From: Venkatesh Pallipadi Date: Fri, 29 Jul 2005 23:15:00 +0000 (-0700) Subject: [IA64] Add ACPI based P-state support X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=4db8699bcfa8faddb5727b1cb010a4d9b8a42e8c;p=GitHub%2Fmoto-9609%2Fandroid_kernel_motorola_exynos9610.git [IA64] Add ACPI based P-state support Patch to support P-state transitions on ia64. This driver is based on ACPI, and uses the ACPI processor driver interface to find out the P-state support information for the processor. This driver plugs into generic cpufreq infrastructure. Once this driver is loaded successfully, ondemand/userspace governor can be used to change the CPU frequency dynamically based on load or on request from userspace process. Refer : ACPI specification - http://www.acpi.info P-state related PAL calls - http://developer.intel.com/design/itanium/downloads/24869909.pdf Signed-off-by: Venkatesh Pallipadi Signed-off-by: Tony Luck --- diff --git a/arch/ia64/Kconfig b/arch/ia64/Kconfig index 80988136f26d..3deced637f07 100644 --- a/arch/ia64/Kconfig +++ b/arch/ia64/Kconfig @@ -383,6 +383,12 @@ source "drivers/acpi/Kconfig" endif +if PM + +source "arch/ia64/kernel/cpufreq/Kconfig" + +endif + endmenu if !IA64_HP_SIM diff --git a/arch/ia64/kernel/Makefile b/arch/ia64/kernel/Makefile index e1fb68ddec26..b242594be55b 100644 --- a/arch/ia64/kernel/Makefile +++ b/arch/ia64/kernel/Makefile @@ -20,6 +20,7 @@ obj-$(CONFIG_SMP) += smp.o smpboot.o domain.o obj-$(CONFIG_NUMA) += numa.o obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o obj-$(CONFIG_IA64_CYCLONE) += cyclone.o +obj-$(CONFIG_CPU_FREQ) += cpufreq/ obj-$(CONFIG_IA64_MCA_RECOVERY) += mca_recovery.o obj-$(CONFIG_KPROBES) += kprobes.o jprobes.o obj-$(CONFIG_IA64_UNCACHED_ALLOCATOR) += uncached.o diff --git a/arch/ia64/kernel/cpufreq/Kconfig b/arch/ia64/kernel/cpufreq/Kconfig new file mode 100644 index 000000000000..2d9d5279b981 --- /dev/null +++ b/arch/ia64/kernel/cpufreq/Kconfig @@ -0,0 +1,29 @@ + +# +# CPU Frequency scaling +# + +menu "CPU Frequency scaling" + +source "drivers/cpufreq/Kconfig" + +if CPU_FREQ + +comment "CPUFreq processor drivers" + +config IA64_ACPI_CPUFREQ + tristate "ACPI Processor P-States driver" + select CPU_FREQ_TABLE + depends on ACPI_PROCESSOR + help + This driver adds a CPUFreq driver which utilizes the ACPI + Processor Performance States. + + For details, take a look at . + + If in doubt, say N. + +endif # CPU_FREQ + +endmenu + diff --git a/arch/ia64/kernel/cpufreq/Makefile b/arch/ia64/kernel/cpufreq/Makefile new file mode 100644 index 000000000000..f748d34c02f0 --- /dev/null +++ b/arch/ia64/kernel/cpufreq/Makefile @@ -0,0 +1 @@ +obj-$(CONFIG_IA64_ACPI_CPUFREQ) += acpi-cpufreq.o diff --git a/arch/ia64/kernel/cpufreq/acpi-cpufreq.c b/arch/ia64/kernel/cpufreq/acpi-cpufreq.c new file mode 100644 index 000000000000..da4d5cf80a48 --- /dev/null +++ b/arch/ia64/kernel/cpufreq/acpi-cpufreq.c @@ -0,0 +1,499 @@ +/* + * arch/ia64/kernel/cpufreq/acpi-cpufreq.c + * This file provides the ACPI based P-state support. This + * module works with generic cpufreq infrastructure. Most of + * the code is based on i386 version + * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) + * + * Copyright (C) 2005 Intel Corp + * Venkatesh Pallipadi + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) + +MODULE_AUTHOR("Venkatesh Pallipadi"); +MODULE_DESCRIPTION("ACPI Processor P-States Driver"); +MODULE_LICENSE("GPL"); + + +struct cpufreq_acpi_io { + struct acpi_processor_performance acpi_data; + struct cpufreq_frequency_table *freq_table; + unsigned int resume; +}; + +static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; + +static struct cpufreq_driver acpi_cpufreq_driver; + + +static int +processor_set_pstate ( + u32 value) +{ + s64 retval; + + dprintk("processor_set_pstate\n"); + + retval = ia64_pal_set_pstate((u64)value); + + if (retval) { + dprintk("Failed to set freq to 0x%x, with error 0x%x\n", + value, retval); + return -ENODEV; + } + return (int)retval; +} + + +static int +processor_get_pstate ( + u32 *value) +{ + u64 pstate_index = 0; + s64 retval; + + dprintk("processor_get_pstate\n"); + + retval = ia64_pal_get_pstate(&pstate_index); + *value = (u32) pstate_index; + + if (retval) + dprintk("Failed to get current freq with " + "error 0x%x, idx 0x%x\n", retval, *value); + + return (int)retval; +} + + +/* To be used only after data->acpi_data is initialized */ +static unsigned +extract_clock ( + struct cpufreq_acpi_io *data, + unsigned value, + unsigned int cpu) +{ + unsigned long i; + + dprintk("extract_clock\n"); + + for (i = 0; i < data->acpi_data.state_count; i++) { + if (value >= data->acpi_data.states[i].control) + return data->acpi_data.states[i].core_frequency; + } + return data->acpi_data.states[i-1].core_frequency; +} + + +static unsigned int +processor_get_freq ( + struct cpufreq_acpi_io *data, + unsigned int cpu) +{ + int ret = 0; + u32 value = 0; + cpumask_t saved_mask; + unsigned long clock_freq; + + dprintk("processor_get_freq\n"); + + saved_mask = current->cpus_allowed; + set_cpus_allowed(current, cpumask_of_cpu(cpu)); + if (smp_processor_id() != cpu) { + ret = -EAGAIN; + goto migrate_end; + } + + /* + * processor_get_pstate gets the average frequency since the + * last get. So, do two PAL_get_freq()... + */ + ret = processor_get_pstate(&value); + ret = processor_get_pstate(&value); + + if (ret) { + set_cpus_allowed(current, saved_mask); + printk(KERN_WARNING "get performance failed with error %d\n", + ret); + ret = -EAGAIN; + goto migrate_end; + } + clock_freq = extract_clock(data, value, cpu); + ret = (clock_freq*1000); + +migrate_end: + set_cpus_allowed(current, saved_mask); + return ret; +} + + +static int +processor_set_freq ( + struct cpufreq_acpi_io *data, + unsigned int cpu, + int state) +{ + int ret = 0; + u32 value = 0; + struct cpufreq_freqs cpufreq_freqs; + cpumask_t saved_mask; + int retval; + + dprintk("processor_set_freq\n"); + + saved_mask = current->cpus_allowed; + set_cpus_allowed(current, cpumask_of_cpu(cpu)); + if (smp_processor_id() != cpu) { + retval = -EAGAIN; + goto migrate_end; + } + + if (state == data->acpi_data.state) { + if (unlikely(data->resume)) { + dprintk("Called after resume, resetting to P%d\n", state); + data->resume = 0; + } else { + dprintk("Already at target state (P%d)\n", state); + retval = 0; + goto migrate_end; + } + } + + dprintk("Transitioning from P%d to P%d\n", + data->acpi_data.state, state); + + /* cpufreq frequency struct */ + cpufreq_freqs.cpu = cpu; + cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; + cpufreq_freqs.new = data->freq_table[state].frequency; + + /* notify cpufreq */ + cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); + + /* + * First we write the target state's 'control' value to the + * control_register. + */ + + value = (u32) data->acpi_data.states[state].control; + + dprintk("Transitioning to state: 0x%08x\n", value); + + ret = processor_set_pstate(value); + if (ret) { + unsigned int tmp = cpufreq_freqs.new; + cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); + cpufreq_freqs.new = cpufreq_freqs.old; + cpufreq_freqs.old = tmp; + cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); + cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); + printk(KERN_WARNING "Transition failed with error %d\n", ret); + retval = -ENODEV; + goto migrate_end; + } + + cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); + + data->acpi_data.state = state; + + retval = 0; + +migrate_end: + set_cpus_allowed(current, saved_mask); + return (retval); +} + + +static unsigned int +acpi_cpufreq_get ( + unsigned int cpu) +{ + struct cpufreq_acpi_io *data = acpi_io_data[cpu]; + + dprintk("acpi_cpufreq_get\n"); + + return processor_get_freq(data, cpu); +} + + +static int +acpi_cpufreq_target ( + struct cpufreq_policy *policy, + unsigned int target_freq, + unsigned int relation) +{ + struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; + unsigned