead_cpu); + struct task_struct *next, *stop = rq->stop; + int dest_cpu; + + /* + * Fudge the rq selection such that the below task selection loop + * doesn't get stuck on the currently eligible stop task. + * + * We're currently inside stop_machine() and the rq is either stuck + * in the stop_machine_cpu_stop() loop, or we're executing this code, + * either way we should never end up calling schedule() until we're + * done here. + */ + rq->stop = NULL; + + /* Ensure any throttled groups are reachable by pick_next_task */ + unthrottle_offline_cfs_rqs(rq); + + for ( ; ; ) { + /* + * There's this thread running, bail when that's the only + * remaining thread. + */ + if (rq->nr_running == 1) + break; + + next = pick_next_task(rq); + BUG_ON(!next); + next->sched_class->put_prev_task(rq, next); + + /* Find suitable destination for @next, with force if needed. */ + dest_cpu = select_fallback_rq(dead_cpu, next); + raw_spin_unlock(&rq->lock); + + __migrate_task(next, dead_cpu, dest_cpu); + + raw_spin_lock(&rq->lock); + } + + rq->stop = stop; + } + + #endif /* CONFIG_HOTPLUG_CPU */ + + #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) + + static struct ctl_table sd_ctl_dir[] = { + { + .procname = "sched_domain", + .mode = 0555, + }, + {} + }; + + static struct ctl_table sd_ctl_root[] = { + { + .procname = "kernel", + .mode = 0555, + .child = sd_ctl_dir, + }, + {} + }; + + static struct ctl_table *sd_alloc_ctl_entry(int n) + { + struct ctl_table *entry = + kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); + + return entry; + } + + static void sd_free_ctl_entry(struct ctl_table **tablep) + { + struct ctl_table *entry; + + /* + * In the intermediate directories, both the child directory and + * procname are dynamically allocated and could fail but the mode + * will always be set. In the lowest directory the names are + * static strings and all have proc handlers. + */ + for (entry = *tablep; entry->mode; entry++) { + if (entry->child) + sd_free_ctl_entry(&entry->child); + if (entry->proc_handler == NULL) + kfree(entry->procname); + } + + kfree(*tablep); + *tablep = NULL; + } + + static void + set_table_entry(struct ctl_table *entry, + const char *procname, void *data, int maxlen, + mode_t mode, proc_handler *proc_handler) + { + entry->procname = procname; + entry->data = data; + entry->maxlen = maxlen; + entry->mode = mode; + entry->proc_handler = proc_handler; + } + + static struct ctl_table * + sd_alloc_ctl_domain_table(struct sched_domain *sd) + { + struct ctl_table *table = sd_alloc_ctl_entry(13); + + if (table == NULL) + return NULL; + + set_table_entry(&table[0], "min_interval", &sd->min_interval, + sizeof(long), 0644, proc_doulongvec_minmax); + set_table_entry(&table[1], "max_interval", &sd->max_interval, + sizeof(long), 0644, proc_doulongvec_minmax); + set_table_entry(&table[2], "busy_idx", &sd->busy_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[3], "idle_idx", &sd->idle_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[5], "wake_idx", &sd->wake_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[7], "busy_factor", &sd->busy_factor, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[9], "cache_nice_tries", + &sd->cache_nice_tries, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[10], "flags", &sd->flags, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[11], "name", sd->name, + CORENAME_MAX_SIZE, 0444, proc_dostring); + /* &table[12] is terminator */ + + return table; + } + + static ctl_table *sd_alloc_ctl_cpu_table(int cpu) + { + struct ctl_table *entry, *table; + struct sched_domain *sd; + int domain_num = 0, i; + char buf[32]; + + for_each_domain(cpu, sd) + domain_num++; + entry = table = sd_alloc_ctl_entry(domain_num + 1); + if (table == NULL) + return NULL; + + i = 0; + for_each_domain(cpu, sd) { + snprintf(buf, 32, "domain%d", i); + entry->procname = kstrdup(buf, GFP_KERNEL); + entry->mode = 0555; + entry->child = sd_alloc_ctl_domain_table(sd); + entry++; + i++; + } + return table; + } + + static struct ctl_table_header *sd_sysctl_header; + static void register_sched_domain_sysctl(void) + { + int i, cpu_num = num_possible_cpus(); + struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); + char buf[32]; + + WARN_ON(sd_ctl_dir[0].child); + sd_ctl_dir[0].child = entry; + + if (entry == NULL) + return; + + for_each_possible_cpu(i) { + snprintf(buf, 32, "cpu%d", i); + entry->procname = kstrdup(buf, GFP_KERNEL); + entry->mode = 0555; + entry->child = sd_alloc_ctl_cpu_table(i); + entry++; + } + + WARN_ON(sd_sysctl_header); + sd_sysctl_header = register_sysctl_table(sd_ctl_root); + } + + /* may be called multiple times per register */ + static void unregister_sched_domain_sysctl(void) + { + if (sd_sysctl_header) + unregister_sysctl_table(sd_sysctl_header); + sd_sysctl_header = NULL; + if (sd_ctl_dir[0].child) + sd_free_ctl_entry(&sd_ctl_dir[0].child); + } + #else + static void register_sched_domain_sysctl(void) + { + } + static void unregister_sched_domain_sysctl(void) + { + } + #endif + + static void set_rq_online(struct rq *rq) + { + if (!rq->online) { + const struct sched_class *class; + + cpumask_set_cpu(rq->cpu, rq->rd->online); + rq->online = 1; + + for_each_class(class) { + if (class->rq_online) + class->rq_online(rq); + } + } + } + + static void set_rq_offline(struct rq *rq) + { + if (rq->online) { + const struct sched_class *class; + + for_each_class(class) { + if (class->rq_offline) + class->rq_offline(rq); + } + + cpumask_clear_cpu(rq->cpu, rq->rd->online); + rq->online = 0; + } + } + + /* + * migration_call - callback that gets triggered when a CPU is added. + * Here we can start up the necessary migration thread for the new CPU. + */ + static int __cpuinit + migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) + { + int cpu = (long)hcpu; + unsigned long flags; + struct rq *rq = cpu_rq(cpu); + + switch (action & ~CPU_TASKS_FROZEN) { + + case CPU_UP_PREPARE: + rq->calc_load_update = calc_load_update; + break; + + case CPU_ONLINE: + /* Update our root-domain */ + raw_spin_lock_irqsave(&rq->lock, flags); + if (rq->rd) { + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + + set_rq_online(rq); + } + raw_spin_unlock_irqrestore(&rq->lock, flags); + break; + + #ifdef CONFIG_HOTPLUG_CPU + case CPU_DYING: + sched_ttwu_pending(); + /* Update our root-domain */ + raw_spin_lock_irqsave(&rq->lock, flags); + if (rq->rd) { + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + set_rq_offline(rq); + } + migrate_tasks(cpu); + BUG_ON(rq->nr_running != 1); /* the migration thread */ + raw_spin_unlock_irqrestore(&rq->lock, flags); + + migrate_nr_uninterruptible(rq); + calc_global_load_remove(rq); + break; + #endif + } + + update_max_interval(); + + return NOTIFY_OK; + } + + /* + * Register at high priority so that task migration (migrate_all_tasks) + * happens before everything else. This has to be lower priority than + * the notifier in the perf_event subsystem, though. + */ + static struct notifier_block __cpuinitdata migration_notifier = { + .notifier_call = migration_call, + .priority = CPU_PRI_MIGRATION, + }; + + static int __cpuinit sched_cpu_active(struct notifier_block *nfb, + unsigned long action, void *hcpu) + { + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_ONLINE: + case CPU_DOWN_FAILED: + set_cpu_active((long)hcpu, true); + return NOTIFY_OK; + default: + return NOTIFY_DONE; + } + } + + static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, + unsigned long action, void *hcpu) + { + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_DOWN_PREPARE: + set_cpu_active((long)hcpu, false); + return NOTIFY_OK; + default: + return NOTIFY_DONE; + } + } + + static int __init migration_init(void) + { + void *cpu = (void *)(long)smp_processor_id(); + int err; + + /* Initialize migration for the boot CPU */ + err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); + BUG_ON(err == NOTIFY_BAD); + migration_call(&migration_notifier, CPU_ONLINE, cpu); + register_cpu_notifier(&migration_notifier); + + /* Register cpu active notifiers */ + cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); + cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); + + return 0; + } + early_initcall(migration_init); + #endif + + #ifdef CONFIG_SMP + + static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ + + #ifdef CONFIG_SCHED_DEBUG + + static __read_mostly int sched_domain_debug_enabled; + + static int __init sched_domain_debug_setup(char *str) + { + sched_domain_debug_enabled = 1; + + return 0; + } + early_param("sched_debug", sched_domain_debug_setup); + + static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, + struct cpumask *groupmask) + { + struct sched_group *group = sd->groups; + char str[256]; + + cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); + cpumask_clear(groupmask); + + printk(KERN_DEBUG "%*s domain %d: ", level, "", level); + + if (!