From: Paul Mackerras Date: Fri, 9 Jan 2009 09:21:55 +0000 (+1100) Subject: powerpc/perf_counter: Add generic support for POWER-family PMU hardware X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=4574910e5087085a1f330ff8373cee4503f5c77c;p=GitHub%2FLineageOS%2Fandroid_kernel_motorola_exynos9610.git powerpc/perf_counter: Add generic support for POWER-family PMU hardware This provides the architecture-specific functions needed to access PMU hardware on the 64-bit PowerPC processors. It has been designed for the IBM POWER family (POWER 4/4+/5/5+/6 and PPC970) but will hopefully also suit other 64-bit PowerPC machines (although probably not Cell given how different it is in this area). This doesn't include back-ends for any specific processors. This implements a system which allows back-ends to express the constraints that their hardware has on what events can be counted simultaneously. The constraints are expressed as a 64-bit mask + 64-bit value for each event, and the encoding is capable of expressing the constraints arising from having a set of multiplexers feeding an event bus, with some events being available through multiple multiplexer settings, such as we get on POWER4 and PPC970. Furthermore, the back-end can supply alternative event codes for each event, and the constraint checking code will try all possible combinations of alternative event codes to try to find a combination that will fit. Signed-off-by: Paul Mackerras --- diff --git a/arch/powerpc/include/asm/perf_counter.h b/arch/powerpc/include/asm/perf_counter.h index 59530ae1d53c..9d7ff6d7fb56 100644 --- a/arch/powerpc/include/asm/perf_counter.h +++ b/arch/powerpc/include/asm/perf_counter.h @@ -8,3 +8,65 @@ * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ +#include + +#define MAX_HWCOUNTERS 8 +#define MAX_EVENT_ALTERNATIVES 8 + +/* + * This struct provides the constants and functions needed to + * describe the PMU on a particular POWER-family CPU. + */ +struct power_pmu { + int n_counter; + int max_alternatives; + u64 add_fields; + u64 test_adder; + int (*compute_mmcr)(unsigned int events[], int n_ev, + unsigned int hwc[], u64 mmcr[]); + int (*get_constraint)(unsigned int event, u64 *mskp, u64 *valp); + int (*get_alternatives)(unsigned int event, unsigned int alt[]); + void (*disable_pmc)(unsigned int pmc, u64 mmcr[]); + int n_generic; + int *generic_events; +}; + +extern struct power_pmu *ppmu; + +/* + * The power_pmu.get_constraint function returns a 64-bit value and + * a 64-bit mask that express the constraints between this event and + * other events. + * + * The value and mask are divided up into (non-overlapping) bitfields + * of three different types: + * + * Select field: this expresses the constraint that some set of bits + * in MMCR* needs to be set to a specific value for this event. For a + * select field, the mask contains 1s in every bit of the field, and + * the value contains a unique value for each possible setting of the + * MMCR* bits. The constraint checking code will ensure that two events + * that set the same field in their masks have the same value in their + * value dwords. + * + * Add field: this expresses the constraint that there can be at most + * N events in a particular class. A field of k bits can be used for + * N <= 2^(k-1) - 1. The mask has the most significant bit of the field + * set (and the other bits 0), and the value has only the least significant + * bit of the field set. In addition, the 'add_fields' and 'test_adder' + * in the struct power_pmu for this processor come into play. The + * add_fields value contains 1 in the LSB of the field, and the + * test_adder contains 2^(k-1) - 1 - N in the field. + * + * NAND field: this expresses the constraint that you may not have events + * in all of a set of classes. (For example, on PPC970, you can't select + * events from the FPU, ISU and IDU