int next_state = 0; + unsigned int result = 0; + + dprintk("acpi_cpufreq_setpolicy\n"); + + result = cpufreq_frequency_table_target(policy, + data->freq_table, target_freq, relation, &next_state); + if (result) + return (result); + + result = processor_set_freq(data, policy->cpu, next_state); + + return (result); +} + + +static int +acpi_cpufreq_verify ( + struct cpufreq_policy *policy) +{ + unsigned int result = 0; + struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; + + dprintk("acpi_cpufreq_verify\n"); + + result = cpufreq_frequency_table_verify(policy, + data->freq_table); + + return (result); +} + + +/* + * processor_init_pdc - let BIOS know about the SMP capabilities + * of this driver + * @perf: processor-specific acpi_io_data struct + * @cpu: CPU being initialized + * + * To avoid issues with legacy OSes, some BIOSes require to be informed of + * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC + * accordingly. Actual call to _PDC is done in driver/acpi/processor.c + */ +static void +processor_init_pdc ( + struct acpi_processor_performance *perf, + unsigned int cpu, + struct acpi_object_list *obj_list + ) +{ + union acpi_object *obj; + u32 *buf; + + dprintk("processor_init_pdc\n"); + + perf->pdc = NULL; + /* Initialize pdc. It will be used later. */ + if (!obj_list) + return; + + if (!(obj_list->count && obj_list->pointer)) + return; + + obj = obj_list->pointer; + if ((obj->buffer.length == 12) && obj->buffer.pointer) { + buf = (u32 *)obj->buffer.pointer; + buf[0] = ACPI_PDC_REVISION_ID; + buf[1] = 1; + buf[2] = ACPI_PDC_EST_CAPABILITY_SMP; + perf->pdc = obj_list; + } + return; +} + + +static int +acpi_cpufreq_cpu_init ( + struct cpufreq_policy *policy) +{ + unsigned int i; + unsigned int cpu = policy->cpu; + struct cpufreq_acpi_io *data; + unsigned int result = 0; + + union acpi_object arg0 = {ACPI_TYPE_BUFFER}; + u32 arg0_buf[3]; + struct acpi_object_list arg_list = {1, &arg0}; + + dprintk("acpi_cpufreq_cpu_init\n"); + /* setup arg_list for _PDC settings */ + arg0.buffer.length = 12; + arg0.buffer.pointer = (u8 *) arg0_buf; + + data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); + if (!data) + return (-ENOMEM); + + memset(data, 0, sizeof(struct cpufreq_acpi_io)); + + acpi_io_data[cpu] = data; + + processor_init_pdc(&data->acpi_data, cpu, &arg_list); + result = acpi_processor_register_performance(&data->acpi_data, cpu); + data->acpi_data.pdc = NULL; + + if (result) + goto err_free; + + /* capability check */ + if (data->acpi_data.state_count <= 1) { + dprintk("No P-States\n"); + result = -ENODEV; + goto err_unreg; + } + + if ((data->acpi_data.control_register.space_id != + ACPI_ADR_SPACE_FIXED_HARDWARE) || + (data->acpi_data.status_register.space_id != + ACPI_ADR_SPACE_FIXED_HARDWARE)) { + dprintk("Unsupported address space [%d, %d]\n", + (u32) (data->acpi_data.control_register.space_id), + (u32) (data->acpi_data.status_register.space_id)); + result = -ENODEV; + goto err_unreg; + } + + /* alloc freq_table */ + data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * + (data->acpi_data.state_count + 1), + GFP_KERNEL); + if (!data->freq_table) { + result = -ENOMEM; + goto err_unreg; + } + + /* detect transition latency */ + policy->cpuinfo.transition_latency = 0; + for (i=0; iacpi_data.state_count; i++) { + if ((data->acpi_data.states[i].transition_latency * 1000) > + policy->cpuinfo.transition_latency) { + policy->cpuinfo.transition_latency = + data->acpi_data.states[i].transition_latency * 1000; + } + } + policy->governor = CPUFREQ_DEFAULT_GOVERNOR; + + policy->cur = processor_get_freq(data, policy->cpu); + + /* table init */ + for (i = 0; i <= data->acpi_data.state_count; i++) + { + data->freq_table[i].index = i; + if (i < data->acpi_data.state_count) { + data->freq_table[i].frequency = + data->acpi_data.states[i].core_frequency * 1000; + } else { + data->freq_table[i].frequency = CPUFREQ_TABLE_END; + } + } + + result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); + if (result) { + goto err_freqfree; + } + + /* notify BIOS that we exist */ + acpi_processor_notify_smm(THIS_MODULE); + + printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management " + "activated.