From: Viresh Kumar Date: Thu, 30 Jul 2015 16:57:19 +0000 (+0530) Subject: PM / OPP: Create a directory for opp bindings X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=3566c5b277a41e912d15cd583c4604c95bb6b3f8;p=GitHub%2Fmoto-9609%2Fandroid_kernel_motorola_exynos9610.git PM / OPP: Create a directory for opp bindings More platform specific extended opp bindings will follow and it would be easy to manage them with a directory for opp. Lets create that and move the existing opp bindings into it. Signed-off-by: Viresh Kumar Signed-off-by: Rafael J. Wysocki --- diff --git a/Documentation/devicetree/bindings/opp/opp.txt b/Documentation/devicetree/bindings/opp/opp.txt new file mode 100644 index 000000000000..0cb44dc21f97 --- /dev/null +++ b/Documentation/devicetree/bindings/opp/opp.txt @@ -0,0 +1,465 @@ +Generic OPP (Operating Performance Points) Bindings +---------------------------------------------------- + +Devices work at voltage-current-frequency combinations and some implementations +have the liberty of choosing these. These combinations are called Operating +Performance Points aka OPPs. This document defines bindings for these OPPs +applicable across wide range of devices. For illustration purpose, this document +uses CPU as a device. + +This document contain multiple versions of OPP binding and only one of them +should be used per device. + +Binding 1: operating-points +============================ + +This binding only supports voltage-frequency pairs. + +Properties: +- operating-points: An array of 2-tuples items, and each item consists + of frequency and voltage like . + freq: clock frequency in kHz + vol: voltage in microvolt + +Examples: + +cpu@0 { + compatible = "arm,cortex-a9"; + reg = <0>; + next-level-cache = <&L2>; + operating-points = < + /* kHz uV */ + 792000 1100000 + 396000 950000 + 198000 850000 + >; +}; + + +Binding 2: operating-points-v2 +============================ + +* Property: operating-points-v2 + +Devices supporting OPPs must set their "operating-points-v2" property with +phandle to a OPP table in their DT node. The OPP core will use this phandle to +find the operating points for the device. + +Devices may want to choose OPP tables at runtime and so can provide a list of +phandles here. But only *one* of them should be chosen at runtime. This must be +accompanied by a corresponding "operating-points-names" property, to uniquely +identify the OPP tables. + +If required, this can be extended for SoC vendor specfic bindings. Such bindings +should be documented as Documentation/devicetree/bindings/power/-opp.txt +and should have a compatible description like: "operating-points-v2-". + +Optional properties: +- operating-points-names: Names of OPP tables (required if multiple OPP + tables are present), to uniquely identify them. The same list must be present + for all the CPUs which are sharing clock/voltage rails and hence the OPP + tables. + +* OPP Table Node + +This describes the OPPs belonging to a device. This node can have following +properties: + +Required properties: +- compatible: Allow OPPs to express their compatibility. It should be: + "operating-points-v2". + +- OPP nodes: One or more OPP nodes describing voltage-current-frequency + combinations. Their name isn't significant but their phandle can be used to + reference an OPP. + +Optional properties: +- opp-shared: Indicates that device nodes using this OPP Table Node's phandle + switch their DVFS state together, i.e. they share clock/voltage/current lines. + Missing property means devices have independent clock/voltage/current lines, + but they share OPP tables. + +- status: Marks the OPP table enabled/disabled. + + +* OPP Node + +This defines voltage-current-frequency combinations along with other related +properties. + +Required properties: +- opp-hz: Frequency in Hz, expressed as a 64-bit big-endian integer. + +Optional properties: +- opp-microvolt: voltage in micro Volts. + + A single regulator's voltage is specified with an array of size one or three. + Single entry is for target voltage and three entries are for + voltages. + + Entries for multiple regulators must be present in the same order as + regulators are specified in device's DT node. + +- opp-microamp: The maximum current drawn by the device in microamperes + considering system specific parameters (such as transients, process, aging, + maximum operating temperature range etc.) as necessary. This may be used to + set the most efficient regulator operating mode. + + Should only be set if opp-microvolt is set for the OPP. + + Entries for multiple regulators must be present in the same order as + regulators are specified in device's DT node. If this property isn't required + for few regulators, then this should be marked as zero for them. If it isn't + required for any regulator, then this property need not be present. + +- clock-latency-ns: Specifies the maximum possible transition latency (in + nanoseconds) for switching to this OPP from any other OPP. + +- turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is + available on some platforms, where the device can run over its operating + frequency for a short duration of time limited by the device's power, current + and thermal limits. + +- opp-suspend: Marks the OPP to be used during device suspend. Only one OPP in + the table should have this. + +- status: Marks the node enabled/disabled. + +Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "arm,cortex-a9"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu0_opp_table>; + }; + + cpu@1 { + compatible = "arm,cortex-a9"; + reg = <1>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu0_opp_table>; + }; + }; + + cpu0_opp_table: opp_table0 { + compatible = "operating-points-v2"; + opp-shared; + + opp00 { + opp-hz = /bits/ 64 <1000000000>; + opp-microvolt = <970000 975000 985000>; + opp-microamp = <70000>; + clock-latency-ns = <300000>; + opp-suspend; + }; + opp01 { + opp-hz = /bits/ 64 <1100000000>; + opp-microvolt = <980000 1000000 1010000>; + opp-microamp = <80000>; + clock-latency-ns = <310000>; + }; + opp02 { + opp-hz = /bits/ 64 <1200000000>; + opp-microvolt = <1025000>; + clock-latency-ns = <290000>; + turbo-mode; + }; + }; +}; + +Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states +independently. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "qcom,krait"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu_opp_table>; + }; + + cpu@1 { + compatible = "qcom,krait"; + reg = <1>; + next-level-cache = <&L2>; + clocks = <&clk_controller 1>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply1>; + operating-points-v2 = <&cpu_opp_table>; + }; + + cpu@2 { + compatible = "qcom,krait"; + reg = <2>; + next-level-cache = <&L2>; + clocks = <&clk_controller 2>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply2>; + operating-points-v2 = <&cpu_opp_table>; + }; + + cpu@3 { + compatible = "qcom,krait"; + reg = <3>; + next-level-cache = <&L2>; + clocks = <&clk_controller 3>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply3>; + operating-points-v2 = <&cpu_opp_table>; + }; + }; + + cpu_opp_table: opp_table { + compatible = "operating-points-v2"; + + /* + * Missing opp-shared property means CPUs switch DVFS states + * independently. + */ + + opp00 { + opp-hz = /bits/ 64 <1000000000>; + opp-microvolt = <970000 975000 985000>; + opp-microamp = <70000>; + clock-latency-ns = <300000>; + opp-suspend; + }; + opp01 { + opp-hz = /bits/ 64 <1100000000>; + opp-microvolt = <980000 1000000 1010000>; + opp-microamp = <80000>; + clock-latency-ns = <310000>; + }; + opp02 { + opp-hz = /bits/ 64 <1200000000>; + opp-microvolt = <1025000>; + opp-microamp = <90000; + lock-latency-ns = <290000>; + turbo-mode; + }; + }; +}; + +Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch +DVFS state together. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "arm,cortex-a7"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply0>; + operating-points-v2 = <&cluster0_opp>; + }; + + cpu@1 { + compatible = "arm,cortex-a7"; + reg = <1>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply0>; + operating-points-v2 = <&cluster0_opp>; + }; + + cpu@100 { + compatible = "arm,cortex-a15"; + reg = <100>; + next-level-cache = <&L2>; + clocks = <&clk_controller 1>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply1>; + operating-points-v2 = <&cluster1_opp>; + }; + + cpu@101 { + compatible = "arm,cortex-a15"; + reg = <101>; + next-level-cache = <&L2>; + clocks = <&clk_controller 1>; + clock-names = "cpu"; + cpu-supply = <&cpu_supply1>; + operating-points-v2 = <&cluster1_opp>; + }; + }; + + cluster0_opp: opp_table0 { + compatible = "operating-points-v2"; + opp-shared; + + opp00 { + opp-hz = /bits/ 64 <1000000000>; + opp-microvolt = <970000 975000 985000>; + opp-microamp = <70000>; + clock-latency-ns = <300000>; + opp-suspend; + }; + opp01 { + opp-hz = /bits/ 64 <1100000000>; + opp-microvolt = <980000 1000000 1010000>; + opp-microamp = <80000>; + clock-latency-ns = <310000>; + }; + opp02 { + opp-hz = /bits/ 64 <1200000000>; + opp-microvolt = <1025000>; + opp-microamp = <90000>; + clock-latency-ns = <290000>; + turbo-mode; + }; + }; + + cluster1_opp: opp_table1 { + compatible = "operating-points-v2"; + opp-shared; + + opp10 { + opp-hz = /bits/ 64 <1300000000>; + opp-microvolt = <1045000 1050000 1055000>; + opp-microamp = <95000>; + clock-latency-ns = <400000>; + opp-suspend; + }; + opp11 { + opp-hz = /bits/ 64 <1400000000>; + opp-microvolt = <1075000>; + opp-microamp = <100000>; + clock-latency-ns = <400000>; + }; + opp12 { + opp-hz = /bits/ 64 <1500000000>; + opp-microvolt = <1010000 1100000 1110000>; + opp-microamp = <95000>; + clock-latency-ns = <400000>; + turbo-mode; + }; + }; +}; + +Example 4: Handling multiple regulators + +/ { + cpus { + cpu@0 { + compatible = "arm,cortex-a7"; + ... + + cpu-supply = <&cpu_supply0>, <&cpu_supply1>, <&cpu_supply2>; + operating-points-v2 = <&cpu0_opp_table>; + }; + }; + + cpu0_opp_table: opp_table0 { + compatible = "operating-points-v2"; + opp-shared; + + opp00 { + opp-hz = /bits/ 64 <1000000000>; + opp-microvolt = <970000>, /* Supply 0 */ + <960000>, /* Supply 1 */ + <960000>; /* Supply 2 */ + opp-microamp = <70000>, /* Supply 0 */ + <70000>, /* Supply 1 */ + <70000>; /* Supply 2 */ + clock-latency-ns = <300000>; + }; + + /* OR */ + + opp00 { + opp-hz = /bits/ 64 <1000000000>; + opp-microvolt = <970000 975000 985000>, /* Supply 0 */ + <960000 965000 975000>, /* Supply 1 */ + <960000 965000 975000>; /* Supply 2 */ + opp-microamp = <70000>, /* Supply 0 */ + <70000>, /* Supply 1 */ + <70000>; /* Supply 2 */ + clock-latency-ns = <300000>; + }; + + /* OR */ + + opp00 { + opp-hz = /bits/ 64 <1000000000>; + opp-microvolt = <970000 975000 985000>, /* Supply 0 */ + <960000 965000 975000>, /* Supply 1 */ + <960000 965000 975000>; /* Supply 2 */ + opp-microamp = <70000>, /* Supply 0 */ + <0>, /* Supply 1 doesn't need this */ + <70000>; /* Supply 2 */ + clock-latency-ns = <300000>; + }; + }; +}; + +Example 5: Multiple OPP tables + +/ { + cpus { + cpu@0 { + compatible = "arm,cortex-a7"; + ... + + cpu-supply = <&cpu_supply> + operating-points-v2 = <&cpu0_opp_table_slow>, <&cpu0_opp_table_fast>; + operating-points-names = "slow", "fast"; + }; + }; + + cpu0_opp_table_slow: opp_table_slow { + compatible = "operating-points-v2"; + status = "okay"; + opp-shared; + + opp00 { + opp-hz = /bits/ 64 <600000000>; + ... + }; + + opp01 { + opp-hz = /bits/ 64 <800000000>; + ... + }; + }; + + cpu0_opp_table_fast: opp_table_fast { + compatible = "operating-points-v2"; + status = "okay"; + opp-shared; + + opp10 { + opp-hz = /bits/ 64 <1000000000>; + ... + }; + + opp11 { + opp-hz = /bits/ 64 <1100000000>; + ... + }; + }; +}; diff --git