simultaneously, although any two are + * possible.) For N classes, the field is N+1 bits wide, and each class + * is assigned one bit from the least-significant N bits. The mask has + * only the most-significant bit set, and the value has only the bit + * for the event's class set. The test_adder has the least significant + * bit set in the field. + * + * If an event is not subject to the constraint expressed by a particular + * field, then it will have 0 in both the mask and value for that field. + */ diff --git a/arch/powerpc/kernel/Makefile b/arch/powerpc/kernel/Makefile index 1308a86e9070..fde190bbb2bd 100644 --- a/arch/powerpc/kernel/Makefile +++ b/arch/powerpc/kernel/Makefile @@ -94,6 +94,7 @@ obj-$(CONFIG_AUDIT) += audit.o obj64-$(CONFIG_AUDIT) += compat_audit.o obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o +obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o obj-$(CONFIG_8XX_MINIMAL_FPEMU) += softemu8xx.o diff --git a/arch/powerpc/kernel/perf_counter.c b/arch/powerpc/kernel/perf_counter.c new file mode 100644 index 000000000000..c7d4c2966a5c --- /dev/null +++ b/arch/powerpc/kernel/perf_counter.c @@ -0,0 +1,754 @@ +/* + * Performance counter support - powerpc architecture code + * + * Copyright 2008-2009 Paul Mackerras, IBM Corporation. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ +#include +#include +#include +#include +#include +#include +#include + +struct cpu_hw_counters { + int n_counters; + int n_percpu; + int disabled; + int n_added; + struct perf_counter *counter[MAX_HWCOUNTERS]; + unsigned int events[MAX_HWCOUNTERS]; + u64 mmcr[3]; +}; +DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); + +struct power_pmu *ppmu; + +void perf_counter_print_debug(void) +{ +} + +/* + * Return 1 for a software counter, 0 for a hardware counter + */ +static inline int is_software_counter(struct perf_counter *counter) +{ + return !counter->hw_event.raw && counter->hw_event.type < 0; +} + +/* + * Read one performance monitor counter (PMC). + */ +static unsigned long read_pmc(int idx) +{ + unsigned long val; + + switch (idx) { + case 1: + val = mfspr(SPRN_PMC1); + break; + case 2: + val = mfspr(SPRN_PMC2); + break; + case 3: + val = mfspr(SPRN_PMC3); + break; + case 4: + val = mfspr(SPRN_PMC4); + break; + case 5: + val = mfspr(SPRN_PMC5); + break; + case 6: + val = mfspr(SPRN_PMC6); + break; + case 7: + val = mfspr(SPRN_PMC7); + break; + case 8: + val = mfspr(SPRN_PMC8); + break; + default: + printk(KERN_ERR "oops trying to read PMC%d\n", idx); + val = 0; + } + return val; +} + +/* + * Write one PMC. + */ +static void write_pmc(int idx, unsigned long val) +{ + switch (idx) { + case 1: + mtspr(SPRN_PMC1, val); + break; + case 2: + mtspr(SPRN_PMC2, val); + break; + case 3: + mtspr(SPRN_PMC3, val); + break; + case 4: + mtspr(SPRN_PMC4, val); + break; + case 5: + mtspr(SPRN_PMC5, val); + break; + case 6: + mtspr(SPRN_PMC6, val); + break; + case 7: + mtspr(SPRN_PMC7, val); + break; + case 8: + mtspr(SPRN_PMC8, val); + break; + default: + printk(KERN_ERR "oops trying to write PMC%d\n", idx); + } +} + +/* + * Check if a set of events can all go on the PMU at once. + * If they can't, this will look at alternative codes for the events + * and see if any combination of alternative codes is feasible. + * The feasible set is returned in event[]. + */ +static int power_check_constraints(unsigned int event[], int n_ev) +{ + u64 mask, value, nv; + unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; + u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; + u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; + u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS]; + int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS]; + int i, j; + u64 addf = ppmu->add_fields; + u64 tadd = ppmu->test_adder; + + if (n_ev > ppmu->n_counter) + return -1; + + /* First see if the events will go on as-is */ + for (i = 