\n", cpu); + + for (i = 0; i < data->acpi_data.state_count; i++) + dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n", + (i == data->acpi_data.state?'*':' '), i, + (u32) data->acpi_data.states[i].core_frequency, + (u32) data->acpi_data.states[i].power, + (u32) data->acpi_data.states[i].transition_latency, + (u32) data->acpi_data.states[i].bus_master_latency, + (u32) data->acpi_data.states[i].status, + (u32) data->acpi_data.states[i].control); + + cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); + + /* the first call to ->target() should result in us actually + * writing something to the appropriate registers. */ + data->resume = 1; + + return (result); + + err_freqfree: + kfree(data->freq_table); + err_unreg: + acpi_processor_unregister_performance(&data->acpi_data, cpu); + err_free: + kfree(data); + acpi_io_data[cpu] = NULL; + + return (result); +} + + +static int +acpi_cpufreq_cpu_exit ( + struct cpufreq_policy *policy) +{ + struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; + + dprintk("acpi_cpufreq_cpu_exit\n"); + + if (data) { + cpufreq_frequency_table_put_attr(policy->cpu); + acpi_io_data[policy->cpu] = NULL; + acpi_processor_unregister_performance(&data->acpi_data, + policy->cpu); + kfree(data); + } + + return (0); +} + + +static struct freq_attr* acpi_cpufreq_attr[] = { + &cpufreq_freq_attr_scaling_available_freqs, + NULL, +}; + + +static struct cpufreq_driver acpi_cpufreq_driver = { + .verify = acpi_cpufreq_verify, + .target = acpi_cpufreq_target, + .get = acpi_cpufreq_get, + .init = acpi_cpufreq_cpu_init, + .exit = acpi_cpufreq_cpu_exit, + .name = "acpi-cpufreq", + .owner = THIS_MODULE, + .attr = acpi_cpufreq_attr, +}; + + +static int __init +acpi_cpufreq_init (void) +{ + dprintk("acpi_cpufreq_init\n"); + + return cpufreq_register_driver(&acpi_cpufreq_driver); +} + + +static void __exit +acpi_cpufreq_exit (void) +{ + dprintk("acpi_cpufreq_exit\n"); + + cpufreq_unregister_driver(&acpi_cpufreq_driver); + return; +} + + +late_initcall(acpi_cpufreq_init); +module_exit(acpi_cpufreq_exit); + diff --git a/include/asm-ia64/acpi.h b/include/asm-ia64/acpi.h index 4c06d455139c..3a544ffc5008 100644 --- a/include/asm-ia64/acpi.h +++ b/include/asm-ia64/acpi.h @@ -116,6 +116,11 @@ extern int __initdata nid_to_pxm_map[MAX_NUMNODES]; extern u16 ia64_acpiid_to_sapicid[]; +/* + * Refer Intel ACPI _PDC support document for bit definitions + */ +#define ACPI_PDC_EST_CAPABILITY_SMP 0x8 + #endif /*__KERNEL__*/ #endif /*_ASM_ACPI_H*/ diff --git a/include/asm-ia64/pal.h b/include/asm-ia64/pal.h index 2303a10ee595..e828377ad295 100644 --- a/include/asm-ia64/pal.h +++ b/include/asm-ia64/pal.h @@ -75,6 +75,8 @@ #define PAL_CACHE_READ 259 /* read tag & data of cacheline for diagnostic testing */ #define PAL_CACHE_WRITE 260 /* write tag & data of cacheline for diagnostic testing */ #define PAL_VM_TR_READ 261 /* read contents of translation register */ +#define PAL_GET_PSTATE 262 /* get the current P-state */ +#define PAL_SET_PSTATE 263 /* set the P-state */ #ifndef __ASSEMBLY__ @@ -1111,6 +1113,25 @@ ia64_pal_halt_info (pal_power_mgmt_info_u_t *power_buf) return iprv.status; } +/* Get the current P-state information */ +static inline s64 +ia64_pal_get_pstate (u64 *pstate_index) +{ + struct ia64_pal_retval iprv; + PAL_CALL_STK(iprv, PAL_GET_PSTATE, 0, 0, 0); + *pstate_index = iprv.v0; + return iprv.status; +} + +/* Set the P-state */ +static inline s64 +ia64_pal_set_pstate (u64 pstate_index) +{ + struct ia64_pal_retval iprv; + PAL_CALL_STK(iprv, PAL_SET_PSTATE, pstate_index, 0, 0); + return iprv.status; +} + /* Cause the processor to enter LIGHT HALT state, where prefetching and execution are * suspended, but cache and TLB coherency is maintained. */