(sd->flags & SD_LOAD_BALANCE)) { + printk("does not load-balance\n"); + if (sd->parent) + printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" + " has parent"); + return -1; + } + + printk(KERN_CONT "span %s level %s\n", str, sd->name); + + if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { + printk(KERN_ERR "ERROR: domain->span does not contain " + "CPU%d\n", cpu); + } + if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { + printk(KERN_ERR "ERROR: domain->groups does not contain" + " CPU%d\n", cpu); + } + + printk(KERN_DEBUG "%*s groups:", level + 1, ""); + do { + if (!group) { + printk("\n"); + printk(KERN_ERR "ERROR: group is NULL\n"); + break; + } + + if (!group->sgp->power) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: domain->cpu_power not " + "set\n"); + break; + } + + if (!cpumask_weight(sched_group_cpus(group))) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: empty group\n"); + break; + } + + if (cpumask_intersects(groupmask, sched_group_cpus(group))) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: repeated CPUs\n"); + break; + } + + cpumask_or(groupmask, groupmask, sched_group_cpus(group)); + + cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); + + printk(KERN_CONT " %s", str); + if (group->sgp->power != SCHED_POWER_SCALE) { + printk(KERN_CONT " (cpu_power = %d)", + group->sgp->power); + } + + group = group->next; + } while (group != sd->groups); + printk(KERN_CONT "\n"); + + if (!cpumask_equal(sched_domain_span(sd), groupmask)) + printk(KERN_ERR "ERROR: groups don't span domain->span\n"); + + if (sd->parent && + !cpumask_subset(groupmask, sched_domain_span(sd->parent))) + printk(KERN_ERR "ERROR: parent span is not a superset " + "of domain->span\n"); + return 0; + } + + static void sched_domain_debug(struct sched_domain *sd, int cpu) + { + int level = 0; + + if (!sched_domain_debug_enabled) + return; + + if (!sd) { + printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); + return; + } + + printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); + + for (;;) { + if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) + break; + level++; + sd = sd->parent; + if (!sd) + break; + } + } + #else /* !CONFIG_SCHED_DEBUG */ + # define sched_domain_debug(sd, cpu) do { } while (0) + #endif /* CONFIG_SCHED_DEBUG */ + + static int sd_degenerate(struct sched_domain *sd) + { + if (cpumask_weight(sched_domain_span(sd)) == 1) + return 1; + + /* Following flags need at least 2 groups */ + if (sd->flags & (SD_LOAD_BALANCE | + SD_BALANCE_NEWIDLE | + SD_BALANCE_FORK | + SD_BALANCE_EXEC | + SD_SHARE_CPUPOWER | + SD_SHARE_PKG_RESOURCES)) { + if (sd->groups != sd->groups->next) + return 0; + } + + /* Following flags don't use groups */ + if (sd->flags & (SD_WAKE_AFFINE)) + return 0; + + return 1; + } + + static int + sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) + { + unsigned long cflags = sd->flags, pflags = parent->flags; + + if (sd_degenerate(parent)) + return 1; + + if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) + return 0; + + /* Flags needing groups don't count if only 1 group in parent */ + if (parent->groups == parent->groups->next) { + pflags &= ~(SD_LOAD_BALANCE | + SD_BALANCE_NEWIDLE | + SD_BALANCE_FORK | + SD_BALANCE_EXEC | + SD_SHARE_CPUPOWER | + SD_SHARE_PKG_RESOURCES); + if (nr_node_ids == 1) + pflags &= ~SD_SERIALIZE; + } + if (~cflags & pflags) + return 0; + + return 1; + } + + static void free_rootdomain(struct rcu_head *rcu) + { + struct root_domain *rd = container_of(rcu, struct root_domain, rcu); + + cpupri_cleanup(&rd->cpupri); + free_cpumask_var(rd->rto_mask); + free_cpumask_var(rd->online); + free_cpumask_var(rd->span); + kfree(rd); + } + + static void rq_attach_root(struct rq *rq, struct root_domain *rd) + { + struct root_domain *old_rd = NULL; + unsigned long flags; + + raw_spin_lock_irqsave(&rq->lock, flags); + + if (rq->rd) { + old_rd = rq->rd; + + if (cpumask_test_cpu(rq->cpu, old_rd->online)) + set_rq_offline(rq); + + cpumask_clear_cpu(rq->cpu, old_rd->span); + + /* + * If we dont want to free the old_rt yet then + * set old_rd to NULL to skip the freeing later + * in this function: + */ + if (!atomic_dec_and_test(&old_rd->refcount)) + old_rd = NULL; + } + + atomic_inc(&rd->refcount); + rq->rd = rd; + + cpumask_set_cpu(rq->cpu, rd->span); + if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) + set_rq_online(rq); + + raw_spin_unlock_irqrestore(&rq->lock, flags); + + if (old_rd) + call_rcu_sched(&old_rd->rcu, free_rootdomain); + } + + static int init_rootdomain(struct root_domain *rd) + { + memset(rd, 0, sizeof(*rd)); + + if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) + goto out; + if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) + goto free_span; + if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) + goto free_online; + + if (cpupri_init(&rd->cpupri) != 0) + goto free_rto_mask; + return 0; + + free_rto_mask: + free_cpumask_var(rd->rto_mask); + free_online: + free_cpumask_var(rd->online); + free_span: + free_cpumask_var(rd->span); + out: + return -ENOMEM; + } + + /* + * By default the system creates a single root-domain with all cpus as + * members (mimicking the global state we have today). + */ + struct root_domain def_root_domain; + + static void init_defrootdomain(void) + { + init_rootdomain(&def_root_domain); + + atomic_set(&def_root_domain.refcount, 1); + } + + static struct root_domain *alloc_rootdomain(void) + { + struct root_domain *rd; + + rd = kmalloc(sizeof(*rd), GFP_KERNEL); + if (!rd) + return NULL; + + if (init_rootdomain(rd) != 0) { + kfree(rd); + return NULL; + } + + return rd; + } + + static void free_sched_groups(struct sched_group *sg, int free_sgp) + { + struct sched_group *tmp, *first; + + if (!sg) + return; + + first = sg; + do { + tmp = sg->next; + + if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) + kfree(sg->sgp); + + kfree(sg); + sg = tmp; + } while (sg != first); + } + + static void free_sched_domain(struct rcu_head *rcu) + { + struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); + + /* + * If its an overlapping domain it has private groups, iterate and + * nuke them all. + */ + if (sd->flags & SD_OVERLAP) { + free_sched_groups(sd->groups, 1); + } else if (atomic_dec_and_test(&sd->groups->ref)) { + kfree(sd->groups->sgp); + kfree(sd->groups); + } + kfree(sd); + } + + static void destroy_sched_domain(struct sched_domain *sd, int cpu) + { + call_rcu(&sd->rcu, free_sched_domain); + } + + static void destroy_sched_domains(struct sched_domain *sd, int cpu) + { + for (; sd; sd = sd->parent) + destroy_sched_domain(sd, cpu); + } + + /* + * Attach the domain 'sd' to 'cpu' as its base domain. Callers must + * hold the hotplug lock. + */ + static void + cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) + { + struct rq *rq = cpu_rq(cpu); + struct sched_domain *tmp; + + /* Remove the sched domains which do not contribute to scheduling. */ + for (tmp = sd; tmp; ) { + struct sched_domain *parent = tmp->parent; + if (!parent) + break; + + if (sd_parent_degenerate(tmp, parent)) { + tmp->parent = parent->parent; + if (parent->parent) + parent->parent->child = tmp; + destroy_sched_domain(parent, cpu); + } else + tmp = tmp->parent; + } + + if (sd && sd_degenerate(sd)) { + tmp = sd; + sd = sd->parent; + destroy_sched_domain(tmp, cpu); + if (sd) + sd->child = NULL; + } + + sched_domain_debug(sd, cpu); + + rq_attach_root(rq, rd); + tmp = rq->sd; + rcu_assign_pointer(rq->sd, sd); + destroy_sched_domains(tmp, cpu); + } + + /* cpus with isolated domains */ + static cpumask_var_t cpu_isolated_map; + + /* Setup the mask of cpus configured for isolated domains */ + static int __init isolated_cpu_setup(char *str) + { + alloc_bootmem_cpumask_var(&cpu_isolated_map); + cpulist_parse(str, cpu_isolated_map); + return 1; + } + + __setup("isolcpus=", isolated_cpu_setup); + + #ifdef CONFIG_NUMA + + /** + * find_next_best_node - find the next node to include in a sched_domain + * @node: node whose sched_domain we're building + * @used_nodes: nodes already in the sched_domain + * + * Find the next node to include in a given scheduling domain. Simply + * finds the closest node not already in the @used_nodes map. + * + * Should use nodemask_t. + */ + static int find_next_best_node(int node, nodemask_t *used_nodes) + { + int i, n, val, min_val, best_node = -1; + + min_val = INT_MAX; + + for (i = 0; i < nr_node_ids; i++) { + /* Start at @node */ + n = (node + i) % nr_node_ids; + + if (!nr_cpus_node(n)) + continue; + + /* Skip already used nodes */ + if (node_isset(n, *used_nodes)) + continue; + + /* Simple min distance search */ + val = node_distance(node, n); + + if (val < min_val) { + min_val = val; + best_node = n; + } + } + + if (best_node != -1) + node_set(best_node, *used_nodes); + return best_node; + } + + /** + * sched_domain_node_span - get a cpumask for a node's sched_domain + * @node: node whose cpumask we're constructing + * @span: resulting cpumask + * + * Given a node, construct a good cpumask for its sched_domain to span. It + * should be one that prevents unnecessary balancing, but also spreads tasks + * out optimally. + */ + static void sched_domain_node_span(int node, struct cpumask *span) + { + nodemask_t used_nodes; + int i; + + cpumask_clear(span); + nodes_clear(used_nodes); + + cpumask_or(span, span, cpumask_of_node(node)); + node_set(node, used_nodes); + + for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { + int next_node = find_next_best_node(node, &used_nodes); + if (next_node < 0) + break; + cpumask_or(span, span, cpumask_of_node(next_node)); + } + } + + static const struct cpumask *cpu_node_mask(int cpu) + { + lockdep_assert_held(&sched_domains_mutex); + + sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); + + return sched_domains_tmpmask; + } + + static const struct cpumask *cpu_allnodes_mask(int cpu) + { + return cpu_possible_mask; + } + #endif /* CONFIG_NUMA */ + + static const struct cpumask *cpu_cpu_mask(int cpu) + { + return cpumask_of_node(cpu_to_node(cpu)); + } + + int sched_smt_power_savings = 0, sched_mc_power_savings = 0; + + struct sd_data { + struct sched_domain **__percpu sd; + struct sched_group **__percpu sg; + struct sched_group_power **__percpu sgp; + }; + + struct s_data { + struct sched_domain ** __percpu sd; + struct root_domain *rd; + }; + + enum s_alloc { + sa_rootdomain, + sa_sd, + sa_sd_storage, + sa_none, + }; + + struct sched_domain_topology_level; + + typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); + typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); + + #define SDTL_OVERLAP 0x01 + + struct sched_domain_topology_level { + sched_domain_init_f init; + sched_domain_mask_f mask; + int flags; + struct sd_data data; + }; + + static int + build_overlap_sched_groups(struct sched_domain *sd, int cpu) + { + struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; + const struct cpumask *span = sched_domain_span(sd); + struct cpumask *covered = sched_domains_tmpmask; + struct sd_data *sdd = sd->private; + struct sched_domain *child; + int i; + + cpumask_clear(covered); + + for_each_cpu(i, span) { + struct cpumask *sg_span; + + if (cpumask_test_cpu(i, covered)) + continue; + + sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, cpu_to_node(cpu)); + + if (!sg) + goto fail; + + sg_span = sched_group_cpus(sg); + + child = *per_cpu_ptr(sdd->sd, i); + if (child->child) { + child = child->child; + cpumask_copy(sg_span, sched_domain_span(child)); + } else + cpumask_set_cpu(i, sg_span); + + cpumask_or(covered, covered, sg_span); + + sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); + atomic_inc(&sg->sgp->ref); + + if (cpumask_test_cpu(cpu, sg_span)) + groups = sg; + + if (!first) + first = sg; + if (last) + last->next = sg; + last = sg; + last->next = first; + } + sd->groups = groups; + + return 0; + + fail: + free_sched_groups(first, 0); + + return -ENOMEM; + } + + static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) + { + struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); + struct sched_domain *child = sd->child; + + if (child) + cpu = cpumask_first(sched_domain_span(child)); + + if (sg) { + *sg = *per_cpu_ptr(sdd->sg, cpu); + (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); + atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ + } + + return cpu; + } + + /* + * build_sched_groups will build a circular linked list of the groups + * covered by the given span, and will set each group's ->cpumask correctly, + * and ->cpu_power to 0. + * + * Assumes the sched_domain tree is fully constructed + */ + static int + build_sched_groups(struct sched_domain *sd, int cpu) + { + struct sched_group *first = NULL, *last = NULL; + struct sd_data *sdd = sd->private; + const struct cpumask *span = sched_domain_span(sd); + struct cpumask *covered; + int i; + + get_group(cpu, sdd, &sd->groups); + atomic_inc(&sd->groups->ref); + + if (cpu != cpumask_first(sched_domain_span(sd))) + return 0; + + lockdep_assert_held(&sched_domains_mutex); + covered = sched_domains_tmpmask; + + cpumask_clear(covered); + + for_each_cpu(i, span) { + struct sched_group *sg; + int group = get_group(i, sdd, &sg); + int j; + + if (cpumask_test_cpu(i, covered)) + continue; + + cpumask_clear(sched_group_cpus(sg)); + sg->sgp->power = 0; + + for_each_cpu(j, span) { + if (get_group(j, sdd, NULL) != group) + continue; + + cpumask_set_cpu(j, covered); + cpumask_set_cpu(j, sched_group_cpus(sg)); + } + + if (!first) + first = sg; + if (last) + last->next = sg; + last = sg; + } + last->next = first; + + return 0; + } + + /* + * Initialize sched groups cpu_power. + * + * cpu_power indicates the capacity of sched group, which is used while + * distributing the load between different sched groups in a sched domain. + * Typically cpu_power for all the groups in a sched domain will be same unless + * there are asymmetries in the topology. If there are asymmetries, group + * having more cpu_power will pickup more load compared to the group having + * less cpu_power. + */ + static void init_sched_groups_power(int cpu, struct sched_domain *sd) + { + struct sched_group *sg = sd->groups; + + WARN_ON(!sd || !sg); + + do { + sg->group_weight = cpumask_weight(sched_group_cpus(sg)); + sg = sg->next; + } while (sg != sd->groups); + + if (cpu != group_first_cpu(sg)) + return; + + update_group_power(sd, cpu); + atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); + } + + int __weak arch_sd_sibling_asym_packing(void) + { + return 0*SD_ASYM_PACKING; + } + + /* + * Initializers for schedule domains + * Non-inlined to reduce accumulated stack pressure in build_sched_domains() + */ + + #ifdef CONFIG_SCHED_DEBUG + # define SD_INIT_NAME(sd, type) sd->name = #type + #else + # define SD_INIT_NAME(sd, type) do { } while (0) + #endif + + #define SD_INIT_FUNC(type) \ + static noinline struct sched_domain * \ + sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ + { \ + struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ + *sd = SD_##type##_INIT; \ + SD_INIT_NAME(sd, type); \ + sd->private = &tl->data; \ + return sd; \ + } + + SD_INIT_FUNC(CPU) + #ifdef CONFIG_NUMA + SD_INIT_FUNC(ALLNODES) + SD_INIT_FUNC(NODE) + #endif + #ifdef CONFIG_SCHED_SMT + SD_INIT_FUNC(SIBLING) + #endif + #ifdef CONFIG_SCHED_MC + SD_INIT_FUNC(MC) + #endif + #ifdef CONFIG_SCHED_BOOK + SD_INIT_FUNC(BOOK) + #endif + + static int default_relax_domain_level = -1; + int sched_domain_level_max; + + static int __init setup_relax_domain_level(char *str) + { + unsigned long val; + + val = simple_strtoul(str, NULL, 0); + if (val < sched_domain_level_max) + default_relax_domain_level = val; + + return 1; + } + __setup("relax_domain_level=", setup_relax_domain_level); + + static void set_domain_attribute(struct sched_domain *sd, + struct sched_domain_attr *attr) + { + int request; + + if (!attr || attr->relax_domain_level < 0) { + if (default_relax_domain_level < 0) + return; + else + request = default_relax_domain_level; + } else + request = attr->relax_domain_level; + if (request < sd->level) { + /* turn off idle balance on this domain */ + sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); + } else { + /* turn on idle balance on this domain */ + sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); + } + } + + static void __sdt_free(const struct cpumask *cpu_map); + static int __sdt_alloc(const struct cpumask *cpu_map); + + static void __free_domain_allocs(struct s_data *d, enum s_alloc what, + const struct cpumask *cpu_map) + { + switch (what) { + case sa_rootdomain: + if (!atomic_read(&d->rd->refcount)) + free_rootdomain(&d->rd->rcu); /* fall through */ + case sa_sd: + free_percpu(d->sd); /* fall through */ + case sa_sd_storage: + __sdt_free(cpu_map); /* fall through */ + case sa_none: + break; + } + } + + static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, + const struct cpumask *cpu_map) + { + memset(d, 0, sizeof(*d)); + + if (__sdt_alloc(cpu_map)) + return sa_sd_storage; + d->sd = alloc_percpu(struct sched_domain *); + if (!d->sd) + return sa_sd_storage; + d->rd = alloc_rootdomain(); + if (!d->rd) + return sa_sd; + return sa_rootdomain; + } + + /* + * NULL the sd_data elements we've used to build the sched_domain and + * sched_group structure so that the subsequent __free_domain_allocs() + * will not free the data we're using. + */ + static void claim_allocations(int cpu, struct sched_domain *sd) + { + struct sd_data *sdd = sd->private; + + WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); + *per_cpu_ptr(sdd->sd, cpu) = NULL; + + if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) + *per_cpu_ptr(sdd->sg, cpu) = NULL; + + if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) + *per_cpu_ptr(sdd->sgp, cpu) = NULL; + } + + #ifdef CONFIG_SCHED_SMT + static const struct cpumask *cpu_smt_mask(int cpu) + { + return topology_thread_cpumask(cpu); + } + #endif + + /* + * Topology list, bottom-up. + */ + static struct sched_domain_topology_level default_topology[] = { + #ifdef CONFIG_SCHED_SMT + { sd_init_SIBLING, cpu_smt_mask, }, + #endif + #ifdef CONFIG_SCHED_MC + { sd_init_MC, cpu_coregroup_mask, }, + #endif + #ifdef CONFIG_SCHED_BOOK + { sd_init_BOOK, cpu_book_mask, }, + #endif + { sd_init_CPU, cpu_cpu_mask, }, + #ifdef CONFIG_NUMA + { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, + { sd_init_ALLNODES, cpu_allnodes_mask, }, + #endif + { NULL, }, + }; + + static struct sched_domain_topology_level *sched_domain_topology = default_topology; + + static int __sdt_alloc(const struct cpumask *cpu_map) + { + struct sched_domain_topology_level *tl; + int j; + + for (tl = sched_domain_topology; tl->init; tl++) { + struct sd_data *sdd = &tl->data; + + sdd->sd = alloc_percpu(struct sched_domain *); + if (!sdd->sd) + return -ENOMEM; + + sdd->sg = alloc_percpu(struct sched_group *); + if (!sdd->sg) + return -ENOMEM; + + sdd->sgp = alloc_percpu(struct sched_group_power *); + if (!sdd->sgp) + return -ENOMEM; + + for_each_cpu(j, cpu_map) { + struct sched_domain *sd; + struct sched_group *sg; + struct sched_group_power *sgp; + + sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), + GFP_KERNEL, cpu_to_node(j)); + if (!sd) + return -ENOMEM; + + *per_cpu_ptr(sdd->sd, j) = sd; + + sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, cpu_to_node(j)); + if (!sg) + return -ENOMEM; + + *per_cpu_ptr(sdd->sg, j) = sg; + + sgp = kzalloc_node(sizeof(struct sched_group_power), + GFP_KERNEL, cpu_to_node(j)); + if (!sgp) + return -ENOMEM; + + *per_cpu_ptr(sdd->sgp, j) = sgp; + } + } + + return 0; + } + + static void __sdt_free(const struct cpumask *cpu_map) + { + struct sched_domain_topology_level *tl; + int j; + + for (tl = sched_domain_topology; tl->init; tl++) { + struct sd_data *sdd = &tl->data; + + for_each_cpu(j, cpu_map) { + struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); + if (sd && (sd->flags & SD_OVERLAP)) + free_sched_groups(sd->groups, 0); + kfree(*per_cpu_ptr(sdd->sd, j)); + kfree(*per_cpu_ptr(sdd->sg, j)); + kfree(*per_cpu_ptr(sdd->sgp, j)); + } + free_percpu(sdd->sd); + free_percpu(sdd->sg); + free_percpu(sdd->sgp); + } + } + + struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, + struct s_data *d, const struct cpumask *cpu_map, + struct sched_domain_attr *attr, struct sched_domain *child, + int cpu) + { + struct sched_domain *sd = tl->init(tl, cpu); + if (!sd) + return child; + + set_domain_attribute(sd, attr); + cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); + if (child) { + sd->level = child->level + 1; + sched_domain_level_max = max(sched_domain_level_max, sd->level); + child->parent = sd; + } + sd->child = child; + + return sd; + } + + /* + * Build sched domains for a given set of cpus and attach the sched domains + * to the individual cpus + */ + static int build_sched_domains(const struct cpumask *cpu_map, + struct sched_domain_attr *attr) + { + enum s_alloc alloc_state = sa_none; + struct sched_domain *sd; + struct s_data d; + int i, ret = -ENOMEM; + + alloc_state = __visit_domain_allocation_hell(&d, cpu_map); + if (alloc_state != sa_rootdomain) + goto error; + + /* Set up domains for cpus specified by the cpu_map. */ + for_each_cpu(i, cpu_map) { + struct sched_domain_topology_level *tl; + + sd = NULL; + for (tl = sched_domain_topology; tl->init; tl++) { + sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); + if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) + sd->flags |= SD_OVERLAP; + if (cpumask_equal(cpu_map, sched_domain_span(sd))) + break; + } + + while (sd->child) + sd = sd->child; + + *per_cpu_ptr(d.sd, i) = sd; + } + + /* Build the groups for the domains */ + for_each_cpu(i, cpu_map) { + for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { + sd->span_weight = cpumask_weight(sched_domain_span(sd)); + if (sd->flags & SD_OVERLAP) { + if (build_overlap_sched_groups(sd, i)) + goto error; + } else { + if (build_sched_groups(sd, i)) + goto error; + } + } + } + + /* Calculate CPU power for physical packages and nodes */ + for (i = nr_cpumask_bits-1; i >= 0; i--) { + if (!cpumask_test_cpu(i, cpu_map)) + continue; + + for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { + claim_allocations(i, sd); + init_sched_groups_power(i, sd); + } + } + + /* Attach the domains */ + rcu_read_lock(); + for_each_cpu(i, cpu_map) { + sd = *per_cpu_ptr(d.sd, i); + cpu_attach_domain(sd, d.rd, i); + } + rcu_read_unlock(); + + ret = 0; + error: + __free_domain_allocs(&d, alloc_state, cpu_map); + return ret; + } + + static cpumask_var_t *doms_cur; /* current sched domains */ + static int ndoms_cur; /* number of sched domains in 'doms_cur' */ + static struct sched_domain_attr *dattr_cur; + /* attribues of custom domains in 'doms_cur' */ + + /* + * Special case: If a kmalloc of a doms_cur partition (array of + * cpumask) fails, then fallback to a single sched domain, + * as determined by the single cpumask fallback_doms. + */ + static cpumask_var_t fallback_doms; + + /* + * arch_update_cpu_topology lets virtualized architectures update the + * cpu core maps. It is supposed to return 1 if the topology changed + * or 0 if it stayed the same. + */ + int __attribute__((weak)) arch_update_cpu_topology(void) + { + return 0; + } + + cpumask_var_t *alloc_sched_domains(unsigned int ndoms) + { + int i; + cpumask_var_t *doms; + + doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); + if (!doms) + return NULL; + for (i = 0; i < ndoms; i++) { + if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { + free_sched_domains(doms, i); + return NULL; + } + } + return doms; + } + + void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) + { + unsigned int i; + for (i = 0; i < ndoms; i++) + free_cpumask_var(doms[i]); + kfree(doms); + } + + /* + * Set up scheduler domains and groups. Callers must hold the hotplug lock. + * For now this just excludes isolated cpus, but could be used to + * exclude other special cases in the future. + */ + static int init_sched_domains(const struct cpumask *cpu_map) + { + int err; + + arch_update_cpu_topology(); + ndoms_cur = 1; + doms_cur = alloc_sched_domains(ndoms_cur); + if (!doms_cur) + doms_cur = &fallback_doms; + cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); + dattr_cur = NULL; + err = build_sched_domains(doms_cur[0], NULL); + register_sched_domain_sysctl(); + + return err; + } + + /* + * Detach sched domains from a group of cpus specified in cpu_map + * These cpus will now be attached to the NULL domain + */ + static void detach_destroy_domains(const struct cpumask *cpu_map) + { + int i; + + rcu_read_lock(); + for_each_cpu(i, cpu_map) + cpu_attach_domain(NULL, &def_root_domain, i); + rcu_read_unlock(); + } + + /* handle null as "default" */ + static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, + struct sched_domain_attr *new, int idx_new) + { + struct sched_domain_attr tmp; + + /* fast path */ + if (!new && !cur) + return 1; + + tmp = SD_ATTR_INIT; + return !memcmp(cur ? (cur + idx_cur) : &tmp, + new ? (new + idx_new) : &tmp, + sizeof(struct sched_domain_attr)); + } + + /* + * Partition sched domains as specified by the 'ndoms_new' + * cpumasks in the array doms_new[] of cpumasks. This compares + * doms_new[] to the current sched domain partitioning, doms_cur[]. + * It destroys each deleted domain and builds each new domain. + * + * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. + * The masks don't intersect (don't overlap.) We should setup one + * sched domain for each mask. CPUs not in any of the cpumasks will + * not be load balanced. If the same cpumask appears both in the + * current 'doms_cur' domains and in the new 'doms_new', we can leave + * it as it is. + * + * The passed in 'doms_new' should be allocated using + * alloc_sched_domains. This routine takes ownership of it and will + * free_sched_domains it when done with it. If the caller failed the + * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, + * and partition_sched_domains() will fallback to the single partition + * 'fallback_doms', it also forces the domains to be rebuilt. + * + * If doms_new == NULL it will be replaced with cpu_online_mask. + * ndoms_new == 0 is a special case for destroying existing domains, + * and it will not create the default domain. + * + * Call with hotplug lock held + */ + void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], + struct sched_domain_attr *dattr_new) + { + int i, j, n; + int new_topology; + + mutex_lock(&sched_domains_mutex); + + /* always unregister in case we don't destroy any domains */ + unregister_sched_domain_sysctl(); + + /* Let architecture update cpu core mappings. */ + new_topology = arch_update_cpu_topology(); + + n = doms_new ? ndoms_new : 0; + + /* Destroy deleted domains */ + for (i = 0; i < ndoms_cur; i++) { + for (j = 0; j < n && !new_topology; j++) { + if (cpumask_equal(doms_cur[i], doms_new[j]) + && dattrs_equal(dattr_cur, i, dattr_new, j)) + goto match1; + } + /* no match - a current sched domain not in new doms_new[] */ + detach_destroy_domains(doms_cur[i]); + match1: + ; + } + + if (doms_new == NULL) { + ndoms_cur = 0; + doms_new = &fallback_doms; + cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); + WARN_ON_ONCE(dattr_new); + } + + /* Build new domains */ + for (i = 0; i < ndoms_new; i++) { + for (j = 0; j < ndoms_cur && !new_topology; j++) { + if (cpumask_equal(doms_new[i], doms_cur[j]) + && dattrs_equal(dattr_new, i, dattr_cur, j)) + goto match2; + } + /* no match - add a new doms_new */ + build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); + match2: + ; + } + + /* Remember the new sched domains */ + if (doms_cur != &fallback_doms) + free_sched_domains(doms_cur, ndoms_cur); + kfree(dattr_cur); /* kfree(NULL) is safe */ + doms_cur = doms_new; + dattr_cur = dattr_new; + ndoms_cur = ndoms_new; + + register_sched_domain_sysctl(); + + mutex_unlock(&sched_domains_mutex); + } + + #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + static void reinit_sched_domains(void) + { + get_online_cpus(); + + /* Destroy domains first to force the rebuild */ + partition_sched_domains(0, NULL, NULL); + + rebuild_sched_domains(); + put_online_cpus(); + } + + static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) + { + unsigned int level = 0; + + if (sscanf(buf, "%u", &level) != 1) + return -EINVAL; + + /* + * level is always be positive so don't check for + * level < POWERSAVINGS_BALANCE_NONE which is 0 + * What happens on 0 or 1 byte write, + * need to check for count as well? + */ + + if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) + return -EINVAL; + + if (smt) + sched_smt_power_savings = level; + else + sched_mc_power_savings = level; + + reinit_sched_domains(); + + return count; + } + + #ifdef CONFIG_SCHED_MC + static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, + struct sysdev_class_attribute *attr, + char *page) + { + return sprintf(page, "%u\n", sched_mc_power_savings); + } + static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, + struct sysdev_class_attribute *attr, + const char *buf, size_t count) + { + return sched_power_savings_store(buf, count, 0); + } + static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, + sched_mc_power_savings_show, + sched_mc_power_savings_store); + #endif + + #ifdef CONFIG_SCHED_SMT + static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, + struct sysdev_class_attribute *attr, + char *page) + { + return sprintf(page, "%u\n", sched_smt_power_savings); + } + static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, + struct sysdev_class_attribute *attr, + const char *buf, size_t count) + { + return sched_power_savings_store(buf, count, 1); + } + static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, + sched_smt_power_savings_show, + sched_smt_power_savings_store); + #endif + + int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) + { + int err = 0; + + #ifdef CONFIG_SCHED_SMT + if (smt_capable()) + err = sysfs_create_file(&cls->kset.kobj, + &attr_sched_smt_power_savings.attr); + #endif + #ifdef CONFIG_SCHED_MC + if (!err && mc_capable()) + err = sysfs_create_file(&cls->kset.kobj, + &attr_sched_mc_power_savings.attr); + #endif + return err; + } + #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ + + /* + * Update cpusets according to cpu_active mask. If cpusets are + * disabled, cpuset_update_active_cpus() becomes a simple wrapper + * around partition_sched_domains(). + */ + static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, + void *hcpu) + { + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_ONLINE: + case CPU_DOWN_FAILED: + cpuset_update_active_cpus(); + return NOTIFY_OK; + default: + return NOTIFY_DONE; + } + } + + static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, + void *hcpu) + { + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_DOWN_PREPARE: + cpuset_update_active_cpus(); + return NOTIFY_OK; + default: + return NOTIFY_DONE; + } + } + + void __init sched_init_smp(void) + { + cpumask_var_t non_isolated_cpus; + + alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); + alloc_cpumask_var(&fallback_doms, GFP_KERNEL); + + get_online_cpus(); + mutex_lock(&sched_domains_mutex); + init_sched_domains(cpu_active_mask); + cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); + if (cpumask_empty(non_isolated_cpus)) + cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); + mutex_unlock(&sched_domains_mutex); + put_online_cpus(); + + hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); + hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); + + /* RT runtime code needs to handle some hotplug events */ + hotcpu_notifier(update_runtime, 0); + + init_hrtick(); + + /* Move init