From: Anders Blomdell Date: Fri, 13 Feb 2009 00:07:16 +0000 (-0800) Subject: Staging: comedi: add jr3_pci driver X-Git-Url: https://git.stricted.de/?a=commitdiff_plain;h=07b509e6584a55263b6bb484eca3edd5e52361d0;p=GitHub%2Fmoto-9609%2Fandroid_kernel_motorola_exynos9610.git Staging: comedi: add jr3_pci driver hardware driver for JR3/PCI force sensor board From: Anders Blomdell Cc: David Schleef Cc: Frank Mori Hess Cc: Ian Abbott Signed-off-by: Greg Kroah-Hartman --- diff --git a/drivers/staging/comedi/drivers/jr3_pci.c b/drivers/staging/comedi/drivers/jr3_pci.c new file mode 100644 index 000000000000..f58b8f1440b2 --- /dev/null +++ b/drivers/staging/comedi/drivers/jr3_pci.c @@ -0,0 +1,972 @@ +/* + comedi/drivers/jr3_pci.c + hardware driver for JR3/PCI force sensor board + + COMEDI - Linux Control and Measurement Device Interface + Copyright (C) 2007 Anders Blomdell + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + +*/ +/* +Driver: jr3_pci +Description: JR3/PCI force sensor board +Author: Anders Blomdell +Status: works +Devices: [JR3] PCI force sensor board (jr3_pci) + + The DSP on the board requires initialization code, which can + be loaded by placing it in /lib/firmware/comedi. + The initialization code should be somewhere on the media you got + with your card. One version is available from http://www.comedi.org + in the comedi_nonfree_firmware tarball. + + Configuration options: + [0] - PCI bus number - if bus number and slot number are 0, + then driver search for first unused card + [1] - PCI slot number + +*/ + +#include "../comedidev.h" + +#include +#include +#include +#include "comedi_pci.h" +#include "jr3_pci.h" + +/* Hotplug firmware loading stuff */ + +static void comedi_fw_release(struct device *dev) +{ + printk(KERN_DEBUG "firmware_sample_driver: ghost_release\n"); +} + +static struct device comedi_fw_device = { + .bus_id = "comedi", + .release = comedi_fw_release +}; + +typedef int comedi_firmware_callback(comedi_device * dev, + const u8 * data, size_t size); + +static int comedi_load_firmware(comedi_device * dev, + char *name, comedi_firmware_callback cb) +{ + int result = 0; + const struct firmware *fw; + char *firmware_path; + static const char *prefix = "comedi/"; + + firmware_path = kmalloc(strlen(prefix) + strlen(name) + 1, GFP_KERNEL); + if (!firmware_path) { + result = -ENOMEM; + } else { + firmware_path[0] = '\0'; + strcat(firmware_path, prefix); + strcat(firmware_path, name); + result = device_register(&comedi_fw_device); + if (result == 0) { + result = request_firmware(&fw, firmware_path, + &comedi_fw_device); + if (result == 0) { + if (!cb) { + result = -EINVAL; + } else { + result = cb(dev, fw->data, fw->size); + } + release_firmware(fw); + } + device_unregister(&comedi_fw_device); + } + kfree(firmware_path); + } + return result; +} + +#define PCI_VENDOR_ID_JR3 0x1762 +#define PCI_DEVICE_ID_JR3_1_CHANNEL 0x3111 +#define PCI_DEVICE_ID_JR3_2_CHANNEL 0x3112 +#define PCI_DEVICE_ID_JR3_3_CHANNEL 0x3113 +#define PCI_DEVICE_ID_JR3_4_CHANNEL 0x3114 + +static int jr3_pci_attach(comedi_device * dev, comedi_devconfig * it); +static int jr3_pci_detach(comedi_device * dev); + +static comedi_driver driver_jr3_pci = { + driver_name:"jr3_pci", + module:THIS_MODULE, + attach:jr3_pci_attach, + detach:jr3_pci_detach, +}; + +static DEFINE_PCI_DEVICE_TABLE(jr3_pci_pci_table) = { + {PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_1_CHANNEL, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, + {PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_2_CHANNEL, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, + {PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_3_CHANNEL, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, + {PCI_VENDOR_ID_JR3, PCI_DEVICE_ID_JR3_4_CHANNEL, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, + {0} +}; + +MODULE_DEVICE_TABLE(pci, jr3_pci_pci_table); + +typedef struct { + struct pci_dev *pci_dev; + int pci_enabled; + volatile jr3_t *iobase; + int n_channels; + struct timer_list timer; +} jr3_pci_dev_private; + +typedef struct { + int min; + int max; +} poll_delay_t; + +typedef struct { + volatile jr3_channel_t *channel; + unsigned long next_time_min; + unsigned long next_time_max; + enum { state_jr3_poll, + state_jr3_init_wait_for_offset, + state_jr3_init_transform_complete, + state_jr3_init_set_full_scale_complete, + state_jr3_init_use_offset_complete, + state_jr3_done + } state; + int channel_no; + int serial_no; + int model_no; + struct { + int length; + comedi_krange range; + } range[9]; + const comedi_lrange *range_table_list[8 * 7 + 2]; + lsampl_t maxdata_list[8 * 7 + 2]; + u16 errors; + int retries; +} jr3_pci_subdev_private; + +static poll_delay_t poll_delay_min_max(int min, int max) +{ + poll_delay_t result; + + result.min = min; + result.max = max; + return result; +} + +static int is_complete(volatile jr3_channel_t * channel) +{ + return get_s16(&channel->command_word0) == 0; +} + +typedef struct { + struct { + u16 link_type; + s16 link_amount; + } link[8]; +} transform_t; + +static void set_transforms(volatile jr3_channel_t * channel, + transform_t transf, short num) +{ + int i; + + num &= 0x000f; // Make sure that 0 <= num <= 15 + for (i = 0; i < 8; i++) { + + set_u16(&channel->transforms[num].link[i].link_type, + transf.link[i].link_type); + comedi_udelay(1); + set_s16(&channel->transforms[num].link[i].link_amount, + transf.link[i].link_amount); + comedi_udelay(1); + if (transf.link[i].link_type == end_x_form) { + break; + } + } +} + +static void use_transform(volatile jr3_channel_t * channel, short transf_num) +{ + set_s16(&channel->command_word0, 0x0500 + (transf_num & 0x000f)); +} + +static void use_offset(volatile jr3_channel_t * channel, short offset_num) +{ + set_s16(&channel->command_word0, 0x0600 + (offset_num & 0x000f)); +} + +static void set_offset(volatile jr3_channel_t * channel) +{ + set_s16(&channel->command_word0, 0x0700); +} + +typedef struct { + s16 fx; + s16 fy; + s16 fz; + s16 mx; + s16 my; + s16 mz; +} six_axis_t; + +static void set_full_scales(volatile jr3_channel_t * channel, + six_axis_t full_scale) +{ + printk("%d %d %d %d %d %d\n", + full_scale.fx, + full_scale.fy, + full_scale.fz, full_scale.mx, full_scale.my, full_scale.mz); + set_s16(&channel->full_scale.fx, full_scale.fx); + set_s16(&channel->full_scale.fy, full_scale.fy); + set_s16(&channel->full_scale.fz, full_scale.fz); + set_s16(&channel->full_scale.mx, full_scale.mx); + set_s16(&channel->full_scale.my, full_scale.my); + set_s16(&channel->full_scale.mz, full_scale.mz); + set_s16(&channel->command_word0, 