0; i < n_ev; ++i) { + alternatives[i][0] = event[i]; + if (ppmu->get_constraint(event[i], &amasks[i][0], + &avalues[i][0])) + return -1; + choice[i] = 0; + } + value = mask = 0; + for (i = 0; i < n_ev; ++i) { + nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf); + if ((((nv + tadd) ^ value) & mask) != 0 || + (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0) + break; + value = nv; + mask |= amasks[i][0]; + } + if (i == n_ev) + return 0; /* all OK */ + + /* doesn't work, gather alternatives... */ + if (!ppmu->get_alternatives) + return -1; + for (i = 0; i < n_ev; ++i) { + n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]); + for (j = 1; j < n_alt[i]; ++j) + ppmu->get_constraint(alternatives[i][j], + &amasks[i][j], &avalues[i][j]); + } + + /* enumerate all possibilities and see if any will work */ + i = 0; + j = -1; + value = mask = nv = 0; + while (i < n_ev) { + if (j >= 0) { + /* we're backtracking, restore context */ + value = svalues[i]; + mask = smasks[i]; + j = choice[i]; + } + /* + * See if any alternative k for event i, + * where k > j, will satisfy the constraints. + */ + while (++j < n_alt[i]) { + nv = (value | avalues[i][j]) + + (value & avalues[i][j] & addf); + if ((((nv + tadd) ^ value) & mask) == 0 && + (((nv + tadd) ^ avalues[i][j]) + & amasks[i][j]) == 0) + break; + } + if (j >= n_alt[i]) { + /* + * No feasible alternative, backtrack + * to event i-1 and continue enumerating its + * alternatives from where we got up to. + */ + if (--i < 0) + return -1; + } else { + /* + * Found a feasible alternative for event i, + * remember where we got up to with this event, + * go on to the next event, and start with + * the first alternative for it. + */ + choice[i] = j; + svalues[i] = value; + smasks[i] = mask; + value = nv; + mask |= amasks[i][j]; + ++i; + j = -1; + } + } + + /* OK, we have a feasible combination, tell the caller the solution */ + for (i = 0; i < n_ev; ++i) + event[i] = alternatives[i][choice[i]]; + return 0; +} + +static void power_perf_read(struct perf_counter *counter) +{ + long val, delta, prev; + + if (!counter->hw.idx) + return; + /* + * Performance monitor interrupts come even when interrupts + * are soft-disabled, as long as interrupts are hard-enabled. + * Therefore we treat them like NMIs. + */ + do { + prev = atomic64_read(&counter->hw.prev_count); + barrier(); + val = read_pmc(counter->hw.idx); + } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev); + + /* The counters are only 32 bits wide */ + delta = (val - prev) & 0xfffffffful; + atomic64_add(delta, &counter->count); + atomic64_sub(delta, &counter->hw.period_left); +} + +/* + * Disable all counters to prevent PMU interrupts and to allow + * counters to be added or removed. + */ +u64 hw_perf_save_disable(void) +{ + struct cpu_hw_counters *cpuhw; + unsigned long ret; + unsigned long flags; + + local_irq_save(flags); + cpuhw = &__get_cpu_var(cpu_hw_counters); + + ret = cpuhw->disabled; + if (!ret) { + cpuhw->disabled = 1; + cpuhw->n_added = 0; + + /* + * Set the 'freeze counters' bit. + * The barrier is to make sure the mtspr has been + * executed and the PMU has frozen the counters + * before we return. + */ + mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); + mb(); + } + local_irq_restore(flags); + return ret; +} + +/* + * Re-enable all counters if disable == 0. + * If we were previously disabled and counters were added, then + * put the new config on the PMU. + */ +void hw_perf_restore(u64 disable) +{ + struct perf_counter *counter; + struct cpu_hw_counters *cpuhw; + unsigned long flags; + long i; + unsigned long val; + s64 left; + unsigned int hwc_index[MAX_HWCOUNTERS]; + + if (disable) + return; + local_irq_save(flags); + cpuhw = &__get_cpu_var(cpu_hw_counters); + cpuhw->disabled = 0; + + /* + * If we didn't change anything, or only removed counters, + * no need to recalculate MMCR* settings and