over to a non-isolated CPU */ + if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) + BUG(); + sched_init_granularity(); + free_cpumask_var(non_isolated_cpus); + + init_sched_rt_class(); + } + #else + void __init sched_init_smp(void) + { + sched_init_granularity(); + } + #endif /* CONFIG_SMP */ + + const_debug unsigned int sysctl_timer_migration = 1; + + int in_sched_functions(unsigned long addr) + { + return in_lock_functions(addr) || + (addr >= (unsigned long)__sched_text_start + && addr < (unsigned long)__sched_text_end); + } + + #ifdef CONFIG_CGROUP_SCHED + struct task_group root_task_group; + #endif + + DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); + + void __init sched_init(void) + { + int i, j; + unsigned long alloc_size = 0, ptr; + + #ifdef CONFIG_FAIR_GROUP_SCHED + alloc_size += 2 * nr_cpu_ids * sizeof(void **); + #endif + #ifdef CONFIG_RT_GROUP_SCHED + alloc_size += 2 * nr_cpu_ids * sizeof(void **); + #endif + #ifdef CONFIG_CPUMASK_OFFSTACK + alloc_size += num_possible_cpus() * cpumask_size(); + #endif + if (alloc_size) { + ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); + + #ifdef CONFIG_FAIR_GROUP_SCHED + root_task_group.se = (struct sched_entity **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + + root_task_group.cfs_rq = (struct cfs_rq **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + + #endif /* CONFIG_FAIR_GROUP_SCHED */ + #ifdef CONFIG_RT_GROUP_SCHED + root_task_group.rt_se = (struct sched_rt_entity **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + + root_task_group.rt_rq = (struct rt_rq **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + + #endif /* CONFIG_RT_GROUP_SCHED */ + #ifdef CONFIG_CPUMASK_OFFSTACK + for_each_possible_cpu(i) { + per_cpu(load_balance_tmpmask, i) = (void *)ptr; + ptr += cpumask_size(); + } + #endif /* CONFIG_CPUMASK_OFFSTACK */ + } + + #ifdef CONFIG_SMP + init_defrootdomain(); + #endif + + init_rt_bandwidth(&def_rt_bandwidth, + global_rt_period(), global_rt_runtime()); + + #ifdef CONFIG_RT_GROUP_SCHED + init_rt_bandwidth(&root_task_group.rt_bandwidth, + global_rt_period(), global_rt_runtime()); + #endif /* CONFIG_RT_GROUP_SCHED */ + + #ifdef CONFIG_CGROUP_SCHED + list_add(&root_task_group.list, &task_groups); + INIT_LIST_HEAD(&root_task_group.children); + INIT_LIST_HEAD(&root_task_group.siblings); + autogroup_init(&init_task); + + #endif /* CONFIG_CGROUP_SCHED */ + + #ifdef CONFIG_CGROUP_CPUACCT + root_cpuacct.cpustat = &kernel_cpustat; + root_cpuacct.cpuusage = alloc_percpu(u64); + /* Too early, not expected to fail */ + BUG_ON(!root_cpuacct.cpuusage); + #endif + for_each_possible_cpu(i) { + struct rq *rq; + + rq = cpu_rq(i); + raw_spin_lock_init(&rq->lock); + rq->nr_running = 0; + rq->calc_load_active = 0; + rq->calc_load_update = jiffies + LOAD_FREQ; + init_cfs_rq(&rq->cfs); + init_rt_rq(&rq->rt, rq); + #ifdef CONFIG_FAIR_GROUP_SCHED + root_task_group.shares = ROOT_TASK_GROUP_LOAD; + INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); + /* + * How much cpu bandwidth does root_task_group get? + * + * In case of task-groups formed thr' the cgroup filesystem, it + * gets 100% of the cpu resources in the system. This overall + * system cpu resource is divided among the tasks of + * root_task_group and its child task-groups in a fair manner, + * based on each entity's (task or task-group's) weight + * (se->load.weight). + * + * In other words, if root_task_group has 10 tasks of weight + * 1024) and two child groups A0 and A1 (of weight 1024 each), + * then A0's share of the cpu resource is: + * + * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% + * + * We achieve this by letting root_task_group's tasks sit + * directly in rq->cfs (i.e root_task_group->se[] = NULL). + */ + init_cfs_bandwidth(&root_task_group.cfs_bandwidth); + init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); + #endif /* CONFIG_FAIR_GROUP_SCHED */ + + rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; + #ifdef CONFIG_RT_GROUP_SCHED + INIT_LIST_HEAD(&rq->leaf_rt_rq_list); + init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); + #endif + + for (j = 0; j < CPU_LOAD_IDX_MAX; j++) + rq->cpu_load[j] = 0; + + rq->last_load_update_tick = jiffies; + + #ifdef CONFIG_SMP + rq->sd = NULL; + rq->rd = NULL; + rq->cpu_power = SCHED_POWER_SCALE; + rq->post_schedule = 0; + rq->active_balance = 0; + rq->next_balance = jiffies; + rq->push_cpu = 0; + rq->cpu = i; + rq->online = 0; + rq->idle_stamp = 0; + rq->avg_idle = 2*sysctl_sched_migration_cost; + rq_attach_root(rq, &def_root_domain); + #ifdef CONFIG_NO_HZ + rq->nohz_flags = 0; + #endif + #endif + init_rq_hrtick(rq); + atomic_set(&rq->nr_iowait, 0); + } + + set_load_weight(&init_task); + + #ifdef CONFIG_PREEMPT_NOTIFIERS + INIT_HLIST_HEAD(&init_task.preempt_notifiers); + #endif + + #ifdef CONFIG_RT_MUTEXES + plist_head_init(&init_task.pi_waiters); + #endif + + /* + * The boot idle thread does lazy MMU switching as well: + */ + atomic_inc(&init_mm.mm_count); + enter_lazy_tlb(&init_mm, current); + + /* + * Make us the idle thread. Technically, schedule() should not be + * called from this thread, however somewhere below it might be, + * but because we are the idle thread, we just pick up running again + * when this runqueue becomes "idle". + */ + init_idle(current, smp_processor_id()); + + calc_load_update = jiffies + LOAD_FREQ; + + /* + * During early bootup we pretend to be a normal task: + */ + current->sched_class = &fair_sched_class; + + #ifdef CONFIG_SMP + zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); + /* May be allocated at isolcpus cmdline parse time */ + if (cpu_isolated_map == NULL) + zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); + #endif + init_sched_fair_class(); + + scheduler_running = 1; + } + + #ifdef CONFIG_DEBUG_ATOMIC_SLEEP + static inline int preempt_count_equals(int preempt_offset) + { + int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); + + return (nested == preempt_offset); + } + + void __might_sleep(const char *file, int line, int preempt_offset) + { + static unsigned long prev_jiffy; /* ratelimiting */ + + rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ + if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || + system_state != SYSTEM_RUNNING || oops_in_progress) + return; + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) + return; + prev_jiffy = jiffies; + + printk(KERN_ERR + "BUG: sleeping function called from invalid context at %s:%d\n", + file, line); + printk(KERN_ERR + "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", + in_atomic(), irqs_disabled(), + current->pid, current->comm); + + debug_show_held_locks(current); + if (irqs_disabled()) + print_irqtrace_events(current); + dump_stack(); + } + EXPORT_SYMBOL(__might_sleep); + #endif + + #ifdef CONFIG_MAGIC_SYSRQ + static void normalize_task(struct rq *rq, struct task_struct *p) + { + const struct sched_class *prev_class = p->sched_class; + int old_prio = p->prio; + int on_rq; + + on_rq = p->on_rq; + if (on_rq) + deactivate_task(rq, p, 0); + __setscheduler(rq, p, SCHED_NORMAL, 0); + if (on_rq) { + activate_task(rq, p, 0); + resched_task(rq->curr); + } + + check_class_changed(rq, p, prev_class, old_prio); + } + + void normalize_rt_tasks(void) + { + struct task_struct *g, *p; + unsigned long flags; + struct rq *rq; + + read_lock_irqsave(&tasklist_lock, flags); + do_each_thread(g, p) { + /* + * Only normalize user tasks: + */ + if (!p->mm) + continue; + + p->se.exec_start = 0; + #ifdef CONFIG_SCHEDSTATS + p->se.statistics.wait_start = 0; + p->se.statistics.sleep_start = 0; + p->se.statistics.block_start = 0; + #endif + + if (!rt_task(p)) { + /* + * Renice negative nice level userspace + * tasks back to 0: + */ + if (TASK_NICE(p) < 0 && p->mm) + set_user_nice(p, 0); + continue; + } + + raw_spin_lock(&p->pi_lock); + rq = __task_rq_lock(p); + + normalize_task(rq, p); + + __task_rq_unlock(rq); + raw_spin_unlock(&p->pi_lock); + } while_each_thread(g, p); + + read_unlock_irqrestore(&tasklist_lock, flags); + } + + #endif /* CONFIG_MAGIC_SYSRQ */ + + #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) + /* + * These functions are only useful for the IA64 MCA handling, or kdb. + * + * They can only be called when the whole system has been + * stopped - every CPU needs to be quiescent, and no scheduling + * activity can take place. Using them for anything else would + * be a serious bug, and as a result, they aren't even visible + * under any other configuration. + */ + + /** + * curr_task - return the current task for a given cpu. + * @cpu: the processor in question. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + */ + struct task_struct *curr_task(int cpu) + { + return cpu_curr(cpu); + } + + #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ + + #ifdef CONFIG_IA64 + /** + * set_curr_task - set the current task for a given cpu. + * @cpu: the processor in question. + * @p: the task pointer to set. + * + * Description: This function must only be used when non-maskable interrupts + * are serviced on a separate stack. It allows the architecture to switch the + * notion of the current task on a cpu in a non-blocking manner. This function + * must be called with all CPU's synchronized, and interrupts disabled, the + * and caller must save the original value of the current task (see + * curr_task() above) and restore that value before reenabling interrupts and + * re-starting the system. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + */ + void set_curr_task(int cpu, struct task_struct *p) + { + cpu_curr(cpu) = p; + } + + #endif + + #ifdef CONFIG_RT_GROUP_SCHED + #else /* !CONFIG_RT_GROUP_SCHED */ + #endif /* CONFIG_RT_GROUP_SCHED */ + + #ifdef CONFIG_CGROUP_SCHED + /* task_group_lock serializes the addition/removal of task groups */ + static DEFINE_SPINLOCK(task_group_lock); + + static void free_sched_group(struct task_group *tg) + { + free_fair_sched_group(tg); + free_rt_sched_group(tg); + autogroup_free(tg); + kfree(tg); + } + + /* allocate runqueue etc for a new task group */ + struct task_group *sched_create_group(struct task_group *parent) + { + struct task_group *tg; + unsigned long flags; + + tg = kzalloc(sizeof(*tg), GFP_KERNEL); + if (!tg) + return ERR_PTR(-ENOMEM); + + if (!alloc_fair_sched_group(tg, parent)) + goto err; + + if (!alloc_rt_sched_group(tg, parent)) + goto err; + + spin_lock_irqsave(&task_group_lock, flags); + list_add_rcu(&tg->list, &task_groups); + + WARN_ON(!parent); /* root should already exist */ + + tg->parent = parent; + INIT_LIST_HEAD(&tg->children); + list_add_rcu(&tg->siblings, &parent->children); + spin_unlock_irqrestore(&task_group_lock, flags); + + return tg; + + err: + free_sched_group(tg); + return ERR_PTR(-ENOMEM); + } + + /* rcu callback to free various structures associated with a task group */ + static void free_sched_group_rcu(struct rcu_head *rhp) + { + /* now it should be safe to free those cfs_rqs */ + free_sched_group(container_of(rhp, struct task_group, rcu)); + } + + /* Destroy runqueue etc associated with a task group */ + void sched_destroy_group(struct task_group *tg) + { + unsigned long flags; + int i; + + /* end participation in shares distribution */ + for_each_possible_cpu(i) + unregister_fair_sched_group(tg, i); + + spin_lock_irqsave(&task_group_lock, flags); + list_del_rcu(&tg->list); + list_del_rcu(&tg->siblings); + spin_unlock_irqrestore(&task_group_lock, flags); + + /* wait for possible concurrent references to cfs_rqs complete */ + call_rcu(&tg->rcu, free_sched_group_rcu); + } + + /* change task's runqueue when it moves between groups. + * The caller of this function should have put the task in its new group + * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to + * reflect its new group. + */ + void sched_move_task(struct task_struct *tsk) + { + int on_rq, running; + unsigned long flags; + struct rq *rq; + + rq = task_rq_lock(tsk, &flags); + + running = task_current(rq, tsk); + on_rq = tsk->on_rq; + + if (on_rq) + dequeue_task(rq, tsk, 0); + if (unlikely(running)) + tsk->sched_class->put_prev_task(rq, tsk); + + #ifdef CONFIG_FAIR_GROUP_SCHED + if (tsk->sched_class->task_move_group) + tsk->sched_class->task_move_group(tsk, on_rq); + else + #endif + set_task_rq(tsk, task_cpu(tsk)); + + if (unlikely(running)) + tsk->sched_class->set_curr_task(rq); + if (on_rq) + enqueue_task(rq, tsk, 0); + + task_rq_unlock(rq, tsk, &flags); + } + #endif /* CONFIG_CGROUP_SCHED */ + + #ifdef CONFIG_FAIR_GROUP_SCHED + #endif + + #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) + static unsigned long to_ratio(u64 period, u64 runtime) + { + if (runtime == RUNTIME_INF) + return 1ULL << 20; + + return div64_u64(runtime << 20, period); + } + #endif + + #ifdef CONFIG_RT_GROUP_SCHED + /* + * Ensure that the real time constraints are schedulable. + */ + static DEFINE_MUTEX(rt_constraints_mutex); + + /* Must be called with tasklist_lock held */ + static inline int tg_has_rt_tasks(struct task_group *tg) + { + struct task_struct *g, *p; + + do_each_thread(g, p) { + if (rt_task(p) && task_rq(p)->rt.tg == tg) + return 1; + } while_each_thread(g, p); + + return 0; + } + + struct rt_schedulable_data { + struct task_group *tg; + u64 rt_period; + u64 rt_runtime; + }; + + static int tg_rt_schedulable(struct task_group *tg, void *data) + { + struct rt_schedulable_data *d = data; + struct task_group *child; + unsigned long total, sum = 0; + u64 period, runtime; + + period = ktime_to_ns(tg->rt_bandwidth.rt_period); + runtime = tg->rt_bandwidth.rt_runtime; + + if (tg == d->tg) { + period = d->rt_period; + runtime = d->rt_runtime; + } + + /* + * Cannot have more runtime than the period. + */ + if (runtime > period && runtime != RUNTIME_INF) + return -EINVAL; + + /* + * Ensure we don't starve existing RT tasks. + */ + if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) + return -EBUSY; + + total = to_ratio(period, runtime); + + /* + * Nobody can have more than the global setting allows. + */ + if (total > to_ratio(global_rt_period(), global_rt_runtime())) + return -EINVAL; + + /* + * The sum of our children's runtime should not exceed our own. + */ + list_for_each_entry_rcu(child, &tg->children, siblings) { + period = ktime_to_ns(child->rt_bandwidth.rt_period); + runtime = child->rt_bandwidth.rt_runtime; + + if (child == d->tg) { + period = d->rt_period; + runtime = d->rt_runtime; + } + + sum += to_ratio(period, runtime); + } + + if (sum > total) + return -EINVAL; + + return 0; + } + + static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) + { + int ret; + + struct rt_schedulable_data data = { + .tg = tg, + .rt_period = period, + .rt_runtime = runtime, + }; + + rcu_read_lock(); + ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); + rcu_read_unlock(); + + return ret; + } + + static int tg_set_rt_bandwidth(struct task_group *tg, + u64 rt_period, u64 rt_runtime) + { + int i, err = 0; + + mutex_lock(&rt_constraints_mutex); + read_lock(&tasklist_lock); + err = __rt_schedulable(tg, rt_period, rt_runtime); + if (err) + goto unlock; + + raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); + tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); + tg->rt_bandwidth.rt_runtime = rt_runtime; + + for_each_possible_cpu(i) { + struct rt_rq *rt_rq = tg->rt_rq[i]; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = rt_runtime; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } + raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); + unlock: + read_unlock(&tasklist_lock); + mutex_unlock(&rt_constraints_mutex); + + return err; + } + + int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) + { + u64 rt_runtime, rt_period; + + rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); + rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; + if (rt_runtime_us < 0) + rt_runtime = RUNTIME_INF; + + return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); + } + + long sched_group_rt_runtime(struct task_group *tg) + { + u64 rt_runtime_us; + + if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) + return -1; + + rt_runtime_us = tg->rt_bandwidth.rt_runtime; + do_div(rt_runtime_us, NSEC_PER_USEC); + return rt_runtime_us; + } + + int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) + { + u64 rt_runtime, rt_period; + + rt_period = (u64)rt_period_us * NSEC_PER_USEC; + rt_runtime = tg->rt_bandwidth.rt_runtime; + + if (rt_period == 0) + return -EINVAL; + + return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); + } + + long sched_group_rt_period(struct task_group *tg) + { + u64 rt_period_us; + + rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); + do_div(rt_period_us, NSEC_PER_USEC); + return rt_period_us; + } + + static int sched_rt_global_constraints(void) + { + u64 runtime, period; + int ret = 0; + + if (sysctl_sched_rt_period <= 0) + return -EINVAL; + + runtime = global_rt_runtime(); + period = global_rt_period(); + + /* + * Sanity check on the sysctl variables. + */ + if (runtime > period && runtime != RUNTIME_INF) + return -EINVAL; + + mutex_lock(&rt_constraints_mutex); + read_lock(&tasklist_lock); + ret = __rt_schedulable(NULL, 0, 0); + read_unlock(&tasklist_lock); + mutex_unlock(&rt_constraints_mutex); + + return ret; + } + + int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) + { + /* Don't accept realtime tasks when there is no way for them to run */ + if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) + return 0; + + return 1; + } + + #else /* !CONFIG_RT_GROUP_SCHED */ + static int sched_rt_global_constraints(void) + { + unsigned long flags; + int i; + + if (sysctl_sched_rt_period <= 0) + return -EINVAL; + + /* + * There's always some RT tasks in the root group + * -- migration, kstopmachine etc.. + */ + if (sysctl_sched_rt_runtime == 0) + return -EBUSY; + + raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); + for_each_possible_cpu(i) { + struct rt_rq *rt_rq = &cpu_rq(i)->rt; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = global_rt_runtime(); + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } + raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); + + return 0; + } + #endif /* CONFIG_RT_GROUP_SCHED */ + + int sched_rt_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) + { + int ret; + int old_period, old_runtime; + static DEFINE_MUTEX(mutex); + + mutex_lock(&mutex); + old_period = sysctl_sched_rt_period; + old_runtime = sysctl_sched_rt_runtime; + + ret = proc_dointvec(table, write, buffer, lenp, ppos); + + if (!ret && write) { + ret = sched_rt_global_constraints(); + if (ret) { + sysctl_sched_rt_period = old_period; + sysctl_sched_rt_runtime = old_runtime; + } else { + def_rt_bandwidth.rt_runtime = global_rt_runtime(); + def_rt_bandwidth.rt_period = + ns_to_ktime(global_rt_period()); + } + } + mutex_unlock(&mutex); + + return ret; + } + + #ifdef CONFIG_CGROUP_SCHED + + /* return corresponding task_group object of a cgroup */ + static inline struct task_group *cgroup_tg(struct cgroup *cgrp) + { + return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), + struct task_group, css); + } + + static struct cgroup_subsys_state * + cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) + { + struct task_group *tg, *parent; + + if (!cgrp->parent) { + /* This is early initialization for the top cgroup */ + return &root_task_group.css; + } + + parent = cgroup_tg(cgrp->parent); + tg = sched_create_group(parent); + if (IS_ERR(tg)) + return ERR_PTR(-ENOMEM); + + return &tg->css; + } + + static void + cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) + { + struct task_group *tg = cgroup_tg(cgrp); + + sched_destroy_group(tg); + } + + static int + cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) + { + #ifdef CONFIG_RT_GROUP_SCHED + if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) + return -EINVAL; + #else + /* We don't support RT-tasks being in separate groups */ + if (tsk->sched_class != &fair_sched_class) + return -EINVAL; + #endif + return 0; + } + + static void + cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) + { + sched_move_task(tsk); + } + + static void + cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, + struct cgroup *old_cgrp, struct task_struct *task) + { + /* + * cgroup_exit() is called in the copy_process() failure path. + * Ignore this case since the task hasn't ran yet, this avoids + * trying to poke a half freed task state from generic code. + */ + if (!