0x0a00); +} + +static six_axis_t get_min_full_scales(volatile jr3_channel_t * channel) +{ + six_axis_t result; + result.fx = get_s16(&channel->min_full_scale.fx); + result.fy = get_s16(&channel->min_full_scale.fy); + result.fz = get_s16(&channel->min_full_scale.fz); + result.mx = get_s16(&channel->min_full_scale.mx); + result.my = get_s16(&channel->min_full_scale.my); + result.mz = get_s16(&channel->min_full_scale.mz); + return result; +} + +static six_axis_t get_max_full_scales(volatile jr3_channel_t * channel) +{ + six_axis_t result; + result.fx = get_s16(&channel->max_full_scale.fx); + result.fy = get_s16(&channel->max_full_scale.fy); + result.fz = get_s16(&channel->max_full_scale.fz); + result.mx = get_s16(&channel->max_full_scale.mx); + result.my = get_s16(&channel->max_full_scale.my); + result.mz = get_s16(&channel->max_full_scale.mz); + return result; +} + +static int jr3_pci_ai_insn_read(comedi_device * dev, comedi_subdevice * s, + comedi_insn * insn, lsampl_t * data) +{ + int result; + jr3_pci_subdev_private *p; + int channel; + + p = s->private; + channel = CR_CHAN(insn->chanspec); + if (p == NULL || channel > 57) { + result = -EINVAL; + } else { + int i; + + result = insn->n; + if (p->state != state_jr3_done || + (get_u16(&p->channel-> + errors) & (watch_dog | watch_dog2 | + sensor_change))) { + /* No sensor or sensor changed */ + if (p->state == state_jr3_done) { + /* Restart polling */ + p->state = state_jr3_poll; + } + result = -EAGAIN; + } + for (i = 0; i < insn->n; i++) { + if (channel < 56) { + int axis, filter; + + axis = channel % 8; + filter = channel / 8; + if (p->state != state_jr3_done) { + data[i] = 0; + } else { + int F = 0; + switch (axis) { + case 0:{ + F = get_s16(&p-> + channel-> + filter[filter]. + fx); + } + break; + case 1:{ + F = get_s16(&p-> + channel-> + filter[filter]. + fy); + } + break; + case 2:{ + F = get_s16(&p-> + channel-> + filter[filter]. + fz); + } + break; + case 3:{ + F = get_s16(&p-> + channel-> + filter[filter]. + mx); + } + break; + case 4:{ + F = get_s16(&p-> + channel-> + filter[filter]. + my); + } + break; + case 5:{ + F = get_s16(&p-> + channel-> + filter[filter]. + mz); + } + break; + case 6:{ + F = get_s16(&p-> + channel-> + filter[filter]. + v1); + } + break; + case 7:{ + F = get_s16(&p-> + channel-> + filter[filter]. + v2); + } + break; + } + data[i] = F + 0x4000; + } + } else if (channel == 56) { + if (p->state != state_jr3_done) { + data[i] = 0; + } else { + data[i] = + get_u16(&p->channel->model_no); + } + } else if (channel == 57) { + if (p->state != state_jr3_done) { + data[i] = 0; + } else { + data[i] = + get_u16(&p->channel->serial_no); + } + } + } + } + return result; +} + +static void jr3_pci_open(comedi_device * dev) +{ + int i; + jr3_pci_dev_private *devpriv = dev->private; + + printk("jr3_pci_open\n"); + for (i = 0; i < devpriv->n_channels; i++) { + jr3_pci_subdev_private *p; + + p = dev->subdevices[i].private; + if (p) { + printk("serial: %p %d (%d)\n", p, p->serial_no, + p->channel_no); + } + } +} + +int read_idm_word(const u8 * data, size_t size, int *pos, unsigned int *val) +{ + int result = 0; + if (pos != 0 && val != 0) { + // Skip over non hex + for (; *pos < size && !isxdigit(data[*pos]); (*pos)++) { + } + // Collect value + *val = 0; + for (; *pos < size && isxdigit(data[*pos]); (*pos)++) { + char ch = tolower(data[*pos]); + result = 1; + if ('0' <= ch && ch <= '9') { + *val = (*val << 4) + (ch - '0'); + } else if ('a' <= ch && ch <= 'f') { + *val = (*val << 4) + (ch - 'a' + 10); + } + } + } + return result; +} + +static int jr3_download_firmware(comedi_device * dev, const u8 * data, + size_t size) +{ + /* + * IDM file format is: + * { count, address, data } * + * ffff + */ + int result, more, pos, OK; + + result = 0; + more = 1; + pos = 0; + OK = 0; + while (more) { + unsigned int count, addr; + + more = more && read_idm_word(data, size, &pos, &count); + if (more && count == 0xffff) { + OK = 1; + break; + } + more = more && read_idm_word(data, size, &pos, &addr); + while (more && count > 0) { + unsigned int dummy; + more = more && read_idm_word(data, size, &pos, &dummy); + count--; + } + } + + if (!OK) { + result = -ENODATA; + } else { + int i; + jr3_pci_dev_private *p = dev->private; + + for (i = 0; i < p->n_channels; i++) { + jr3_pci_subdev_private *sp; + + sp = dev->subdevices[i].private; + more = 1; + pos = 0; + while (more) { + unsigned int count, addr; + more = more + && read_idm_word(data, size, &pos, + &count); + if (more && count == 0xffff) { + break; + } + more = more + && read_idm_word(data, size, &pos, + &addr); + printk("Loading#%d %4.4x bytes at %4.4x\n", i, + count, addr); + while (more && count > 0) { + if (addr & 0x4000) { + // 16 bit data, never seen in real life!! + unsigned int data1; + + more = more + && read_idm_word(data, + size, &pos, &data1); + count--; + // printk("jr3_data, not tested\n"); + // jr3[addr + 0x20000 * pnum] = data1; + } else { + // Download 24 bit program + unsigned int data1, data2; + + more = more + && read_idm_word(data, + size, &pos, &data1); + more = more + && read_idm_word(data, + size, &pos, &data2); + count -= 2; + if (more) { + set_u16(&p->iobase-> + channel[i]. + program_low + [addr], data1); + comedi_udelay(1); + set_u16(&p->iobase-> + channel[i]. + program_high + [addr], data2); + comedi_udelay(1); + + } + } + addr++; + } + } + } + } + return result; +} + +static poll_delay_t jr3_pci_poll_subdevice(comedi_subdevice * s) +{ + poll_delay_t result = poll_delay_min_max(1000, 2000); + jr3_pci_subdev_private *p = s->private; + + if (p) { + volatile jr3_channel_t *channel = p->channel; + int errors = get_u16(&channel->errors); + + if (errors != p->errors) { + printk("Errors: %x -> %x\n", p->errors, errors); + p->errors = errors; + } + if (errors & (watch_dog | watch_dog2 | sensor_change)) { + // Sensor communication lost, force poll mode + p->state = state_jr3_poll; + + } + switch (p->state) { + case state_jr3_poll:{ + u16 model_no = get_u16(&channel->model_no); + u16 serial_no = get_u16(&channel->serial_no); + if ((errors & (watch_dog | watch_dog2)) || + model_no == 0 || serial_no == 0) { + // Still no sensor, keep