}
static int xc5000_set_params(struct dvb_frontend *fe,
- struct dvb_frontend_parameters *params)
+ struct dvb_frontend_parameters *params)
{
+ int ret, b;
struct xc5000_priv *priv = fe->tuner_priv;
- int ret;
- u32 bw;
+ u32 bw = fe->dtv_property_cache.bandwidth_hz;
+ u32 freq = fe->dtv_property_cache.frequency;
+ u32 delsys = fe->dtv_property_cache.delivery_system;
if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
}
}
- dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
+ dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
- if (fe->ops.info.type == FE_ATSC) {
- dprintk(1, "%s() ATSC\n", __func__);
- switch (params->u.vsb.modulation) {
- case VSB_8:
- case VSB_16:
- dprintk(1, "%s() VSB modulation\n", __func__);
- priv->rf_mode = XC_RF_MODE_AIR;
- priv->freq_hz = params->frequency - 1750000;
- priv->bandwidth = BANDWIDTH_6_MHZ;
- priv->video_standard = DTV6;
- break;
- case QAM_64:
- case QAM_256:
- case QAM_AUTO:
- dprintk(1, "%s() QAM modulation\n", __func__);
- priv->rf_mode = XC_RF_MODE_CABLE;
- priv->freq_hz = params->frequency - 1750000;
- priv->bandwidth = BANDWIDTH_6_MHZ;
- priv->video_standard = DTV6;
- break;
- default:
- return -EINVAL;
- }
- } else if (fe->ops.info.type == FE_OFDM) {
+ switch (delsys) {
+ case SYS_ATSC:
+ dprintk(1, "%s() VSB modulation\n", __func__);
+ priv->rf_mode = XC_RF_MODE_AIR;
+ priv->freq_hz = freq - 1750000;
+ priv->bandwidth = BANDWIDTH_6_MHZ;
+ priv->video_standard = DTV6;
+ break;
+ case SYS_DVBC_ANNEX_B:
+ dprintk(1, "%s() QAM modulation\n", __func__);
+ priv->rf_mode = XC_RF_MODE_CABLE;
+ priv->freq_hz = freq - 1750000;
+ priv->bandwidth = BANDWIDTH_6_MHZ;
+ priv->video_standard = DTV6;
+ break;
+ case SYS_DVBT:
+ case SYS_DVBT2:
dprintk(1, "%s() OFDM\n", __func__);
- switch (params->u.ofdm.bandwidth) {
- case BANDWIDTH_6_MHZ:
+ switch (bw) {
+ case 6000000:
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
- priv->freq_hz = params->frequency - 1750000;
+ priv->freq_hz = freq - 1750000;
break;
- case BANDWIDTH_7_MHZ:
+ case 7000000:
priv->bandwidth = BANDWIDTH_7_MHZ;
priv->video_standard = DTV7;
- priv->freq_hz = params->frequency - 2250000;
+ priv->freq_hz = freq - 2250000;
break;
- case BANDWIDTH_8_MHZ:
+ case 8000000:
priv->bandwidth = BANDWIDTH_8_MHZ;
priv->video_standard = DTV8;
- priv->freq_hz = params->frequency - 2750000;
+ priv->freq_hz = freq - 2750000;
break;
default:
printk(KERN_ERR "xc5000 bandwidth not set!\n");
return -EINVAL;
}
priv->rf_mode = XC_RF_MODE_AIR;
- } else if (fe->ops.info.type == FE_QAM) {
- switch (params->u.qam.modulation) {
- case QAM_256:
- case QAM_AUTO:
- case QAM_16:
- case QAM_32:
- case QAM_64:
- case QAM_128:
- dprintk(1, "%s() QAM modulation\n", __func__);
- priv->rf_mode = XC_RF_MODE_CABLE;
- /*
- * Using a higher bandwidth at the tuner filter may
- * allow inter-carrier interference.
- * So, determine the minimal channel spacing, in order
- * to better adjust the tuner filter.