(task->flags & PF_EXITING)) + return; + + sched_move_task(task); + } + + #ifdef CONFIG_FAIR_GROUP_SCHED + static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, + u64 shareval) + { + return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); + } + + static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) + { + struct task_group *tg = cgroup_tg(cgrp); + + return (u64) scale_load_down(tg->shares); + } + + #ifdef CONFIG_CFS_BANDWIDTH + static DEFINE_MUTEX(cfs_constraints_mutex); + + const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ + const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ + + static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); + + static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) + { + int i, ret = 0, runtime_enabled, runtime_was_enabled; + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + + if (tg == &root_task_group) + return -EINVAL; + + /* + * Ensure we have at some amount of bandwidth every period. This is + * to prevent reaching a state of large arrears when throttled via + * entity_tick() resulting in prolonged exit starvation. + */ + if (quota < min_cfs_quota_period || period < min_cfs_quota_period) + return -EINVAL; + + /* + * Likewise, bound things on the otherside by preventing insane quota + * periods. This also allows us to normalize in computing quota + * feasibility. + */ + if (period > max_cfs_quota_period) + return -EINVAL; + + mutex_lock(&cfs_constraints_mutex); + ret = __cfs_schedulable(tg, period, quota); + if (ret) + goto out_unlock; + + runtime_enabled = quota != RUNTIME_INF; + runtime_was_enabled = cfs_b->quota != RUNTIME_INF; + account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); + raw_spin_lock_irq(&cfs_b->lock); + cfs_b->period = ns_to_ktime(period); + cfs_b->quota = quota; + + __refill_cfs_bandwidth_runtime(cfs_b); + /* restart the period timer (if active) to handle new period expiry */ + if (runtime_enabled && cfs_b->timer_active) { + /* force a reprogram */ + cfs_b->timer_active = 0; + __start_cfs_bandwidth(cfs_b); + } + raw_spin_unlock_irq(&cfs_b->lock); + + for_each_possible_cpu(i) { + struct cfs_rq *cfs_rq = tg->cfs_rq[i]; + struct rq *rq = cfs_rq->rq; + + raw_spin_lock_irq(&rq->lock); + cfs_rq->runtime_enabled = runtime_enabled; + cfs_rq->runtime_remaining = 0; + + if (cfs_rq->throttled) + unthrottle_cfs_rq(cfs_rq); + raw_spin_unlock_irq(&rq->lock); + } + out_unlock: + mutex_unlock(&cfs_constraints_mutex); + + return ret; + } + + int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) + { + u64 quota, period; + + period = ktime_to_ns(tg->cfs_bandwidth.period); + if (cfs_quota_us < 0) + quota = RUNTIME_INF; + else + quota = (u64)cfs_quota_us * NSEC_PER_USEC; + + return tg_set_cfs_bandwidth(tg, period, quota); + } + + long tg_get_cfs_quota(struct task_group *tg) + { + u64 quota_us; + + if (tg->cfs_bandwidth.quota == RUNTIME_INF) + return -1; + + quota_us = tg->cfs_bandwidth.quota; + do_div(quota_us, NSEC_PER_USEC); + + return quota_us; + } + + int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) + { + u64 quota, period; + + period = (u64)cfs_period_us * NSEC_PER_USEC; + quota = tg->cfs_bandwidth.quota; + + if (period <= 0) + return -EINVAL; + + return tg_set_cfs_bandwidth(tg, period, quota); + } + + long tg_get_cfs_period(struct task_group *tg) + { + u64 cfs_period_us; + + cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); + do_div(cfs_period_us, NSEC_PER_USEC); + + return cfs_period_us; + } + + static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) + { + return tg_get_cfs_quota(cgroup_tg(cgrp)); + } + + static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, + s64 cfs_quota_us) + { + return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); + } + + static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) + { + return tg_get_cfs_period(cgroup_tg(cgrp)); + } + + static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, + u64 cfs_period_us) + { + return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); + } + + struct cfs_schedulable_data { + struct task_group *tg; + u64 period, quota; + }; + + /* + * normalize group quota/period to be quota/max_period + * note: units are usecs + */ + static u64 normalize_cfs_quota(struct task_group *tg, + struct cfs_schedulable_data *d) + { + u64 quota, period; + + if (tg == d->tg) { + period = d->period; + quota = d->quota; + } else { + period = tg_get_cfs_period(tg); + quota = tg_get_cfs_quota(tg); + } + + /* note: these should typically be equivalent */ + if (quota == RUNTIME_INF || quota == -1) + return RUNTIME_INF; + + return to_ratio(period, quota); + } + + static int tg_cfs_schedulable_down(struct task_group *tg, void *data) + { + struct cfs_schedulable_data *d = data; + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + s64 quota = 0, parent_quota = -1; + + if (!tg->parent) { + quota = RUNTIME_INF; + } else { + struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; + + quota = normalize_cfs_quota(tg, d); + parent_quota = parent_b->hierarchal_quota; + + /* + * ensure max(child_quota) <= parent_quota, inherit when no + * limit is set + */ + if (quota == RUNTIME_INF) + quota = parent_quota; + else if (parent_quota != RUNTIME_INF && quota > parent_quota) + return -EINVAL; + } + cfs_b->hierarchal_quota = quota; + + return 0; + } + + static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) + { + int ret; + struct cfs_schedulable_data data = { + .tg = tg, + .period = period, + .quota = quota, + }; + + if (quota != RUNTIME_INF) { + do_div(data.period, NSEC_PER_USEC); + do_div(data.quota, NSEC_PER_USEC); + } + + rcu_read_lock(); + ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); + rcu_read_unlock(); + + return ret; + } + + static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, + struct cgroup_map_cb *cb) + { + struct task_group *tg = cgroup_tg(cgrp); + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + + cb->fill(cb, "nr_periods", cfs_b->nr_periods); + cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); + cb->fill(cb, "throttled_time", cfs_b->throttled_time); + + return 0; + } + #endif /* CONFIG_CFS_BANDWIDTH */ + #endif /* CONFIG_FAIR_GROUP_SCHED */ + + #ifdef CONFIG_RT_GROUP_SCHED + static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, + s64 val) + { + return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); + } + + static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) + { + return sched_group_rt_runtime(cgroup_tg(cgrp)); + } + + static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, + u64 rt_period_us) + { + return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); + } + + static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) + { + return sched_group_rt_period(cgroup_tg(cgrp)); + } + #endif /* CONFIG_RT_GROUP_SCHED */ + + static struct cftype cpu_files[] = { + #ifdef CONFIG_FAIR_GROUP_SCHED + { + .name = "shares", + .read_u64 = cpu_shares_read_u64, + .write_u64 = cpu_shares_write_u64, + }, + #endif + #ifdef CONFIG_CFS_BANDWIDTH + { + .name = "cfs_quota_us", + .read_s64 = cpu_cfs_quota_read_s64, + .write_s64 = cpu_cfs_quota_write_s64, + }, + { + .name = "cfs_period_us", + .read_u64 = cpu_cfs_period_read_u64, + .write_u64 = cpu_cfs_period_write_u64, + }, + { + .name = "stat", + .read_map = cpu_stats_show, + }, + #endif + #ifdef CONFIG_RT_GROUP_SCHED + { + .name = "rt_runtime_us", + .read_s64 = cpu_rt_runtime_read, + .write_s64 = cpu_rt_runtime_write, + }, + { + .name = "rt_period_us", + .read_u64 = cpu_rt_period_read_uint, + .write_u64 = cpu_rt_period_write_uint, + }, + #endif + }; + + static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) + { + return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); + } + + struct cgroup_subsys cpu_cgroup_subsys = { + .name = "cpu", + .create = cpu_cgroup_create, + .destroy = cpu_cgroup_destroy, + .can_attach_task = cpu_cgroup_can_attach_task, + .attach_task = cpu_cgroup_attach_task, + .exit = cpu_cgroup_exit, + .populate = cpu_cgroup_populate, + .subsys_id = cpu_cgroup_subsys_id, + .early_init = 1, + }; + + #endif /* CONFIG_CGROUP_SCHED */ + + #ifdef CONFIG_CGROUP_CPUACCT + + /* + * CPU accounting code for task groups. + * + * Based on the work by Paul Menage (menage@google.com) and Balbir Singh + * (balbir@in.ibm.com). + */ + + /* create a new cpu accounting group */ + static struct cgroup_subsys_state *cpuacct_create( + struct cgroup_subsys *ss, struct cgroup *cgrp) + { + struct cpuacct *ca; + + if (!cgrp->parent) + return &root_cpuacct.css; + + ca = kzalloc(sizeof(*ca), GFP_KERNEL); + if (!ca) + goto out; + + ca->cpuusage = alloc_percpu(u64); + if (!ca->cpuusage) + goto out_free_ca; + + ca->cpustat = alloc_percpu(struct kernel_cpustat); + if (!ca->cpustat) + goto out_free_cpuusage; + + return &ca->css; + + out_free_cpuusage: + free_percpu(ca->cpuusage); + out_free_ca: + kfree(ca); + out: + return ERR_PTR(-ENOMEM); + } + + /* destroy an existing cpu accounting group */ + static void + cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) + { + struct cpuacct *ca = cgroup_ca(cgrp); + + free_percpu(ca->cpustat); + free_percpu(ca->cpuusage); + kfree(ca); + } + + static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) + { + u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); + u64 data; + + #ifndef CONFIG_64BIT + /* + * Take rq->lock to make 64-bit read safe on 32-bit platforms. + */ + raw_spin_lock_irq(&cpu_rq(cpu)->lock); + data = *cpuusage; + raw_spin_unlock_irq(&cpu_rq(cpu)->lock); + #else + data = *cpuusage; + #endif + + return data; + } + + static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) + { + u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); + + #ifndef CONFIG_64BIT + /* + * Take rq->lock to make 64-bit write safe on 32-bit platforms. + */ + raw_spin_lock_irq(&cpu_rq(cpu)->lock); + *cpuusage = val; + raw_spin_unlock_irq(&cpu_rq(cpu)->lock); + #else + *cpuusage = val; + #endif + } + + /* return total cpu usage (in nanoseconds) of a group */ + static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) + { + struct