on polling. Since it takes up to + // 10 seconds for offsets to stabilize, polling each + // second should suffice. + result = poll_delay_min_max(1000, 2000); + } else { + p->retries = 0; + p->state = + state_jr3_init_wait_for_offset; + result = poll_delay_min_max(1000, 2000); + } + } + break; + case state_jr3_init_wait_for_offset:{ + p->retries++; + if (p->retries < 10) { + // Wait for offeset to stabilize (< 10 s according to manual) + result = poll_delay_min_max(1000, 2000); + } else { + transform_t transf; + + p->model_no = + get_u16(&channel->model_no); + p->serial_no = + get_u16(&channel->serial_no); + + printk("Setting transform for channel %d\n", p->channel_no); + printk("Sensor Model = %i\n", + p->model_no); + printk("Sensor Serial = %i\n", + p->serial_no); + + // Transformation all zeros + transf.link[0].link_type = + (enum link_types)0; + transf.link[0].link_amount = 0; + transf.link[1].link_type = + (enum link_types)0; + transf.link[1].link_amount = 0; + transf.link[2].link_type = + (enum link_types)0; + transf.link[2].link_amount = 0; + transf.link[3].link_type = + (enum link_types)0; + transf.link[3].link_amount = 0; + + set_transforms(channel, transf, 0); + use_transform(channel, 0); + p->state = + state_jr3_init_transform_complete; + result = poll_delay_min_max(20, 100); // Allow 20 ms for completion + } + } break; + case state_jr3_init_transform_complete:{ + if (!is_complete(channel)) { + printk("state_jr3_init_transform_complete complete = %d\n", is_complete(channel)); + result = poll_delay_min_max(20, 100); + } else { + // Set full scale + six_axis_t min_full_scale; + six_axis_t max_full_scale; + + min_full_scale = + get_min_full_scales(channel); + printk("Obtained Min. Full Scales:\n"); + printk("%i ", (min_full_scale).fx); + printk("%i ", (min_full_scale).fy); + printk("%i ", (min_full_scale).fz); + printk("%i ", (min_full_scale).mx); + printk("%i ", (min_full_scale).my); + printk("%i ", (min_full_scale).mz); + printk("\n"); + + max_full_scale = + get_max_full_scales(channel); + printk("Obtained Max. Full Scales:\n"); + printk("%i ", (max_full_scale).fx); + printk("%i ", (max_full_scale).fy); + printk("%i ", (max_full_scale).fz); + printk("%i ", (max_full_scale).mx); + printk("%i ", (max_full_scale).my); + printk("%i ", (max_full_scale).mz); + printk("\n"); + + set_full_scales(channel, + max_full_scale); + + p->state = + state_jr3_init_set_full_scale_complete; + result = poll_delay_min_max(20, 100); // Allow 20 ms for completion + } + } + break; + case state_jr3_init_set_full_scale_complete:{ + if (!is_complete(channel)) { + printk("state_jr3_init_set_full_scale_complete complete = %d\n", is_complete(channel)); + result = poll_delay_min_max(20, 100); + } else { + volatile force_array_t *full_scale; + + // Use ranges in kN or we will overflow arount 2000N! + full_scale = &channel->full_scale; + p->range[0].range.min = + -get_s16(&full_scale->fx) * + 1000; + p->range[0].range.max = + get_s16(&full_scale->fx) * 1000; + p->range[1].range.min = + -get_s16(&full_scale->fy) * + 1000; + p->range[1].range.max = + get_s16(&full_scale->fy) * 1000; + p->range[2].range.min = + -get_s16(&full_scale->fz) * + 1000; + p->range[2].range.max = + get_s16(&full_scale->fz) * 1000; + p->range[3].range.min = + -get_s16(&full_scale->mx) * 100; + p->range[3].range.max = + get_s16(&full_scale->mx) * 100; + p->range[4].range.min = + -get_s16(&full_scale->my) * 100; + p->range[4].range.max = + get_s16(&full_scale->my) * 100; + p->range[5].range.min = + -get_s16(&full_scale->mz) * 100; + p->range[5].range.max = + get_s16(&full_scale->mz) * 100; + p->range[6].range.min = -get_s16(&full_scale->v1) * 100; // ?? + p->range[6].range.max = get_s16(&full_scale->v1) * 100; // ?? + p->range[7].range.min = -get_s16(&full_scale->v2) * 100; // ?? + p->range[7].range.max = get_s16(&full_scale->v2) * 100; // ?? + p->range[8].range.min = 0; + p->range[8].range.max = 65535; + + { + int i; + for (i = 0; i < 9; i++) { + printk("%d %d - %d\n", + i, + p->range[i]. + range.min, + p->range[i]. + range.max); + } + } + + use_offset(channel, 0); + p->state = + state_jr3_init_use_offset_complete; + result = poll_delay_min_max(40, 100); // Allow 40 ms for completion + } + } + break; + case state_jr3_init_use_offset_complete:{ + if (!is_complete(channel)) { + printk("state_jr3_init_use_offset_complete complete = %d\n", is_complete(channel)); + result = poll_delay_min_max(20, 100); + } else { + printk("Default offsets %d %d %d %d %d %d\n", get_s16(&channel->offsets.fx), get_s16(&channel->offsets.fy), get_s16(&channel->offsets.fz), get_s16(&channel->offsets.mx), get_s16(&channel->offsets.my), get_s16(&channel->offsets.mz)); + + set_s16(&channel->offsets.fx, 0); + set_s16(&channel->offsets.fy, 0); + set_s16(&channel->offsets.fz, 0); + set_s16(&channel->offsets.mx, 0); + set_s16(&channel->offsets.my, 0); + set_s16(&channel->offsets.mz, 0); + + set_offset(channel); + + p->state = state_jr3_done; + } + } + break; + case state_jr3_done:{ + poll_delay_min_max(10000, 20000); + } + break; + default:{ + poll_delay_min_max(1000, 2000); + } + break; + } + } + return result; +} + +static void jr3_pci_poll_dev(unsigned long data) +{ + unsigned long flags; + comedi_device *dev = (comedi_device *) data; + jr3_pci_dev_private *devpriv = dev->private; + unsigned long now; + int delay; + int i; + + comedi_spin_lock_irqsave(&dev->spinlock, flags); + delay = 1000; + now = jiffies; + // Poll all channels that are ready to be polled + for (i = 0; i < devpriv->n_channels; i++) { + jr3_pci_subdev_private *subdevpriv = dev->subdevices[i].private; + if (now > subdevpriv->next_time_min) { + poll_delay_t sub_delay; + + sub_delay = jr3_pci_poll_subdevice(&dev->subdevices[i]); + subdevpriv->next_time_min = + jiffies + msecs_to_jiffies(sub_delay.min); + subdevpriv->next_time_max = + jiffies + msecs_to_jiffies(sub_delay.max); + if (sub_delay.max && sub_delay.max < delay) { + // Wake up as late as possible -> poll as many channels as + // possible at once + delay = sub_delay.max; + } + } + } + comedi_spin_unlock_irqrestore(&dev->spinlock, flags); + + devpriv->timer.expires = jiffies + msecs_to_jiffies(delay); + add_timer(&devpriv->timer); +} + +static int jr3_pci_attach(comedi_device * dev, comedi_devconfig * it) +{ + int result = 0; + struct pci_dev *card = NULL; + int opt_bus, opt_slot, i; + jr3_pci_dev_private *devpriv; + + printk("comedi%d: jr3_pci\n", dev->minor); + + opt_bus = it->options[0]; + opt_slot = it->options[1]; + + if (sizeof(jr3_channel_t) != 0xc00) { + printk("sizeof(jr3_channel_t) = %x [expected %x]\n", + (unsigned)sizeof(jr3_channel_t), 0xc00); + return -EINVAL; + } + + result = alloc_private(dev, sizeof(jr3_pci_dev_private)); + if (result < 0) { + return -ENOMEM; + } + card = NULL; + devpriv = dev->private; + init_timer(&devpriv->timer); + while (1) { + card = pci_get_device(PCI_VENDOR_ID_JR3, PCI_ANY_ID, card); + if (card == NULL) { + /* No card found */ + break; + } else { + switch (card->device) { + case PCI_DEVICE_ID_JR3_1_CHANNEL:{ + devpriv->n_channels = 1; + } + break; + case PCI_DEVICE_ID_JR3_2_CHANNEL:{ + devpriv->n_channels = 2; + } + break; + case PCI_DEVICE_ID_JR3_3_CHANNEL:{ + devpriv->n_channels = 3; + } + break; + case PCI_DEVICE_ID_JR3_4_CHANNEL:{ + devpriv->n_channels = 4; + } + break; + default:{ + devpriv->n_channels = 0; + } + } + if (devpriv->n_channels >= 1) { + if (opt_bus == 0 && opt_slot == 0) { + /* Take first available card */ + break; + } else if (opt_bus == card->bus->number && + opt_slot == PCI_SLOT(card->devfn)) { + /* Take requested card */ + break; + } + } + } + } + if (!card) { + printk(" no jr3_pci found\n"); + return -EIO; + } else { + devpriv->pci_dev = card; + dev->board_name = "jr3_pci"; + } + if ((result = comedi_pci_enable(card, "jr3_pci")) < 0) { + return -EIO; + } + devpriv->pci_enabled = 1; + devpriv->iobase = ioremap(pci_resource_start(card, 0), sizeof(jr3_t)); + result = alloc_subdevices(dev, devpriv->n_channels); + if (result < 0) + goto out; + + dev->open = jr3_pci_open; + for (i = 0; i < devpriv->n_channels; i++) { + dev->subdevices[i].type = COMEDI_SUBD_AI; + dev->subdevices[i].subdev_flags = SDF_READABLE | SDF_GROUND; + dev->subdevices[i].n_chan = 8 * 7 + 2; + dev->subdevices[i].insn_read = jr3_pci_ai_insn_read; + dev->subdevices[i].private = + kzalloc(sizeof(jr3_pci_subdev_private), GFP_KERNEL); + if (dev->subdevices[i].private) { + jr3_pci_subdev_private *p; + int j; + + p = dev->subdevices[i].private; + p->channel = &devpriv->iobase->channel[i].data; + printk("p->channel %p %p (%tx)\n", + p->channel, devpriv->iobase, + ((char *)(p->channel) - + (char *)(devpriv->iobase))); + p->channel_no = i; + for (j = 0; j < 8; j++) { + int k; + + p->range[j].length = 1; + p->range[j].range.min = -1000000; + p->range[j].range.max = 1000000; + for (k = 0; k < 7; k++) { + p->range_table_list[j + k * 8] = + (comedi_lrange *) & p->range[j]; + p->maxdata_list[j + k * 8] = 0x7fff; + } + } + p->range[8].length = 1; + p->range[8].range.min = 0; + p->range[8].range.max = 65536; + + p->range_table_list[56] = + (comedi_lrange *) & p->range[8]; + p->range_table_list[57] = + (comedi_lrange *) & p->range[8]; + p->maxdata_list[56] = 0xffff; + p->maxdata_list[57] = 0xffff; + // Channel specific range and maxdata + dev->subdevices[i].range_table = 0; + dev->subdevices[i].range_table_list = + p->range_table_list; + dev->subdevices[i].maxdata = 0; + dev->subdevices[i].maxdata_list = p->maxdata_list; + } + } + + // Reset DSP card + devpriv->iobase->channel[0].reset = 0; + + result = comedi_load_firmware(dev, "jr3pci.idm", jr3_download_firmware); + printk("Firmare load %d\n", result); + + if (result < 0) { + goto out; + } + // TODO: use firmware to load preferred offset tables. Suggested format: + // model serial Fx Fy Fz Mx My Mz\n + // + // comedi_load_firmware(dev, "jr3_offsets_table", jr3_download_firmware); + + // It takes a few milliseconds for software to settle + // as much as we can read firmware version + msleep_interruptible(25); + for (i = 0; i < 0x18; i++) { + printk("%c", + get_u16(&devpriv->iobase->channel[0].data. + copyright[i]) >> 8); + } + + // Start card timer + for (i = 0; i < devpriv->n_channels; i++) { + jr3_pci_subdev_private *p = dev->subdevices[i].private; + + p->next_time_min = jiffies + msecs_to_jiffies(500); + p->next_time_max = jiffies + msecs_to_jiffies(2000); + } + + devpriv->timer.data = (unsigned long)dev; + devpriv->timer.function = jr3_pci_poll_dev; + devpriv->timer.expires = jiffies + msecs_to_jiffies(1000); + add_timer(&devpriv->timer); + + out: + return result; +} + +static int jr3_pci_detach(comedi_device * dev) +{ + int i; + jr3_pci_dev_private *devpriv = dev->private; + + printk("comedi%d: jr3_pci: remove\n", dev->minor); + if (devpriv) { + del_timer_sync(&devpriv->timer); + + if (dev->subdevices) { + for (i = 0; i < devpriv->n_channels; i++) { + kfree(dev->subdevices[i].private); + } + } + + if (devpriv->iobase) { + iounmap((void *)devpriv->iobase); + } + if (devpriv->pci_enabled) { + comedi_pci_disable(devpriv->pci_dev); + } + + if (devpriv->pci_dev) { + pci_dev_put(devpriv->pci_dev); + } + } + return 0; +} + +COMEDI_PCI_INITCLEANUP(driver_jr3_pci, jr3_pci_pci_table); diff --git a/drivers/staging/comedi/drivers/jr3_pci.h b/drivers/staging/comedi/drivers/jr3_pci.h new file mode 100644 index 000000000000..286cdaadfa1c --- /dev/null +++ b/drivers/staging/comedi/drivers/jr3_pci.h @@ -0,0 +1,634 @@ +// Helper types to take care of the fact that the DSP card memory +// is 16 bits, but aligned on a 32 bit PCI boundary +typedef u32 u_val_t; + +typedef s32 s_val_t; + +static inline u16 get_u16(volatile const u_val_t * p) +{ + return (u16) readl(p); +} + +static inline void set_u16(volatile u_val_t * p, u16 val) +{ + writel(val, p); +} + +static inline s16 get_s16(volatile const s_val_t * p) +{ + return (s16) readl(p); +} + +static inline void set_s16(volatile s_val_t * p, s16 val) +{ + writel(val, p); +} + +// The raw data is stored in a format which facilitates rapid +// processing by the JR3 DSP chip. The raw_channel structure shows the +// format for a single channel of data. Each channel takes four, +// two-byte words. +// +// Raw_time is an unsigned integer which shows the value of the JR3 +// DSP's internal clock at the time the sample was received. The clock +// runs at 1/10 the JR3 DSP cycle time. JR3's slowest DSP runs at 10 +// Mhz. At 10 Mhz raw_time would therefore clock at 1 Mhz. +// +// Raw_data is the raw data received directly from the sensor. The +// sensor data stream is capable of representing 16 different +// channels. Channel 0 shows the excitation voltage at the sensor. It +// is used to regulate the voltage over various cable lengths. +// Channels 1-6 contain