a/Documentation/devicetree/bindings/power/opp.txt b/Documentation/devicetree/bindings/power/opp.txt deleted file mode 100644 index 0cb44dc21f97..000000000000 --- a/Documentation/devicetree/bindings/power/opp.txt +++ /dev/null @@ -1,465 +0,0 @@ -Generic OPP (Operating Performance Points) Bindings ----------------------------------------------------- - -Devices work at voltage-current-frequency combinations and some implementations -have the liberty of choosing these. These combinations are called Operating -Performance Points aka OPPs. This document defines bindings for these OPPs -applicable across wide range of devices. For illustration purpose, this document -uses CPU as a device. - -This document contain multiple versions of OPP binding and only one of them -should be used per device. - -Binding 1: operating-points -============================ - -This binding only supports voltage-frequency pairs. - -Properties: -- operating-points: An array of 2-tuples items, and each item consists - of frequency and voltage like . - freq: clock frequency in kHz - vol: voltage in microvolt - -Examples: - -cpu@0 { - compatible = "arm,cortex-a9"; - reg = <0>; - next-level-cache = <&L2>; - operating-points = < - /* kHz uV */ - 792000 1100000 - 396000 950000 - 198000 850000 - >; -}; - - -Binding 2: operating-points-v2 -============================ - -* Property: operating-points-v2 - -Devices supporting OPPs must set their "operating-points-v2" property with -phandle to a OPP table in their DT node. The OPP core will use this phandle to -find the operating points for the device. - -Devices may want to choose OPP tables at runtime and so can provide a list of -phandles here. But only *one* of them should be chosen at runtime. This must be -accompanied by a corresponding "operating-points-names" property, to uniquely -identify the OPP tables. - -If required, this can be extended for SoC vendor specfic bindings. Such bindings -should be documented as Documentation/devicetree/bindings/power/-opp.txt -and should have a compatible description like: "operating-points-v2-". - -Optional properties: -- operating-points-names: Names of OPP tables (required if multiple OPP - tables are present), to uniquely identify them. The same list must be present - for all the CPUs which are sharing clock/voltage rails and hence the OPP - tables. - -* OPP Table Node - -This describes the OPPs belonging to a device. This node can have following -properties: - -Required properties: -- compatible: Allow OPPs to express their compatibility. It should be: - "operating-points-v2". - -- OPP nodes: One or more OPP nodes describing voltage-current-frequency - combinations. Their name isn't significant but their phandle can be used to - reference an OPP. - -Optional properties: -- opp-shared: Indicates that device nodes using this OPP Table Node's phandle - switch their DVFS state together, i.e. they share clock/voltage/current lines. - Missing property means devices have independent clock/voltage/current lines, - but they share OPP tables. - -- status: Marks the OPP table enabled/disabled. - - -* OPP Node - -This defines voltage-current-frequency combinations along with other related -properties. - -Required properties: -- opp-hz: Frequency in Hz, expressed as a 64-bit big-endian integer. - -Optional properties: -- opp-microvolt: voltage in micro Volts. - - A single regulator's voltage is specified with an array of size one or three. - Single entry is for target voltage and three entries are for - voltages. - - Entries for multiple regulators must be present in the same order as - regulators are specified in device's DT node. - -- opp-microamp: The maximum current drawn by the device in microamperes - considering system specific parameters (such as transients, process, aging, - maximum operating temperature range etc.) as necessary. This may be used to - set the most efficient regulator operating mode. - - Should