From: Huang Shijie Date: Thu, 8 Sep 2011 02:47:10 +0000 (+0800) Subject: mtd: add helper functions library and header files for GPMI NAND driver X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=45dfc1a09a35963234a50617c0700f7eb2b3b9c2;p=GitHub%2FLineageOS%2FG12%2Fandroid_kernel_amlogic_linux-4.9.git mtd: add helper functions library and header files for GPMI NAND driver bch-regs.h : registers file for BCH module gpmi-regs.h: registers file for GPMI module gpmi-lib.c: helper functions library. Signed-off-by: Huang Shijie Acked-by: Marek Vasut Tested-by: Koen Beel Signed-off-by: Artem Bityutskiy --- diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/gpmi-nand/bch-regs.h new file mode 100644 index 000000000000..4effb8c579db --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/bch-regs.h @@ -0,0 +1,84 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_BCH_REGS_H +#define __GPMI_NAND_BCH_REGS_H + +#define HW_BCH_CTRL 0x00000000 +#define HW_BCH_CTRL_SET 0x00000004 +#define HW_BCH_CTRL_CLR 0x00000008 +#define HW_BCH_CTRL_TOG 0x0000000c + +#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) +#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) + +#define HW_BCH_STATUS0 0x00000010 +#define HW_BCH_MODE 0x00000020 +#define HW_BCH_ENCODEPTR 0x00000030 +#define HW_BCH_DATAPTR 0x00000040 +#define HW_BCH_METAPTR 0x00000050 +#define HW_BCH_LAYOUTSELECT 0x00000070 + +#define HW_BCH_FLASH0LAYOUT0 0x00000080 + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) + +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_META_SIZE) + +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) +#define BF_BCH_FLASH0LAYOUT0_ECC0(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) & BM_BCH_FLASH0LAYOUT0_ECC0) + +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) + +#define HW_BCH_FLASH0LAYOUT1 0x00000090 + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ + (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) + +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) +#define BF_BCH_FLASH0LAYOUT1_ECCN(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) & BM_BCH_FLASH0LAYOUT1_ECCN) + +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c new file mode 100644 index 000000000000..de4db7604a3f --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c @@ -0,0 +1,1057 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include +#include +#include +#include + +#include "gpmi-nand.h" +#include "gpmi-regs.h" +#include "bch-regs.h" + +struct timing_threshod timing_default_threshold = { + .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> + BP_GPMI_TIMING0_DATA_SETUP), + .internal_data_setup_in_ns = 0, + .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> + BP_GPMI_CTRL1_RDN_DELAY), + .max_dll_clock_period_in_ns = 32, + .max_dll_delay_in_ns = 16, +}; + +/* + * Clear the bit and poll it cleared. This is usually called with + * a reset address and mask being either SFTRST(bit 31) or CLKGATE + * (bit 30). + */ +static int clear_poll_bit(void __iomem *addr, u32 mask) +{ + int timeout = 0x400; + + /* clear the bit */ + __mxs_clrl(mask, addr); + + /* + * SFTRST needs 3 GPMI clocks to settle, the reference manual + * recommends to wait 1us. + */ + udelay(1); + + /* poll the bit becoming clear */ + while ((readl(addr) & mask) && --timeout) + /* nothing */; + + return !timeout; +} + +#define MODULE_CLKGATE (1 << 30) +#define MODULE_SFTRST (1 << 31) +/* + * The current mxs_reset_block() will do two things: + * [1] enable the module. + * [2] reset the module. + * + * In most of the cases, it's ok. But there is a hardware bug in the BCH block. + * If you try to soft reset the BCH block, it becomes unusable until + * the next hard reset. This case occurs in the NAND boot mode. When the board + * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. + * So If the driver tries to reset the BCH again, the BCH will not work anymore. + * You will see a DMA timeout in this case. + * + * To avoid this bug, just add a new parameter `just_enable` for + * the mxs_reset_block(), and rewrite it here. + */ +int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) +{ + int ret; + int timeout = 0x400; + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear CLKGATE */ + __mxs_clrl(MODULE_CLKGATE, reset_addr); + + if (!just_enable) { + /* set SFTRST to reset the block */ + __mxs_setl(MODULE_SFTRST, reset_addr); + udelay(1); + + /* poll CLKGATE becoming set */ + while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) + /* nothing */; + if (unlikely(!timeout)) + goto error; + } + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear and poll CLKGATE */ + ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); + if (unlikely(ret)) + goto error; + + return 0; + +error: + pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); + return -ETIMEDOUT; +} + +int gpmi_init(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = clk_enable(r->clock); + if (ret) + goto err_out; + ret = gpmi_reset_block(r->gpmi_regs, false); + if (ret) + goto err_out; + + /* Choose NAND mode. */ + writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable Write-Protection. */ + writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + clk_disable(r->clock); + return 0; +err_out: + return ret; +} + +/* This function is very useful. It is called only when the bug occur. */ +void gpmi_dump_info(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *geo = &this->bch_geometry; + u32 reg; + int i; + + pr_err("Show GPMI registers :\n"); + for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { + reg = readl(r->gpmi_regs + i * 0x10); + pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + + /* start to print out the BCH info */ + pr_err("BCH Geometry :\n"); + pr_err("GF length : %u\n", geo->gf_len); + pr_err("ECC Strength : %u\n", geo->ecc_strength); + pr_err("Page Size in Bytes : %u\n", geo->page_size); + pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size); + pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size); + pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count); + pr_err("Payload Size in Bytes : %u\n", geo->payload_size); + pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size); + pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset); + pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset); + pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset); +} + +/* Configures the geometry for BCH. */ +int bch_set_geometry(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *bch_geo = &this->bch_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + int ret; + + if (common_nfc_set_geometry(this)) + return !0; + + block_count = bch_geo->ecc_chunk_count - 1; + block_size = bch_geo->ecc_chunk_size; + metadata_size = bch_geo->metadata_size; + ecc_strength = bch_geo->ecc_strength >> 1; + page_size = bch_geo->page_size; + + ret = clk_enable(r->clock); + if (ret) + goto err_out; + + ret = gpmi_reset_block(r->bch_regs, true); + if (ret) + goto err_out; + + /* Configure layout 0. */ + writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) + | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) + | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size), + r->bch_regs + HW_BCH_FLASH0LAYOUT0); + + writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) + | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) + | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size), + r->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + r->bch_regs + HW_BCH_CTRL_SET); + + clk_disable(r->clock); + return 0; +err_out: + return ret; +} + +/* Converts time in nanoseconds to cycles. */ +static unsigned int ns_to_cycles(unsigned int time, + unsigned int period, unsigned int min) +{ + unsigned int k; + + k = (time + period - 1) / period; + return max(k, min); +} + +/* Apply timing to current hardware conditions. */ +static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct gpmi_nand_platform_data *pdata = this->pdata; + struct timing_threshod *nfc = &timing_default_threshold; + struct nand_chip *nand = &this->nand; + struct nand_timing target = this->timing; + bool improved_timing_is_available; + unsigned long clock_frequency_in_hz; + unsigned int clock_period_in_ns; + bool dll_use_half_periods; + unsigned int dll_delay_shift; + unsigned int max_sample_delay_in_ns; + unsigned int address_setup_in_cycles; + unsigned int data_setup_in_ns; + unsigned int data_setup_in_cycles; + unsigned int data_hold_in_cycles; + int ideal_sample_delay_in_ns; + unsigned int sample_delay_factor; + int tEYE; + unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns; + unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns; + + /* + * If there are multiple chips, we need to relax the timings to allow + * for signal distortion due to higher capacitance. + */ + if (nand->numchips > 2) { + target.data_setup_in_ns += 10; + target.data_hold_in_ns += 10; + target.address_setup_in_ns += 10; + } else if (nand->numchips > 1) { + target.data_setup_in_ns += 5; + target.data_hold_in_ns += 5; + target.address_setup_in_ns += 5; + } + + /* Check if improved timing information is available. */ + improved_timing_is_available = + (target.tREA_in_ns >= 0) && + (target.tRLOH_in_ns >= 0) && + (target.tRHOH_in_ns >= 0) ; + + /* Inspect the clock. */ + clock_frequency_in_hz = nfc->clock_frequency_in_hz; + clock_period_in_ns = 1000000000 / clock_frequency_in_hz; + + /* + * The NFC quantizes setup and hold parameters in terms of clock cycles. + * Here, we quantize the setup and hold timing parameters to the + * next-highest clock period to make sure we apply at least the + * specified times. + * + * For data setup and data hold, the hardware interprets a value of zero + * as the largest possible delay. This is not what's intended by a zero + * in the input parameter, so we impose a minimum of one cycle. + */ + data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, + clock_period_in_ns, 1); + data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, + clock_period_in_ns, 1); + address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, + clock_period_in_ns, 0); + + /* + * The clock's period affects the sample delay in a number of ways: + * + * (1) The NFC HAL tells us the maximum clock period the sample delay + * DLL can tolerate. If the clock period is greater than half that + * maximum, we must configure the DLL to be driven by half periods. + * + * (2) We need to convert from an ideal sample delay, in ns, to a + * "sample delay factor," which the NFC uses. This factor depends on + * whether we're driving the DLL with full or half periods. + * Paraphrasing the reference manual: + * + * AD = SDF x 0.125 x RP + * + * where: + * + * AD is the applied delay, in ns. + * SDF is the sample delay factor, which is dimensionless. + * RP is the reference period, in ns, which is a full clock period + * if the DLL is being driven by full periods, or half that if + * the DLL is being driven by half periods. + * + * Let's re-arrange this in a way that's more useful to us: + * + * 8 + * SDF = AD x ---- + * RP + * + * The reference period is either the clock period or half that, so this + * is: + * + * 8 AD x DDF + * SDF = AD x ----- = -------- + * f x P P + * + * where: + * + * f is 1 or 1/2, depending on how we're driving the DLL. + * P is the clock period. + * DDF is the DLL Delay Factor, a dimensionless value that + * incorporates all the constants in the conversion. + * + * DDF will be either 8 or 16, both of which are powers of two. We can + * reduce the cost of this conversion by using bit shifts instead of + * multiplication or division. Thus: + * + * AD << DDS + * SDF = --------- + * P + * + * or + * + * AD = (SDF >> DDS) x P + * + * where: + * + * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. + */ + if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { + dll_use_half_periods = true; + dll_delay_shift = 3 + 1; + } else { + dll_use_half_periods = false; + dll_delay_shift = 3; + } + + /* + * Compute the maximum sample delay the NFC allows, under current + * conditions. If the clock is running too slowly, no sample delay is + * possible. + */ + if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) + max_sample_delay_in_ns = 0; + else { + /* + * Compute the delay implied by the largest sample delay factor + * the NFC allows. + */ + max_sample_delay_in_ns = + (nfc->max_sample_delay_factor * clock_period_in_ns) >> + dll_delay_shift; + + /* + * Check if the implied sample delay larger than the NFC + * actually allows. + */ + if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) + max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; + } + + /* + * Check if improved timing information is available. If not, we have to + * use a less-sophisticated algorithm. + */ + if (!improved_timing_is_available) { + /* + * Fold the read setup time required by the NFC into the ideal + * sample delay. + */ + ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + + nfc->internal_data_setup_in_ns; + + /* + * The ideal sample delay may be greater than the maximum + * allowed by the NFC. If so, we can trade off sample delay time + * for more data setup time. + * + * In each iteration of the following loop, we add a cycle to + * the data setup time and subtract a corresponding amount from + * the sample delay until we've satisified the constraints or + * can't do any better. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + data_setup_in_cycles++; + ideal_sample_delay_in_ns -= clock_period_in_ns; + + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + } + + /* + * Compute the sample delay factor that corresponds most closely + * to the ideal sample delay. If the result is too large for the + * NFC, use the maximum value. + * + * Notice that we use the ns_to_cycles function to compute the + * sample delay factor. We do this because the form of the + * computation is the same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* Skip to the part where we return our results. */ + goto return_results; + } + + /* + * If control arrives here, we have more detailed timing information, + * so we can use a better algorithm. + */ + + /* + * Fold the read setup time required by the NFC into the maximum + * propagation delay. + */ + max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; + + /* + * Earlier, we computed the number of clock cycles required to satisfy + * the data setup time. Now, we need to know the actual nanoseconds. + */ + data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; + + /* + * Compute tEYE, the width of the data eye when reading from the NAND + * Flash. The eye width is fundamentally determined by the data setup + * time, perturbed by propagation delays and some characteristics of the + * NAND Flash device. + * + * start of the eye = max_prop_delay + tREA + * end of the eye = min_prop_delay + tRHOH + data_setup + */ + tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + + (int)data_setup_in_ns; + + tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; + + /* + * The eye must be open. If it's not, we can try to open it by + * increasing its main forcer, the data setup time. + * + * In each iteration of the following loop, we increase the data setup + * time by a single clock cycle. We do this until either the eye is + * open or we run into NFC limits. + */ + while ((tEYE <= 0) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + } + + /* + * When control arrives here, the eye is open. The ideal time to sample + * the data is in the center of the eye: + * + * end of the eye + start of the eye + * --------------------------------- - data_setup + * 2 + * + * After some algebra, this simplifies to the code immediately below. + */ + ideal_sample_delay_in_ns = + ((int)max_prop_delay_in_ns + + (int)target.tREA_in_ns + + (int)min_prop_delay_in_ns + + (int)target.tRHOH_in_ns - + (int)data_setup_in_ns) >> 1; + + /* + * The following figure illustrates some aspects of a NAND Flash read: + * + * + * __ _____________________________________ + * RDN \_________________/ + * + * <---- tEYE -----> + * /-----------------\ + * Read Data ----------------------------< >--------- + * \-----------------/ + * ^ ^ ^ ^ + * | | | | + * |<--Data Setup -->|<--Delay Time -->| | + * | | | | + * | | | + * | |<-- Quantized Delay Time -->| + * | | | + * + * + * We have some issues we must now address: + * + * (1) The *ideal* sample delay time must not be negative. If it is, we + * jam it to zero. + * + * (2) The *ideal* sample delay time must not be greater than that + * allowed by the NFC. If it is, we can increase the data setup + * time, which will reduce the delay between the end of the data + * setup and the center of the eye. It will also make the eye + * larger, which might help with the next issue... + * + * (3) The *quantized* sample delay time must not fall either before the + * eye opens or after it closes (the latter is the problem + * illustrated in the above figure). + */ + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * Extend the data setup as needed to reduce the ideal sample delay + * below the maximum permitted by the NFC. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + } + + /* + * Compute the sample delay factor that corresponds to the ideal sample + * delay. If the result is too large, then use the maximum allowed + * value. + * + * Notice that we use the ns_to_cycles function to compute the sample + * delay factor. We do this because the form of the computation is the + * same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* + * These macros conveniently encapsulate a computation we'll use to + * continuously evaluate whether or not the data sample delay is inside + * the eye. + */ + #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) + + #define QUANTIZED_DELAY \ + ((int) ((sample_delay_factor * clock_period_in_ns) >> \ + dll_delay_shift)) + + #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) + + #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) + + /* + * While the quantized sample time falls outside the eye, reduce the + * sample delay or extend the data setup to move the sampling point back + * toward the eye. Do not allow the number of data setup cycles to + * exceed the maximum allowed by the NFC. + */ + while (SAMPLE_IS_NOT_WITHIN_THE_EYE && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* + * If control arrives here, the quantized sample delay falls + * outside the eye. Check if it's before the eye opens, or after + * the eye closes. + */ + if (QUANTIZED_DELAY > IDEAL_DELAY) { + /* + * If control arrives here, the quantized sample delay + * falls after the eye closes. Decrease the quantized + * delay time and then go back to re-evaluate. + */ + if (sample_delay_factor != 0) + sample_delay_factor--; + continue; + } + + /* + * If control arrives here, the quantized sample delay falls + * before the eye opens. Shift the sample point by increasing + * data setup time. This will also make the eye larger. + */ + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* ...and one less period for the delay time. */ + ideal_sample_delay_in_ns -= clock_period_in_ns; + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * We have a new ideal sample delay, so re-compute the quantized + * delay. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + } + + /* Control arrives here when we're ready to return our results. */ +return_results: + hw->data_setup_in_cycles = data_setup_in_cycles; + hw->data_hold_in_cycles = data_hold_in_cycles; + hw->address_setup_in_cycles = address_setup_in_cycles; + hw->use_half_periods = dll_use_half_periods; + hw->sample_delay_factor = sample_delay_factor; + + /* Return success. */ + return 0; +} + +/* Begin the I/O */ +void gpmi_begin(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct timing_threshod *nfc = &timing_default_threshold; + unsigned char *gpmi_regs = r->gpmi_regs; + unsigned int clock_period_in_ns; + uint32_t reg; + unsigned int dll_wait_time_in_us; + struct gpmi_nfc_hardware_timing hw; + int ret; + + /* Enable the clock. */ + ret = clk_enable(r->clock); + if (ret) { + pr_err("We failed in enable the clk\n"); + goto err_out; + } + + /* set ready/busy timeout */ + writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT, + gpmi_regs + HW_GPMI_TIMING1); + + /* Get the timing information we need. */ + nfc->clock_frequency_in_hz = clk_get_rate(r->clock); + clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz; + + gpmi_nfc_compute_hardware_timing(this, &hw); + + /* Set up all the simple timing parameters. */ + reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ; + + writel(reg, gpmi_regs + HW_GPMI_TIMING0); + + /* + * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. + */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Clear out the DLL control fields. */ + writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* If no sample delay is called for, return immediately. */ + if (!hw.sample_delay_factor) + return; + + /* Configure the HALF_PERIOD flag. */ + if (hw.use_half_periods) + writel(BM_GPMI_CTRL1_HALF_PERIOD, + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Set the delay factor. */ + writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor), + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Enable the DLL. */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * After we enable the GPMI DLL, we have to wait 64 clock cycles before + * we can use the GPMI. + * + * Calculate the amount of time we need to wait, in microseconds. + */ + dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; + + if (!dll_wait_time_in_us) + dll_wait_time_in_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_in_us); + +err_out: + return; +} + +void gpmi_end(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + clk_disable(r->clock); +} + +/* Clears a BCH interrupt. */ +void gpmi_clear_bch(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); +} + +/* Returns the Ready/Busy status of the given chip. */ +int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) +{ + struct resources *r = &this->resources; + uint32_t mask = 0; + uint32_t reg = 0; + + if (GPMI_IS_MX23(this)) { + mask = MX23_BM_GPMI_DEBUG_READY0 << chip; + reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); + } else if (GPMI_IS_MX28(this)) { + mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); + reg = readl(r->gpmi_regs + HW_GPMI_STAT); + } else + pr_err("unknow arch.\n"); + return reg & mask; +} + +static inline void set_dma_type(struct gpmi_nand_data *this, + enum dma_ops_type type) +{ + this->last_dma_type = this->dma_type; + this->dma_type = type; +} + +int gpmi_send_command(struct gpmi_nand_data *this) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct scatterlist *sgl; + int chip = this->current_chip; + u32 pio[3]; + + /* [1] send out the PIO words */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) + | BM_GPMI_CTRL0_ADDRESS_INCREMENT + | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); + pio[1] = pio[2] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ + sgl = &this->cmd_sgl; + + sg_init_one(sgl, this->cmd_buffer, this->command_length); + dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); + desc = channel->device->device_prep_slave_sg(channel, + sgl, 1, DMA_TO_DEVICE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_COMMAND); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + uint32_t command_mode; + uint32_t