the coupled force data Fx through Mz. Channel +// 7 contains the sensor's calibration data. The use of channels 8-15 +// varies with different sensors. +typedef struct raw_channel { + u_val_t raw_time; + s_val_t raw_data; + s_val_t reserved[2]; +} raw_channel_t; + +// The force_array structure shows the layout for the decoupled and +// filtered force data. +typedef struct force_array { + s_val_t fx; + s_val_t fy; + s_val_t fz; + s_val_t mx; + s_val_t my; + s_val_t mz; + s_val_t v1; + s_val_t v2; +} force_array_t; + +// The six_axis_array structure shows the layout for the offsets and +// the full scales. +typedef struct six_axis_array { + s_val_t fx; + s_val_t fy; + s_val_t fz; + s_val_t mx; + s_val_t my; + s_val_t mz; +} six_axis_array_t; + +// VECT_BITS +// The vect_bits structure shows the layout for indicating +// which axes to use in computing the vectors. Each bit signifies +// selection of a single axis. The V1x axis bit corresponds to a hex +// value of 0x0001 and the V2z bit corresponds to a hex value of +// 0x0020. Example: to specify the axes V1x, V1y, V2x, and V2z the +// pattern would be 0x002b. Vector 1 defaults to a force vector and +// vector 2 defaults to a moment vector. It is possible to change one +// or the other so that two force vectors or two moment vectors are +// calculated. Setting the changeV1 bit or the changeV2 bit will +// change that vector to be the opposite of its default. Therefore to +// have two force vectors, set changeV1 to 1. + +typedef enum { + fx = 0x0001, + fy = 0x0002, + fz = 0x0004, + mx = 0x0008, + my = 0x0010, + mz = 0x0020, + changeV2 = 0x0040, + changeV1 = 0x0080 +} vect_bits_t; + +// WARNING_BITS +// The warning_bits structure shows the bit pattern for the warning +// word. The bit fields are shown from bit 0 (lsb) to bit 15 (msb). +// +// XX_NEAR_SET +// The xx_near_sat bits signify that the indicated axis has reached or +// exceeded the near saturation value. + +typedef enum { + fx_near_sat = 0x0001, + fy_near_sat = 0x0002, + fz_near_sat = 0x0004, + mx_near_sat = 0x0008, + my_near_sat = 0x0010, + mz_near_sat = 0x0020 +} warning_bits_t; + +// ERROR_BITS +// XX_SAT +// MEMORY_ERROR +// SENSOR_CHANGE +// +// The error_bits structure shows the bit pattern for the error word. +// The bit fields are shown from bit 0 (lsb) to bit 15 (msb). The +// xx_sat bits signify that the indicated axis has reached or exceeded +// the saturation value. The memory_error bit indicates that a problem +// was detected in the on-board RAM during the power-up +// initialization. The sensor_change bit indicates that a sensor other +// than the one originally plugged in has passed its CRC check. This +// bit latches, and must be reset by the user. +// +// SYSTEM_BUSY +// +// The system_busy bit indicates that the JR3 DSP is currently busy +// and is not calculating force data. This occurs when a new +// coordinate transformation, or new sensor full scale is set by the +// user. A very fast system using the force data for feedback might +// become unstable during the approximately 4 ms needed to accomplish +// these calculations. This bit will also become active when a new +// sensor is plugged in and the system needs to recalculate the +// calibration CRC. +// +// CAL_CRC_BAD +// +// The cal_crc_bad bit indicates that the calibration CRC has not +// calculated to zero. CRC is short for cyclic redundancy code. It is +// a method for determining the integrity of messages in data +// communication. The calibration data stored inside the sensor is +// transmitted to the JR3 DSP along with the sensor data. The +// calibration data has a CRC attached to the end of it, to assist in +// determining the completeness and integrity of the calibration data +// received from the sensor. There are two reasons the CRC may not +// have calculated to zero. The first is that all the calibration data +// has not yet been received, the second is that the calibration data +// has been corrupted. A typical sensor transmits the entire contents +// of its calibration matrix over 30 times a second. Therefore, if +// this bit is not zero within a couple of seconds after the sensor +// has been plugged in, there is a problem with the sensor's +// calibration data. +// +// WATCH_DOG +// WATCH_DOG2 +// +// The watch_dog and watch_dog2 bits are sensor, not processor, watch +// dog bits. Watch_dog indicates that the sensor data line seems to be +// acting correctly, while watch_dog2 indicates that sensor data and +// clock are being received. It is possible for watch_dog2 to go off +// while watch_dog does not. This would indicate an improper clock +// signal, while data is acting correctly. If either watch dog barks, +// the sensor data is not being received correctly. + +typedef enum { + fx_sat = 0x0001, + fy_sat = 0x0002, + fz_sat = 0x0004, + mx_sat = 0x0008, + my_sat = 0x0010, + mz_sat = 0x0020, + memory_error = 0x0400, + sensor_change = 0x0800, + system_busy = 0x1000, + cal_crc_bad = 0x2000, + watch_dog2 = 0x4000, + watch_dog = 0x8000 +} error_bits_t; + +// THRESH_STRUCT +// This structure shows the layout for a single threshold packet inside of a +// load envelope. Each load envelope can contain several threshold structures. +// 1. data_address contains the address of the data for that threshold. This +// includes filtered, unfiltered, raw, rate, counters, error and warning data +// 2. threshold is the is the value at which, if data is above or below, the +// bits will be set ... (pag.24). +// 3. bit_pattern contains the bits that will be set if the threshold value is +// met or exceeded. +typedef struct thresh_struct { + s32 data_address; + s32 threshold; + s32 bit_pattern; +} thresh_struct; + +// LE_STRUCT +// Layout of a load enveloped packet. Four thresholds are showed ... for more +// see manual (pag.25) +// 1. latch_bits is a bit pattern that show which bits the user wants to latch. +// The latched bits will not be reset once the threshold which set them is +// no longer true. In that case the user must reset them using the reset_bit +// command. +// 2. number_of_xx_thresholds specify how many GE/LE threshold there are. +typedef struct { + s32 latch_bits; + s32 number_of_ge_thresholds; + s32 number_of_le_thresholds; + struct thresh_struct thresholds[4]; + s32 reserved; +} le_struct_t; + +// LINK_TYPES +// Link types is an enumerated value