cpuacct *ca = cgroup_ca(cgrp); + u64 totalcpuusage = 0; + int i; + + for_each_present_cpu(i) + totalcpuusage += cpuacct_cpuusage_read(ca, i); + + return totalcpuusage; + } + + static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, + u64 reset) + { + struct cpuacct *ca = cgroup_ca(cgrp); + int err = 0; + int i; + + if (reset) { + err = -EINVAL; + goto out; + } + + for_each_present_cpu(i) + cpuacct_cpuusage_write(ca, i, 0); + + out: + return err; + } + + static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, + struct seq_file *m) + { + struct cpuacct *ca = cgroup_ca(cgroup); + u64 percpu; + int i; + + for_each_present_cpu(i) { + percpu = cpuacct_cpuusage_read(ca, i); + seq_printf(m, "%llu ", (unsigned long long) percpu); + } + seq_printf(m, "\n"); + return 0; + } + + static const char *cpuacct_stat_desc[] = { + [CPUACCT_STAT_USER] = "user", + [CPUACCT_STAT_SYSTEM] = "system", + }; + + static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, + struct cgroup_map_cb *cb) + { + struct cpuacct *ca = cgroup_ca(cgrp); + int cpu; + s64 val = 0; + + for_each_online_cpu(cpu) { + struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); + val += kcpustat->cpustat[CPUTIME_USER]; + val += kcpustat->cpustat[CPUTIME_NICE]; + } + val = cputime64_to_clock_t(val); + cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); + + val = 0; + for_each_online_cpu(cpu) { + struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); + val += kcpustat->cpustat[CPUTIME_SYSTEM]; + val += kcpustat->cpustat[CPUTIME_IRQ]; + val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; + } + + val = cputime64_to_clock_t(val); + cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); + + return 0; + } + + static struct cftype files[] = { + { + .name = "usage", + .read_u64 = cpuusage_read, + .write_u64 = cpuusage_write, + }, + { + .name = "usage_percpu", + .read_seq_string = cpuacct_percpu_seq_read, + }, + { + .name = "stat", + .read_map = cpuacct_stats_show, + }, + }; + + static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) + { + return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); + } + + /* + * charge this task's execution time to its accounting group. + * + * called with rq->lock held. + */ + void cpuacct_charge(struct task_struct *tsk, u64 cputime) + { + struct cpuacct *ca; + int cpu; + + if (unlikely(!cpuacct_subsys.active)) + return; + + cpu = task_cpu(tsk); + + rcu_read_lock(); + + ca = task_ca(tsk); + + for (; ca; ca = parent_ca(ca)) { + u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); + *cpuusage += cputime; + } + + rcu_read_unlock(); + } + + struct cgroup_subsys cpuacct_subsys = { + .name = "cpuacct", + .create = cpuacct_create, + .destroy = cpuacct_destroy, + .populate = cpuacct_populate, + .subsys_id = cpuacct_subsys_id, + }; + #endif /* CONFIG_CGROUP_CPUACCT */ diff --cc kernel/sched/stats.h index 000000000000,ea2b6f0ec868..2ef90a51ec5e mode 000000,100644..100644 --- a/kernel/sched/stats.h +++ b/kernel/sched/stats.h @@@ -1,0 -1,233 +1,231 @@@ + + #ifdef CONFIG_SCHEDSTATS + + /* + * Expects runqueue lock to be held for atomicity of update + */ + static inline void + rq_sched_info_arrive(struct rq *rq, unsigned long long delta) + { + if (rq) { + rq->rq_sched_info.run_delay += delta; + rq->rq_sched_info.pcount++; + } + } + + /* + * Expects runqueue lock to be held for atomicity of update + */ + static inline void + rq_sched_info_depart(struct rq *rq, unsigned long long delta) + { + if (rq) + rq->rq_cpu_time += delta; + } + + static inline void + rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) + { + if (rq) + rq->rq_sched_info.run_delay += delta; + } + # define schedstat_inc(rq, field) do { (rq)->field++; } while (0) + # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) + # define schedstat_set(var, val) do { var = (val); } while (0) + #else /* !CONFIG_SCHEDSTATS */ + static inline void + rq_sched_info_arrive(struct rq *rq, unsigned long long delta) + {} + static inline void + rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) + {} + static inline void + rq_sched_info_depart(struct rq *rq, unsigned long long delta) + {} + # define schedstat_inc(rq, field) do { } while (0) + # define schedstat_add(rq, field, amt) do { } while (0) + # define schedstat_set(var, val) do { } while (0) + #endif + + #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) + static inline void sched_info_reset_dequeued(struct task_struct *t) + { + t->sched_info.last_queued = 0; + } + + /* + * We are interested in knowing how long it was from the *first* time a + * task was queued to the time that it finally hit a cpu, we call this routine + * from dequeue_task() to account for possible rq->clock skew across cpus. The + * delta taken on each cpu would annul the skew. + */ + static inline void sched_info_dequeued(struct task_struct *t) + { + unsigned long long now = task_rq(t)->clock, delta = 0; + + if (unlikely(sched_info_on())) + if (t->sched_info.last_queued) + delta = now - t->sched_info.last_queued; + sched_info_reset_dequeued(t); + t->sched_info.run_delay += delta; + + rq_sched_info_dequeued(task_rq(t), delta); + } + + /* + * Called when a task finally hits the cpu. We can now calculate how + * long it was waiting to run. We also note when it began so that we + * can keep stats on how long its timeslice is. + */ + static void sched_info_arrive(struct task_struct *t) + { + unsigned long long now = task_rq(t)->clock, delta = 0; + + if (t->sched_info.last_queued) + delta = now - t->sched_info.last_queued; + sched_info_reset_dequeued(t); + t->sched_info.run_delay += delta; + t->sched_info.last_arrival = now; + t->sched_info.pcount++; + + rq_sched_info_arrive(task_rq(t), delta); + } + + /* + * This function is only called from enqueue_task(), but also only updates + * the timestamp if it is already not set. It's assumed that + * sched_info_dequeued() will clear that stamp when appropriate. + */ + static inline void sched_info_queued(struct task_struct *t) + { + if (unlikely(sched_info_on())) + if (!t->sched_info.last_queued) + t->sched_info.last_queued = task_rq(t)->clock; + } + + /* + * Called when a process ceases being the active-running process, either + * voluntarily or involuntarily. Now we can calculate how long we ran. + * Also, if the process is still in the TASK_RUNNING state, call + * sched_info_queued() to mark that it has now again started waiting on + * the runqueue. + */ + static inline void sched_info_depart(struct task_struct *t) + { + unsigned long long delta = task_rq(t)->clock - + t->sched_info.last_arrival; + + rq_sched_info_depart(task_rq(t), delta); + + if (t->state == TASK_RUNNING) + sched_info_queued(t); + } + + /* + * Called when tasks are switched involuntarily due, typically, to expiring + * their time slice. (This may also be called when switching to or from + * the idle task.) We are only called when prev != next. + */ + static inline void + __sched_info_switch(struct task_struct *prev, struct task_struct *next) + { + struct rq *rq = task_rq(prev); + + /* + * prev now departs the cpu. It's not interesting to record + * stats about how efficient we were at scheduling the idle + * process, however. + */ + if (prev != rq->idle) + sched_info_depart(prev); + + if (next != rq->idle) + sched_info_arrive(next); + } + static inline void + sched_info_switch(struct task_struct *prev, struct task_struct *next) + { + if (unlikely(sched_info_on())) + __sched_info_switch(prev, next); + } + #else + #define sched_info_queued(t) do { } while (0) + #define sched_info_reset_dequeued(t) do { } while (0) + #define sched_info_dequeued(t) do { } while (0) + #define sched_info_switch(t, next) do { } while (0) + #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ + + /* + * The following are functions that support scheduler-internal time accounting. + * These functions are generally called at the timer tick. None of this depends + * on CONFIG_SCHEDSTATS. + */ + + /** + * account_group_user_time - Maintain utime for a thread group. + * + * @tsk: Pointer to task structure. + * @cputime: Time value by which to increment the utime field of the + * thread_group_cputime structure. + * + * If thread group time is being maintained, get the structure for the + * running CPU and update the utime field there. + */ + static inline void account_group_user_time(struct task_struct *tsk, + cputime_t cputime) + { + struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; + + if (!cputimer->running) + return; + + raw_spin_lock(&cputimer->lock); - cputimer->cputime.utime = - cputime_add(cputimer->cputime.utime, cputime); ++ cputimer->cputime.utime += cputime; + raw_spin_unlock(&cputimer->lock); + } + + /** + * account_group_system_time - Maintain stime for a thread group. + * + * @tsk: Pointer to task structure. + * @cputime: Time value by which to increment the stime field of the + * thread_group_cputime structure. + * + * If thread group time is being maintained, get the structure for the + * running CPU and update the stime field there. + */ + static inline void account_group_system_time(struct task_struct *tsk, + cputime_t cputime) + { + struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; + + if (!cputimer->running) + return; + + raw_spin_lock(&cputimer->lock); - cputimer->cputime.stime = - cputime_add(cputimer->cputime.stime, cputime); ++ cputimer->cputime.stime += cputime; + raw_spin_unlock(&cputimer->lock); + } + + /** + * account_group_exec_runtime - Maintain exec runtime for a thread group. + * + * @tsk: Pointer to task structure. + * @ns: Time value by which to increment the sum_exec_runtime field + * of the thread_group_cputime structure. + * + * If thread group time is being maintained, get the structure for the + * running CPU and update the sum_exec_runtime field there. + */ + static inline void account_group_exec_runtime(struct task_struct *tsk, + unsigned long long ns) + { + struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; + + if (!cputimer->running) + return; + + raw_spin_lock(&cputimer->lock); + cputimer->cputime.sum_exec_runtime += ns; + raw_spin_unlock(&cputimer->lock); + }