reset the PMCs. + * Just reenable the PMU with the current MMCR* settings + * (possibly updated for removal of counters). + */ + if (!cpuhw->n_added) { + mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); + mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); + mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); + goto out; + } + + /* + * Compute MMCR* values for the new set of counters + */ + if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index, + cpuhw->mmcr)) { + /* shouldn't ever get here */ + printk(KERN_ERR "oops compute_mmcr failed\n"); + goto out; + } + + /* + * Write the new configuration to MMCR* with the freeze + * bit set and set the hardware counters to their initial values. + * Then unfreeze the counters. + */ + mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); + mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); + mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) + | MMCR0_FC); + + /* + * Read off any pre-existing counters that need to move + * to another PMC. + */ + for (i = 0; i < cpuhw->n_counters; ++i) { + counter = cpuhw->counter[i]; + if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) { + power_perf_read(counter); + write_pmc(counter->hw.idx, 0); + counter->hw.idx = 0; + } + } + + /* + * Initialize the PMCs for all the new and moved counters. + */ + for (i = 0; i < cpuhw->n_counters; ++i) { + counter = cpuhw->counter[i]; + if (counter->hw.idx) + continue; + val = 0; + if (counter->hw_event.irq_period) { + left = atomic64_read(&counter->hw.period_left); + if (left < 0x80000000L) + val = 0x80000000L - left; + } + atomic64_set(&counter->hw.prev_count, val); + counter->hw.idx = hwc_index[i] + 1; + write_pmc(counter->hw.idx, val); + } + mb(); + cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; + mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); + + out: + local_irq_restore(flags); +} + +static int collect_events(struct perf_counter *group, int max_count, + struct perf_counter *ctrs[], unsigned int *events) +{ + int n = 0; + struct perf_counter *counter; + + if (!is_software_counter(group)) { + if (n >= max_count) + return -1; + ctrs[n] = group; + events[n++] = group->hw.config; + } + list_for_each_entry(counter, &group->sibling_list, list_entry) { + if (!is_software_counter(counter) && + counter->state != PERF_COUNTER_STATE_OFF) { + if (n >= max_count) + return -1; + ctrs[n] = counter; + events[n++] = counter->hw.config; + } + } + return n; +} + +static void counter_sched_in(struct perf_counter *counter, int cpu) +{ + counter->state = PERF_COUNTER_STATE_ACTIVE; + counter->oncpu = cpu; + if (is_software_counter(counter)) + counter->hw_ops->enable(counter); +} + +/* + * Called to enable a whole group of counters. + * Returns 1 if the group was enabled, or -EAGAIN if it could not be. + * Assumes the caller has disabled interrupts and has + * frozen the PMU with hw_perf_save_disable. + */ +int hw_perf_group_sched_in(struct perf_counter *group_leader, + struct perf_cpu_context *cpuctx, + struct perf_counter_context *ctx, int cpu) +{ + struct cpu_hw_counters *cpuhw; + long i, n, n0; + struct perf_counter *sub; + + cpuhw = &__get_cpu_var(cpu_hw_counters); + n0 = cpuhw->n_counters; + n = collect_events(group_leader, ppmu->n_counter - n0, + &cpuhw->counter[n0], &cpuhw->events[n0]); + if (n < 0) + return -EAGAIN; + if (power_check_constraints(cpuhw->events, n + n0)) + return -EAGAIN; + cpuhw->n_counters = n0 + n; + cpuhw->n_added += n; + + /* + * OK, this group can go on; update counter states etc., + * and enable any software counters + */ + for (i = n0; i < n0 + n; ++i) + cpuhw->counter[i]->hw.config = cpuhw->events[i]; + n = 1; + counter_sched_in(group_leader, cpu); + list_for_each_entry(sub, &group_leader->sibling_list, list_entry) { + if (sub->state != PERF_COUNTER_STATE_OFF) { + counter_sched_in(sub, cpu); + ++n; + } + } + cpuctx->active_oncpu += n; + ctx->nr_active += n; + + return 1; +} + +/* + * Add a counter to the PMU. + * If all counters are not already frozen, then we disable and + * re-enable the PMU in order to get hw_perf_restore to do the + * actual work of reconfiguring the PMU. + */ +static int power_perf_enable(struct perf_counter *counter) +{ + struct cpu_hw_counters *cpuhw; + unsigned long flags; + u64 pmudis; + int n0; + int ret = -EAGAIN; + + local_irq_save(flags); + pmudis = hw_perf_save_disable(); + + /* + * Add the counter to the list (if there is room) + * and check whether the total set is still feasible. + */ + cpuhw = &__get_cpu_var(cpu_hw_counters); + n0 = cpuhw->n_counters; + if (n0 >= ppmu->n_counter) + goto out; + cpuhw->counter[n0] = counter; + cpuhw->events[n0] = counter->hw.config; + if (power_check_constraints(cpuhw->events, n0 + 1)) + goto out; + + counter->hw.config = cpuhw->events[n0]; + ++cpuhw->n_counters; + ++cpuhw->n_added; + + ret = 0; + out: + hw_perf_restore(pmudis); + local_irq_restore(flags); + return ret; +} + +/* + * Remove a counter from the PMU. + */ +static void power_perf_disable(struct perf_counter *counter) +{ + struct cpu_hw_counters *cpuhw; + long i; + u64 pmudis; + unsigned long flags; + + local_irq_save(flags); + pmudis = hw_perf_save_disable(); + + power_perf_read(counter); + + cpuhw = &__get_cpu_var(cpu_hw_counters); + for (i = 0; i < cpuhw->n_counters; ++i) { + if (counter == cpuhw->counter[i]) { + while (++i < cpuhw->n_counters) + cpuhw->counter[i-1] = cpuhw->counter[i]; + --cpuhw->n_counters; + ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr); + write_pmc(counter->hw.idx, 0); + counter->hw.idx = 0; + break; + } + } + if (cpuhw->n_counters == 0) { + /* disable exceptions if no counters are running */ + cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); + } + + hw_perf_restore(pmudis); + local_irq_restore(flags); +} + +struct hw_perf_counter_ops power_perf_ops = { + .enable = power_perf_enable, + .disable = power_perf_disable, + .read = power_perf_read +}; + +const struct hw_perf_counter_ops * +hw_perf_counter_init(struct perf_counter *counter) +{ + unsigned long ev; + struct perf_counter *ctrs[MAX_HWCOUNTERS]; + unsigned int events[MAX_HWCOUNTERS]; + int n; + + if (!ppmu) + return NULL; + if ((s64)counter->hw_event.irq_period < 0) + return NULL; + ev = counter->hw_event.type; + if (!counter->hw_event.raw) { + if (ev >= ppmu->n_generic || + ppmu->generic_events[ev] == 0) + return NULL; + ev = ppmu->generic_events[ev]; + } + counter->hw.config_base = ev; + counter->hw.idx = 0; + + /* + * If this is in a group, check if it can go on with all the + * other hardware counters in the group. We assume the counter + * hasn't been linked into its leader's sibling list at this point. + */ + n = 0; + if (counter->group_leader != counter) { + n = collect_events(counter->group_leader, ppmu->n_counter - 1, + ctrs, events); + if (n < 0) + return NULL; + } + events[n++] = ev; + if (power_check_constraints(events, n)) + return NULL; + + counter->hw.config = events[n - 1]; + atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period); + return &power_perf_ops; +} + +/* + * Handle wakeups. + */ +void perf_counter_do_pending(void) +{ + int i; + struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); + struct perf_counter *counter; + + set_perf_counter_pending(0); + for (i = 0; i < cpuhw->n_counters; ++i) { + counter = cpuhw->counter[i]; + if (counter && counter->wakeup_pending) { + counter->wakeup_pending = 0; + wake_up(&counter->waitq); + } + } +} + +/* + * Record data for an irq counter. + * This function was lifted from the x86 code; maybe it should + * go in the core? + */ +static void perf_store_irq_data(struct perf_counter *counter, u64 data) +{ + struct perf_data *irqdata = counter->irqdata; + + if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { + irqdata->overrun++; + } else { + u64 *p = (u64 *) &irqdata->data[irqdata->len]; + + *p = data; + irqdata->len += sizeof(u64); + } +} + +/* + * Record all the values of the counters in a group + */ +static void perf_handle_group(struct perf_counter *counter) +{ + struct perf_counter *leader, *sub; + + leader = counter->group_leader; + list_for_each_entry(sub, &leader->sibling_list, list_entry) { + if (sub != counter) + sub->hw_ops->read(sub); + perf_store_irq_data(counter, sub->hw_event.type); + perf_store_irq_data(counter, atomic64_read(&sub->count)); + } +} + +/* + * A counter has overflowed; update its count and record + * things if requested. Note that interrupts are hard-disabled + * here so there is no possibility of being interrupted. + */ +static void record_and_restart(struct perf_counter *counter, long val, + struct pt_regs *regs) +{ + s64 prev, delta, left; + int record = 0; + + /* we don't have to worry about interrupts here */ + prev = atomic64_read(&counter->hw.prev_count); + delta = (val - prev) & 0xfffffffful; + atomic64_add(delta, &counter->count); + + /* + * See if the total period for this counter has expired, + * and update for the next period. + */ + val = 0; + left = atomic64_read(&counter->hw.period_left) - delta; + if (counter->hw_event.irq_period) { + if (left <= 0) { + left += counter->hw_event.irq_period; + if (left <= 0) + left = counter->hw_event.irq_period; + record = 1; + } + if (left < 0x80000000L) + val = 0x80000000L - left; + } + write_pmc(counter->hw.idx, val); + atomic64_set(&counter->hw.prev_count, val); + atomic64_set(&counter->hw.period_left, left); + + /* + * Finally record data if requested. + */ + if (record) { + switch (counter->hw_event.record_type) { + case PERF_RECORD_SIMPLE: + break; + case PERF_RECORD_IRQ: + perf_store_irq_data(counter, instruction_pointer(regs)); + counter->wakeup_pending = 1; + break; + case PERF_RECORD_GROUP: + perf_handle_group(counter); + counter->wakeup_pending = 1; + break; + } + } +} + +/* + * Performance monitor interrupt stuff + */ +static void perf_counter_interrupt(struct pt_regs *regs) +{ + int i; + struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); + struct perf_counter *counter; + long val; + int need_wakeup = 0, found = 0; + + for (i = 0; i < cpuhw->n_counters; ++i) { + counter = cpuhw->counter[i]; + val = read_pmc(counter->hw.idx); + if ((int)val < 0) { + /* counter has overflowed */ + found = 1; + record_and_restart(counter, val, regs); + if (counter->wakeup_pending) + need_wakeup = 1; + } + } + + /* + * In case we didn't find and reset the counter that caused + * the interrupt, scan all counters and reset any that are + * negative, to avoid getting continual interrupts. + * Any that we processed in the previous loop will not be negative. + */ + if (!found) { + for (i = 0; i < ppmu->n_counter; ++i) { + val = read_pmc(i + 1); + if ((int)val < 0) + write_pmc(i + 1, 0); + } + } + + /* + * Reset MMCR0 to its normal value. This will set PMXE and + * clear FC (freeze counters) and PMAO (perf mon alert occurred) + * and thus allow interrupts to occur again. + * XXX might want to use MSR.PM to keep the counters frozen until + * we get back out of this interrupt. + */ + mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); + + /* + * If we need a wakeup, check whether interrupts were soft-enabled + * when we took the interrupt. If they were, we can wake stuff up + * immediately; otherwise we'll have to set a flag and do the + * wakeup when interrupts get soft-enabled. + */ + if (need_wakeup) { + if (regs->softe) { + irq_enter(); + perf_counter_do_pending(); + irq_exit(); + } else { + set_perf_counter_pending(1); + } + } +} + +static int init_perf_counters(void) +{ + if (reserve_pmc_hardware(perf_counter_interrupt)) { + printk(KERN_ERR "Couldn't init performance monitor subsystem\n"); + return -EBUSY; + } + + return 0; +} + +arch_initcall(init_perf_counters);