showing the different possible transform +// link types. +// 0 - end transform packet +// 1 - translate along X axis (TX) +// 2 - translate along Y axis (TY) +// 3 - translate along Z axis (TZ) +// 4 - rotate about X axis (RX) +// 5 - rotate about Y axis (RY) +// 6 - rotate about Z axis (RZ) +// 7 - negate all axes (NEG) +typedef enum link_types { + end_x_form, + tx, + ty, + tz, + rx, + ry, + rz, + neg +} link_types; + +// TRANSFORM +// Structure used to describe a transform. +typedef struct { + struct { + u_val_t link_type; + s_val_t link_amount; + } link[8]; +} intern_transform_t; + +// JR3 force/torque sensor data definition. For more information see sensor and +// hardware manuals. + +typedef struct force_sensor_data { + // Raw_channels is the area used to store the raw data coming from + // the sensor. + + raw_channel_t raw_channels[16]; /* offset 0x0000 */ + + // Copyright is a null terminated ASCII string containing the JR3 + // copyright notice. + + u_val_t copyright[0x0018]; /* offset 0x0040 */ + s_val_t reserved1[0x0008]; /* offset 0x0058 */ + + // Shunts contains the sensor shunt readings. Some JR3 sensors have + // the ability to have their gains adjusted. This allows the + // hardware full scales to be adjusted to potentially allow + // better resolution or dynamic range. For sensors that have + // this ability, the gain of each sensor channel is measured at + // the time of calibration using a shunt resistor. The shunt + // resistor is placed across one arm of the resistor bridge, and + // the resulting change in the output of that channel is + // measured. This measurement is called the shunt reading, and + // is recorded here. If the user has changed the gain of the // + // sensor, and made new shunt measurements, those shunt + // measurements can be placed here. The JR3 DSP will then scale + // the calibration matrix such so that the gains are again + // proper for the indicated shunt readings. If shunts is 0, then + // the sensor cannot have its gain changed. For details on + // changing the sensor gain, and making shunts readings, please + // see the sensor manual. To make these values take effect the + // user must call either command (5) use transform # (pg. 33) or + // command (10) set new full scales (pg. 38). + + six_axis_array_t shunts; /* offset 0x0060 */ + s32 reserved2[2]; /* offset 0x0066 */ + + // Default_FS contains the full scale that is used if the user does + // not set a full scale. + + six_axis_array_t default_FS; /* offset 0x0068 */ + s_val_t reserved3; /* offset 0x006e */ + + // Load_envelope_num is the load envelope number that is currently + // in use. This value is set by the user after one of the load + // envelopes has been initialized. + + s_val_t load_envelope_num; /* offset 0x006f */ + + // Min_full_scale is the recommend minimum full scale. + // + // These values in conjunction with max_full_scale (pg. 9) helps + // determine the appropriate value for setting the full scales. The + // software allows the user to set the sensor full scale to an + // arbitrary value. But setting the full scales has some hazards. If + // the full scale is set too low, the data will saturate + // prematurely, and dynamic range will be lost. If the full scale is + // set too high, then resolution is lost as the data is shifted to + // the right and the least significant bits are lost. Therefore the + // maximum full scale is the maximum value at which no resolution is + // lost, and the minimum full scale is the value at which the data + // will not saturate prematurely. These values are calculated + // whenever a new coordinate transformation is calculated. It is + // possible for the recommended maximum to be less than the + // recommended minimum. This comes about primarily when using + // coordinate translations. If this is the case, it means that any + // full scale selection will be a compromise between dynamic range + // and resolution. It is usually recommended to compromise in favor + // of resolution which means that the recommend maximum full scale + // should be chosen. + // + // WARNING: Be sure that the full scale is no less than 0.4% of the + // recommended minimum full scale. Full scales below this value will + // cause erroneous results. + + six_axis_array_t min_full_scale; /* offset 0x0070 */ + s_val_t reserved4; /* offset 0x0076 */ + + // Transform_num is the transform number that is currently in use. + // This value is set by the JR3 DSP after the user has used command + // (5) use transform # (pg. 33). + + s_val_t transform_num; /* offset 0x0077 */ + + // Max_full_scale is the recommended maximum full scale. See + // min_full_scale (pg. 9) for more details. + + six_axis_array_t max_full_scale; /* offset 0x0078 */ + s_val_t reserved5; /* offset 0x007e */ + + // Peak_address is the address of the data which will be monitored + // by the peak routine. This value is set by the user. The peak + // routine will monitor any 8 contiguous addresses for peak values. + // (ex. to watch filter3 data for peaks, set this value to 0x00a8). + + s_val_t peak_address; /* offset 0x007f */ + + // Full_scale is the sensor full scales which are currently in use. + // Decoupled and filtered data is scaled so that +/- 16384 is equal + // to the full scales. The engineering units used are indicated by + // the units value discussed on page 16. The full scales for Fx, Fy, + // Fz, Mx, My and Mz can be written by the user prior to calling + // command (10) set new full scales (pg. 38). The full scales for V1 + // and V2 are set whenever the full scales are changed or when the + // axes used to calculate the vectors are changed. The full scale of + // V1 and V2 will always be equal to the largest full scale of the + // axes used for each vector respectively. + + force_array_t full_scale; /* offset 0x0080 */ + + // Offsets contains the sensor offsets. These values are subtracted from + // the sensor data to obtain the decoupled data. The offsets are set a + // few seconds (< 10) after the calibration data has been received. + // They are set so that the output data will be zero. These values + // can be written as well as read. The JR3 DSP will use the values + // written here within 2 ms of being written. To set future + // decoupled data to zero, add these values to the current decoupled + // data values and place the sum here. The