From: Tejun Heo Date: Mon, 3 Feb 2014 19:02:56 +0000 (-0500) Subject: kernfs: restructure removal path to fix possible premature return X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=35beab0635f3cdd475e3c11a304b866c25b76fcf;p=GitHub%2FLineageOS%2FG12%2Fandroid_kernel_amlogic_linux-4.9.git kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo Signed-off-by: Greg Kroah-Hartman --- diff --git a/fs/kernfs/dir.c b/fs/kernfs/dir.c index 2193d30156ef..3ac93737174a 100644 --- a/fs/kernfs/dir.c +++ b/fs/kernfs/dir.c @@ -106,18 +106,24 @@ static int kernfs_link_sibling(struct kernfs_node *kn) * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree * @kn: kernfs_node of interest * - * Unlink @kn from its sibling rbtree which starts from - * kn->parent->dir.children. + * Try to unlink @kn from its sibling rbtree which starts from + * kn->parent->dir.children. Returns %true if @kn was actually + * removed, %false if @kn wasn't on the rbtree. * * Locking: * mutex_lock(kernfs_mutex) */ -static void kernfs_unlink_sibling(struct kernfs_node *kn) +static bool kernfs_unlink_sibling(struct kernfs_node *kn) { + if (RB_EMPTY_NODE(&kn->rb)) + return false; + if (kernfs_type(kn) == KERNFS_DIR) kn->parent->dir.subdirs--; rb_erase(&kn->rb, &kn->parent->dir.children); + RB_CLEAR_NODE(&kn->rb); + return true; } /** @@ -171,26 +177,34 @@ void kernfs_put_active(struct kernfs_node *kn) * kernfs_deactivate - deactivate kernfs_node * @kn: kernfs_node to deactivate * - * Deny new active references and drain existing ones. + * Deny new active references and drain existing ones. Mutiple + * removers may invoke this function concurrently on @kn and all will + * return after deactivation and draining are complete. */ static void kernfs_deactivate(struct kernfs_node *kn) + __releases(&kernfs_mutex) __acquires(&kernfs_mutex) { struct kernfs_root *root = kernfs_root(kn); + lockdep_assert_held(&kernfs_mutex); BUG_ON(!(kn->flags & KERNFS_REMOVED)); if (!(kernfs_type(kn) & KERNFS_ACTIVE_REF)) return; - if (kn->flags & KERNFS_LOCKDEP) - rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); + /* only the first invocation on @kn should deactivate it */ + if (atomic_read(&kn->active) >= 0) + atomic_add(KN_DEACTIVATED_BIAS, &kn->active); - atomic_add(KN_DEACTIVATED_BIAS, &kn->active); + mutex_unlock(&kernfs_mutex); - if ((kn->flags & KERNFS_LOCKDEP) && - atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) - lock_contended(&kn->dep_map, _RET_IP_); + if (kn->flags & KERNFS_LOCKDEP) { + rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); + if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) + lock_contended(&kn->dep_map, _RET_IP_); + } + /* but everyone should wait for draining */ wait_event(root->deactivate_waitq, atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); @@ -198,6 +212,8 @@ static void kernfs_deactivate(struct kernfs_node *kn) lock_acquired(&kn->dep_map, _RET_IP_); rwsem_release(&kn->dep_map, 1, _RET_IP_); } + + mutex_lock(&kernfs_mutex); } /** @@ -347,6 +363,7 @@ static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, atomic_set(&kn->count, 1); atomic_set(&kn->active, 0); + RB_CLEAR_NODE(&kn->rb); kn->name = name; kn->mode = mode; @@ -453,49 +470,6 @@ int kernfs_add_one(struct kernfs_addrm_cxt *acxt, struct kernfs_node *kn) return 0; } -/** - * kernfs_remove_one - remove kernfs_node from parent - * @acxt: addrm context to use - * @kn: kernfs_node to be removed - * - * Mark @kn removed and drop nlink of parent inode if @kn is a - * directory. @kn is unlinked from the children list. - * - * This function should be called between calls to - * kernfs_addrm_start() and kernfs_addrm_finish() and should be - * passed the same @acxt as passed to kernfs_addrm_start(). - * - * LOCKING: - * Determined by kernfs_addrm_start(). - */ -static void kernfs_remove_one(struct kernfs_addrm_cxt *acxt, - struct kernfs_node *kn) -{ - struct kernfs_iattrs *ps_iattr; - - /* - * Removal can be called multiple times on the same node. Only the - * first invocation is effective and puts the base ref. - */ - if (kn->flags & KERNFS_REMOVED) - return; - - if (kn->parent) { - kernfs_unlink_sibling(kn); - - /* Update timestamps on the parent */ - ps_iattr = kn->parent->iattr; - if (ps_iattr) { - ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; - ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; - } - } - - kn->flags |= KERNFS_REMOVED; - kn->u.removed_list = acxt->removed; - acxt->removed = kn; -} - /** * kernfs_addrm_finish - finish up kernfs_node add/remove * @acxt: addrm context to finish up @@ -519,7 +493,6 @@ void kernfs_addrm_finish(struct kernfs_addrm_cxt *acxt) acxt->removed = kn->u.removed_list; - kernfs_deactivate(kn); kernfs_unmap_bin_file(kn); kernfs_put(kn); } @@ -828,20 +801,54 @@ static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, static void __kernfs_remove(struct kernfs_addrm_cxt *acxt, struct kernfs_node *kn) { - struct kernfs_node *pos, *next; + struct kernfs_node *pos; + + lockdep_assert_held(&kernfs_mutex); if (!kn) return; pr_debug("kernfs %s: removing\n", kn->name); - next = NULL; + /* disable lookup and node creation under @kn */ + pos = NULL; + while ((pos = kernfs_next_descendant_post(pos, kn))) + pos->flags |= KERNFS_REMOVED; + + /* deactivate and unlink the subtree node-by-node */ do { - pos = next; - next = kernfs_next_descendant_post(pos, kn); - if (pos) - kernfs_remove_one(acxt, pos); - } while (next); + pos = kernfs_leftmost_descendant(kn); + + /* + * kernfs_deactivate() drops kernfs_mutex temporarily and + * @pos's base ref could have been put by someone else by + * the time the function returns. Make sure it doesn't go + * away underneath us. + */ + kernfs_get(pos); + + kernfs_deactivate(pos); + + /* + * kernfs_unlink_sibling() succeeds once per node. Use it + * to decide who's responsible for cleanups. + */ + if (!pos->parent || kernfs_unlink_sibling(pos)) { + struct kernfs_iattrs *ps_iattr = + pos->parent ? pos->parent->iattr : NULL; + + /* update timestamps on the parent */ + if (ps_iattr) { + ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; + ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; + } + + pos->u.removed_list = acxt->removed; + acxt->removed = pos; + } + + kernfs_put(pos); + } while (pos != kn); } /**