address; + u32 pio[2]; + + /* [1] PIO */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] send DMA request */ + prepare_data_dma(this, DMA_TO_DEVICE); + desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_TO_DEVICE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_WRITE_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_read_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[2]; + + /* [1] : send PIO */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] : send DMA request */ + prepare_data_dma(this, DMA_FROM_DEVICE); + desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_FROM_DEVICE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + + /* [3] : submit the DMA */ + set_dma_type(this, DMA_FOR_READ_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* A DMA descriptor that does an ECC page read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} + +int gpmi_read_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* [1] Wait for the chip to report ready. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, 2, DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] Enable the BCH block and read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE + | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + + /* [3] Disable the BCH block */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, 2, DMA_NONE, 1); + if (!desc) { + pr_err("step 3 error\n"); + return -1; + } + + /* [4] submit the DMA */ + set_dma_type(this, DMA_FOR_READ_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h new file mode 100644 index 000000000000..83431240e2f2 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h @@ -0,0 +1,172 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_GPMI_REGS_H +#define __GPMI_NAND_GPMI_REGS_H + +#define HW_GPMI_CTRL0 0x00000000 +#define HW_GPMI_CTRL0_SET 0x00000004 +#define HW_GPMI_CTRL0_CLR 0x00000008 +#define HW_GPMI_CTRL0_TOG 0x0000000c + +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 + +#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 + +/* + * Difference in LOCK_CS between imx23 and imx28 : + * This bit may impact the _POWER_ consumption. So some chips + * do not set it. + */ +#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 +#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 +#define LOCK_CS_ENABLE 0x1 +#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 + +/* Difference in CS between imx23 and imx28 */ +#define BP_GPMI_CTRL0_CS 20 +#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) +#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) +#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ + (GPMI_IS_MX23((x)) \ + ? MX23_BM_GPMI_CTRL0_CS \ + : MX28_BM_GPMI_CTRL0_CS)) + +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 + +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 + +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) + +#define HW_GPMI_COMPARE 0x00000010 + +#define HW_GPMI_ECCCTRL 0x00000020 +#define HW_GPMI_ECCCTRL_SET 0x00000024 +#define HW_GPMI_ECCCTRL_CLR 0x00000028 +#define HW_GPMI_ECCCTRL_TOG 0x0000002c + +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 + +#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 + +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +#define HW_GPMI_ECCCOUNT 0x00000030 +#define HW_GPMI_PAYLOAD 0x00000040 +#define HW_GPMI_AUXILIARY 0x00000050 +#define HW_GPMI_CTRL1 0x00000060 +#define HW_GPMI_CTRL1_SET 0x00000064 +#define HW_GPMI_CTRL1_CLR 0x00000068 +#define HW_GPMI_CTRL1_TOG 0x0000006c + +#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) + +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) + +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) + +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) + +#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 + +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 + +#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) + +#define HW_GPMI_TIMING0 0x00000070 + +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) + +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) + +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) + +#define HW_GPMI_TIMING1 0x00000080 +#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 + +#define HW_GPMI_TIMING2 0x00000090 +#define HW_GPMI_DATA 0x000000a0 + +/* MX28 uses this to detect READY. */ +#define HW_GPMI_STAT 0x000000b0 +#define MX28_BP_GPMI_STAT_READY_BUSY 24 +#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) +#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) + +/* MX23 uses this to detect READY. */ +#define HW_GPMI_DEBUG 0x000000c0 +#define MX23_BP_GPMI_DEBUG_READY0 28 +#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) +#endif