JR3 DSP will change these + // values when a new transform is applied. So if the offsets are + // such that FX is 5 and all other values are zero, after rotating + // about Z by 90 degrees, FY would be 5 and all others would be zero. + + six_axis_array_t offsets; /* offset 0x0088 */ + + // Offset_num is the number of the offset currently in use. This + // value is set by the JR3 DSP after the user has executed the use + // offset # command (pg. 34). It can vary between 0 and 15. + + s_val_t offset_num; /* offset 0x008e */ + + // Vect_axes is a bit map showing which of the axes are being used + // in the vector calculations. This value is set by the JR3 DSP + // after the user has executed the set vector axes command (pg. 37). + + u_val_t vect_axes; /* offset 0x008f */ + + // Filter0 is the decoupled, unfiltered data from the JR3 sensor. + // This data has had the offsets removed. + // + // These force_arrays hold the filtered data. The decoupled data is + // passed through cascaded low pass filters. Each succeeding filter + // has a cutoff frequency of 1/4 of the preceding filter. The cutoff + // frequency of filter1 is 1/16 of the sample rate from the sensor. + // For a typical sensor with a sample rate of 8 kHz, the cutoff + // frequency of filter1 would be 500 Hz. The following filters would + // cutoff at 125 Hz, 31.25 Hz, 7.813 Hz, 1.953 Hz and 0.4883 Hz. + + struct force_array filter[7]; /* offset 0x0090, + offset 0x0098, + offset 0x00a0, + offset 0x00a8, + offset 0x00b0, + offset 0x00b8 , + offset 0x00c0 */ + + // Rate_data is the calculated rate data. It is a first derivative + // calculation. It is calculated at a frequency specified by the + // variable rate_divisor (pg. 12). The data on which the rate is + // calculated is specified by the variable rate_address (pg. 12). + + force_array_t rate_data; /* offset 0x00c8 */ + + // Minimum_data & maximum_data are the minimum and maximum (peak) + // data values. The JR3 DSP can monitor any 8 contiguous data items + // for minimums and maximums at full sensor bandwidth. This area is + // only updated at user request. This is done so that the user does + // not miss any peaks. To read the data, use either the read peaks + // command (pg. 40), or the read and reset peaks command (pg. 39). + // The address of the data to watch for peaks is stored in the + // variable peak_address (pg. 10). Peak data is lost when executing + // a coordinate transformation or a full scale change. Peak data is + // also lost when plugging in a new sensor. + + force_array_t minimum_data; /* offset 0x00d0 */ + force_array_t maximum_data; /* offset 0x00d8 */ + + // Near_sat_value & sat_value contain the value used to determine if + // the raw sensor is saturated. Because of decoupling and offset + // removal, it is difficult to tell from the processed data if the + // sensor is saturated. These values, in conjunction with the error + // and warning words (pg. 14), provide this critical information. + // These two values may be set by the host processor. These values + // are positive signed values, since the saturation logic uses the + // absolute values of the raw data. The near_sat_value defaults to + // approximately 80% of the ADC's full scale, which is 26214, while + // sat_value defaults to the ADC's full scale: + // + // sat_value = 32768 - 2^(16 - ADC bits) + + s_val_t near_sat_value; /* offset 0x00e0 */ + s_val_t sat_value; /* offset 0x00e1 */ + + // Rate_address, rate_divisor & rate_count contain the data used to + // control the calculations of the rates. Rate_address is the + // address of the data used for the rate calculation. The JR3 DSP + // will calculate rates for any 8 contiguous values (ex. to + // calculate rates for filter3 data set rate_address to 0x00a8). + // Rate_divisor is how often the rate is calculated. If rate_divisor + // is 1, the rates are calculated at full sensor bandwidth. If + // rate_divisor is 200, rates are calculated every 200 samples. + // Rate_divisor can be any value between 1 and 65536. Set + // rate_divisor to 0 to calculate rates every 65536 samples. + // Rate_count starts at zero and counts until it equals + // rate_divisor, at which point the rates are calculated, and + // rate_count is reset to 0. When setting a new rate divisor, it is + // a good idea to set rate_count to one less than rate divisor. This + // will minimize the time necessary to start the rate calculations. + + s_val_t rate_address; /* offset 0x00e2 */ + u_val_t rate_divisor; /* offset 0x00e3 */ + u_val_t rate_count; /* offset 0x00e4 */ + + // Command_word2 through command_word0 are the locations used to + // send commands to the JR3 DSP. Their usage varies with the command + // and is detailed later in the Command Definitions section (pg. + // 29). In general the user places values into various memory + // locations, and then places the command word into command_word0. + // The JR3 DSP will process the command and place a 0 into + // command_word0 to indicate successful completion. Alternatively + // the JR3 DSP will place a negative number into command_word0 to + // indicate an error condition. Please note the command locations + // are numbered backwards. (I.E. command_word2 comes before + // command_word1). + + s_val_t command_word2; /* offset 0x00e5 */ + s_val_t command_word1; /* offset 0x00e6 */ + s_val_t command_word0; /* offset 0x00e7 */ + + // Count1 through count6 are unsigned counters which are incremented + // every time the matching filters are calculated. Filter1 is + // calculated at the sensor data bandwidth. So this counter would + // increment at 8 kHz for a typical sensor. The rest of the counters + // are incremented at 1/4 the interval of the counter immediately + // preceding it, so they would count at 2 kHz, 500 Hz, 125 Hz etc. + // These counters can be used to wait for data. Each time the + // counter changes, the corresponding data set can be sampled, and + // this will insure that the user gets each sample, once, and only + // once. + + u_val_t count1; /* offset 0x00e8 */ + u_val_t count2; /* offset 0x00e9 */ + u_val_t count3; /* offset 0x00ea */ + u_val_t count4; /* offset 0x00eb */ + u_val_t count5; /* offset 0x00ec */ + u_val_t count6; /* offset 0x00ed */ + + // Error_count is a running count of data reception errors. If this + // counter is changing rapidly, it probably