only be set if opp-microvolt is set for the OPP. - - Entries for multiple regulators must be present in the same order as - regulators are specified in device's DT node. If this property isn't required - for few regulators, then this should be marked as zero for them. If it isn't - required for any regulator, then this property need not be present. - -- clock-latency-ns: Specifies the maximum possible transition latency (in - nanoseconds) for switching to this OPP from any other OPP. - -- turbo-mode: Marks the OPP to be used only for turbo modes. Turbo mode is - available on some platforms, where the device can run over its operating - frequency for a short duration of time limited by the device's power, current - and thermal limits. - -- opp-suspend: Marks the OPP to be used during device suspend. Only one OPP in - the table should have this. - -- status: Marks the node enabled/disabled. - -Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together. - -/ { - cpus { - #address-cells = <1>; - #size-cells = <0>; - - cpu@0 { - compatible = "arm,cortex-a9"; - reg = <0>; - next-level-cache = <&L2>; - clocks = <&clk_controller 0>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply0>; - operating-points-v2 = <&cpu0_opp_table>; - }; - - cpu@1 { - compatible = "arm,cortex-a9"; - reg = <1>; - next-level-cache = <&L2>; - clocks = <&clk_controller 0>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply0>; - operating-points-v2 = <&cpu0_opp_table>; - }; - }; - - cpu0_opp_table: opp_table0 { - compatible = "operating-points-v2"; - opp-shared; - - opp00 { - opp-hz = /bits/ 64 <1000000000>; - opp-microvolt = <970000 975000 985000>; - opp-microamp = <70000>; - clock-latency-ns = <300000>; - opp-suspend; - }; - opp01 { - opp-hz = /bits/ 64 <1100000000>; - opp-microvolt = <980000 1000000 1010000>; - opp-microamp = <80000>; - clock-latency-ns = <310000>; - }; - opp02 { - opp-hz = /bits/ 64 <1200000000>; - opp-microvolt = <1025000>; - clock-latency-ns = <290000>; - turbo-mode; - }; - }; -}; - -Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states -independently. - -/ { - cpus { - #address-cells = <1>; - #size-cells = <0>; - - cpu@0 { - compatible = "qcom,krait"; - reg = <0>; - next-level-cache = <&L2>; - clocks = <&clk_controller 0>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply0>; - operating-points-v2 = <&cpu_opp_table>; - }; - - cpu@1 { - compatible = "qcom,krait"; - reg = <1>; - next-level-cache = <&L2>; - clocks = <&clk_controller 1>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply1>; - operating-points-v2 = <&cpu_opp_table>; - }; - - cpu@2 { - compatible = "qcom,krait"; - reg = <2>; - next-level-cache = <&L2>; - clocks = <&clk_controller 2>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply2>; - operating-points-v2 = <&cpu_opp_table>; - }; - - cpu@3 { - compatible = "qcom,krait"; - reg = <3>; - next-level-cache = <&L2>; - clocks = <&clk_controller 3>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply3>; - operating-points-v2 = <&cpu_opp_table>; - }; - }; - - cpu_opp_table: opp_table { - compatible = "operating-points-v2"; - - /* - * Missing opp-shared property means CPUs switch DVFS states - * independently. - */ - - opp00 { - opp-hz = /bits/ 64 <1000000000>; - opp-microvolt = <970000 975000 985000>; - opp-microamp = <70000>; - clock-latency-ns = <300000>; - opp-suspend; - }; - opp01 { - opp-hz = /bits/ 64 <1100000000>; - opp-microvolt = <980000 1000000 1010000>; - opp-microamp = <80000>; - clock-latency-ns = <310000>; - }; - opp02 { - opp-hz = /bits/ 64 <1200000000>; - opp-microvolt = <1025000>; - opp-microamp = <90000; - lock-latency-ns = <290000>; - turbo-mode; - }; - }; -}; - -Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch -DVFS state together. - -/ { - cpus { - #address-cells = <1>; - #size-cells = <0>; - - cpu@0 { - compatible = "arm,cortex-a7"; - reg = <0>; - next-level-cache = <&L2>; - clocks = <&clk_controller 0>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply0>; - operating-points-v2 = <&cluster0_opp>; - }; - - cpu@1 { - compatible = "arm,cortex-a7"; - reg = <1>; - next-level-cache = <&L2>; - clocks = <&clk_controller 0>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply0>; - operating-points-v2 = <&cluster0_opp>; - }; - - cpu@100 { - compatible = "arm,cortex-a15"; - reg = <100>; - next-level-cache = <&L2>; - clocks = <&clk_controller 1>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply1>; - operating-points-v2 = <&cluster1_opp>; - }; - - cpu@101 { - compatible = "arm,cortex-a15"; - reg = <101>; - next-level-cache = <&L2>; - clocks = <&clk_controller 1>; - clock-names = "cpu"; - cpu-supply = <&cpu_supply1>; - operating-points-v2 = <&cluster1_opp>; - }; - }; - - cluster0_opp: opp_table0 { - compatible = "operating-points-v2"; - opp-shared; - - opp00 { - opp-hz = /bits/ 64 <1000000000>; - opp-microvolt = <970000 975000 985000>; - opp-microamp = <70000>; - clock-latency-ns = <300000>; - opp-suspend; - }; - opp01 { - opp-hz = /bits/ 64 <1100000000>; - opp-microvolt = <980000 1000000 1010000>; - opp-microamp = <80000>; - clock-latency-ns = <310000>; - }; - opp02 { - opp-hz = /bits/ 64 <1200000000>; - opp-microvolt = <1025000>; - opp-microamp = <90000>; - clock-latency-ns = <290000>; - turbo-mode; - }; - }; - - cluster1_opp: opp_table1 { - compatible = "operating-points-v2"; - opp-shared; - - opp10 { - opp-hz = /bits/ 64 <1300000000>; - opp-microvolt = <1045000 1050000 1055000>; - opp-microamp = <95000>; - clock-latency-ns = <400000>; - opp-suspend; - }; - opp11 { - opp-hz = /bits/ 64 <1400000000>; - opp-microvolt = <1075000>; - opp-microamp = <100000>; - clock-latency-ns = <400000>; - }; - opp12 { - opp-hz = /bits/ 64 <1500000000>; - opp-microvolt = <1010000 1100000 1110000>; - opp-microamp = <95000>; - clock-latency-ns = <400000>; - turbo-mode; - }; - }; -}; - -Example 4: Handling multiple regulators - -/ { - cpus { - cpu@0 { - compatible = "arm,cortex-a7"; - ... - - cpu-supply = <&cpu_supply0>, <&cpu_supply1>, <&cpu_supply2>; - operating-points-v2 = <&cpu0_opp_table>; - }; - }; - - cpu0_opp_table: opp_table0 { - compatible = "operating-points-v2"; - opp-shared; - - opp00 { - opp-hz = /bits/ 64 <1000000000>; - opp-microvolt = <970000>, /* Supply 0 */ - <960000>, /* Supply 1 */ - <960000>; /* Supply 2 */ - opp-microamp = <70000>, /* Supply 0 */ - <70000>, /* Supply 1 */ - <70000>; /* Supply 2 */ - clock-latency-ns = <300000>; - }; - - /* OR */ - - opp00 { - opp-hz = /bits/ 64 <1000000000>; - opp-microvolt = <970000 975000 985000>, /* Supply 0 */ - <960000 965000 975000>, /* Supply 1 */ - <960000 965000 975000>; /* Supply 2 */ - opp-microamp = <70000>, /* Supply 0 */ - <70000>, /* Supply 1 */ - <70000>; /* Supply 2 */ - clock-latency-ns = <300000>; - }; - - /* OR */ - - opp00 { - opp-hz = /bits/ 64 <1000000000>; - opp-microvolt = <970000 975000 985000>, /* Supply 0 */ - <960000 965000 975000>, /* Supply 1 */ - <960000 965000 975000>; /* Supply 2 */ - opp-microamp = <70000>, /* Supply 0 */ - <0>, /* Supply 1 doesn't need this */ - <70000>; /* Supply 2 */ - clock-latency-ns = <300000>; - }; - }; -}; - -Example 5: Multiple OPP tables - -/ { - cpus { - cpu@0 { - compatible = "arm,cortex-a7"; - ... - - cpu-supply = <&cpu_supply> - operating-points-v2 = <&cpu0_opp_table_slow>, <&cpu0_opp_table_fast>; - operating-points-names = "slow", "fast"; - }; - }; - - cpu0_opp_table_slow: opp_table_slow { - compatible = "operating-points-v2"; - status = "okay"; - opp-shared; - - opp00 { - opp-hz = /bits/ 64 <600000000>; - ... - }; - - opp01 { - opp-hz = /bits/ 64 <800000000>; - ... - }; - }; - - cpu0_opp_table_fast: opp_table_fast { - compatible = "operating-points-v2"; - status = "okay"; - opp-shared; - - opp10 { - opp-hz = /bits/ 64 <1000000000>; - ... - }; - - opp11 { - opp-hz = /bits/ 64 <1100000000>; - ... - }; - }; -};