indicates a bad sensor + // cable connection or other hardware problem. In most installations + // error_count should not change at all. But it is possible in an + // extremely noisy environment to experience occasional errors even + // without a hardware problem. If the sensor is well grounded, this + // is probably unavoidable in these environments. On the occasions + // where this counter counts a bad sample, that sample is ignored. + + u_val_t error_count; /* offset 0x00ee */ + + // Count_x is a counter which is incremented every time the JR3 DSP + // searches its job queues and finds nothing to do. It indicates the + // amount of idle time the JR3 DSP has available. It can also be + // used to determine if the JR3 DSP is alive. See the Performance + // Issues section on pg. 49 for more details. + + u_val_t count_x; /* offset 0x00ef */ + + // Warnings & errors contain the warning and error bits + // respectively. The format of these two words is discussed on page + // 21 under the headings warnings_bits and error_bits. + + u_val_t warnings; /* offset 0x00f0 */ + u_val_t errors; /* offset 0x00f1 */ + + // Threshold_bits is a word containing the bits that are set by the + // load envelopes. See load_envelopes (pg. 17) and thresh_struct + // (pg. 23) for more details. + + s_val_t threshold_bits; /* offset 0x00f2 */ + + // Last_crc is the value that shows the actual calculated CRC. CRC + // is short for cyclic redundancy code. It should be zero. See the + // description for cal_crc_bad (pg. 21) for more information. + + s_val_t last_CRC; /* offset 0x00f3 */ + + // EEProm_ver_no contains the version number of the sensor EEProm. + // EEProm version numbers can vary between 0 and 255. + // Software_ver_no contains the software version number. Version + // 3.02 would be stored as 302. + + s_val_t eeprom_ver_no; /* offset 0x00f4 */ + s_val_t software_ver_no; /* offset 0x00f5 */ + + // Software_day & software_year are the release date of the software + // the JR3 DSP is currently running. Day is the day of the year, + // with January 1 being 1, and December 31, being 365 for non leap + // years. + + s_val_t software_day; /* offset 0x00f6 */ + s_val_t software_year; /* offset 0x00f7 */ + + // Serial_no & model_no are the two values which uniquely identify a + // sensor. This model number does not directly correspond to the JR3 + // model number, but it will provide a unique identifier for + // different sensor configurations. + + u_val_t serial_no; /* offset 0x00f8 */ + u_val_t model_no; /* offset 0x00f9 */ + + // Cal_day & cal_year are the sensor calibration date. Day is the + // day of the year, with January 1 being 1, and December 31, being + // 366 for leap years. + + s_val_t cal_day; /* offset 0x00fa */ + s_val_t cal_year; /* offset 0x00fb */ + + // Units is an enumerated read only value defining the engineering + // units used in the sensor full scale. The meanings of particular + // values are discussed in the section detailing the force_units + // structure on page 22. The engineering units are setto customer + // specifications during sensor manufacture and cannot be changed by + // writing to Units. + // + // Bits contains the number of bits of resolution of the ADC + // currently in use. + // + // Channels is a bit field showing which channels the current sensor + // is capable of sending. If bit 0 is active, this sensor can send + // channel 0, if bit 13 is active, this sensor can send channel 13, + // etc. This bit can be active, even if the sensor is not currently + // sending this channel. Some sensors are configurable as to which + // channels to send, and this field only contains information on the + // channels available to send, not on the current configuration. To + // find which channels are currently being sent, monitor the + // Raw_time fields (pg. 19) in the raw_channels array (pg. 7). If + // the time is changing periodically, then that channel is being + // received. + + u_val_t units; /* offset 0x00fc */ + s_val_t bits; /* offset 0x00fd */ + s_val_t channels; /* offset 0x00fe */ + + // Thickness specifies the overall thickness of the sensor from + // flange to flange. The engineering units for this value are + // contained in units (pg. 16). The sensor calibration is relative + // to the center of the sensor. This value allows easy coordinate + // transformation from the center of the sensor to either flange. + + s_val_t thickness; /* offset 0x00ff */ + + // Load_envelopes is a table containing the load envelope + // descriptions. There are 16 possible load envelope slots in the + // table. The slots are on 16 word boundaries and are numbered 0-15. + // Each load envelope needs to start at the beginning of a slot but + // need not be fully contained in that slot. That is to say that a + // single load envelope can be larger than a single slot. The + // software has been tested and ran satisfactorily with 50 + // thresholds active. A single load envelope this large would take + // up 5 of the 16 slots. The load envelope data is laid out in an + // order that is most efficient for the JR3 DSP. The structure is + // detailed later in the section showing the definition of the + // le_struct structure (pg. 23). + + le_struct_t load_envelopes[0x10]; /* offset 0x0100 */ + + // Transforms is a table containing the transform descriptions. + // There are 16 possible transform slots in the table. The slots are + // on 16 word boundaries and are numbered 0-15. Each transform needs + // to start at the beginning of a slot but need not be fully + // contained in that slot. That is to say that a single transform + // can be larger than a single slot. A transform is 2 * no of links + // + 1 words in length. So a single slot can contain a transform + // with 7 links. Two slots can contain a transform that is 15 links. + // The layout is detailed later in the section showing the + // definition of the transform structure (pg. 26). + + intern_transform_t transforms[0x10]; /* offset 0x0200 */ +} jr3_channel_t; + +typedef struct { + struct { + u_val_t program_low[0x4000]; // 0x00000 - 0x10000 + jr3_channel_t data; // 0x10000 - 0x10c00 + char pad2[0x30000 - 0x00c00]; // 0x10c00 - 0x40000 + u_val_t program_high[0x8000]; // 0x40000 - 0x60000 + u32 reset; // 0x60000 - 0x60004 + char pad3[0x20000 - 0x00004]; // 0x60004 - 0x80000 + } channel[4]; +} jr3_t;