- * According with ITU-T J.83, the bandwidth is given by:
- * bw = Simbol Rate * (1 + roll_off), where the roll_off
- * is equal to 0.15 for Annex A, and 0.13 for annex C
- */
- if (fe->dtv_property_cache.rolloff == ROLLOFF_13)
- bw = (params->u.qam.symbol_rate * 113) / 100;
- else
- bw = (params->u.qam.symbol_rate * 115) / 100;
- if (bw <= 6000000) {
- priv->bandwidth = BANDWIDTH_6_MHZ;
- priv->video_standard = DTV6;
- priv->freq_hz = params->frequency - 1750000;
- } else if (bw <= 7000000) {
- priv->bandwidth = BANDWIDTH_7_MHZ;
- priv->video_standard = DTV7;
- priv->freq_hz = params->frequency - 2250000;
- } else {
- priv->bandwidth = BANDWIDTH_8_MHZ;
- priv->video_standard = DTV7_8;
- priv->freq_hz = params->frequency - 2750000;
- }
- dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
- BANDWIDTH_6_MHZ ? 6: 8, bw);
- break;
- default:
- dprintk(1, "%s() Unsupported QAM type\n", __func__);
- return -EINVAL;
+ case SYS_DVBC_ANNEX_A:
+ case SYS_DVBC_ANNEX_C:
+ dprintk(1, "%s() QAM modulation\n", __func__);
+ priv->rf_mode = XC_RF_MODE_CABLE;
+ if (bw <= 6000000) {
+ priv->bandwidth = BANDWIDTH_6_MHZ;
+ priv->video_standard = DTV6;
+ priv->freq_hz = freq - 1750000;
+ b = 6;
+ } else if (bw <= 7000000) {
+ priv->bandwidth = BANDWIDTH_7_MHZ;
+ priv->video_standard = DTV7;
+ priv->freq_hz = freq - 2250000;
+ b = 7;
+ } else {
+ priv->bandwidth = BANDWIDTH_8_MHZ;
+ priv->video_standard = DTV7_8;
+ priv->freq_hz = freq - 2750000;
+ b = 8;
}
- } else {
- printk(KERN_ERR "xc5000 modulation type not supported!\n");
+ dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
+ b, bw);
+ break;
+ default:
+ printk(KERN_ERR "xc5000: delivery system is not supported!\n");
return -EINVAL;
}
- dprintk(1, "%s() frequency=%d (compensated)\n",
- __func__, priv->freq_hz);
+ dprintk(1, "%s() frequency=%d (compensated to %d)\n",
+ __func__, freq, priv->freq_hz);
ret = xc_SetSignalSource(priv, priv->rf_mode);
if (ret != XC_RESULT_SUCCESS) {
static int is_legacy_delivery_system(fe_delivery_system_t s)
{
- if((s == SYS_UNDEFINED) || (s == SYS_DVBC_ANNEX_AC) ||
+ if((s == SYS_UNDEFINED) || (s == SYS_DVBC_ANNEX_A) ||
(s == SYS_DVBC_ANNEX_B) || (s == SYS_DVBT) || (s == SYS_DVBS) ||
(s == SYS_ATSC))
return 1;
c->delivery_system = SYS_DVBS;
break;
case FE_QAM:
- c->delivery_system = SYS_DVBC_ANNEX_AC;
- c->rolloff = ROLLOFF_15; /* implied for Annex A */
+ c->delivery_system = SYS_DVBC_ANNEX_A;
break;
case FE_OFDM:
c->delivery_system = SYS_DVBT;
*/
static void dtv_property_adv_params_sync(struct dvb_frontend *fe)
{
- const struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_frontend_parameters *p = &fepriv->parameters_in;
+ u32 rolloff = 0;
p->frequency = c->frequency;
p->inversion = c->inversion;
else
p->u.ofdm.bandwidth = BANDWIDTH_AUTO;
}
+
+ /*
+ * On DVB-C, the bandwidth is a function of roll-off and symbol rate.
+ * The bandwidth is required for DVB-C tuners, in order to avoid
+ * inter-channel noise. Instead of estimating the minimal required
+ * bandwidth on every single driver, calculates it here and fills
+ * it at the cache bandwidth parameter.
+ * While not officially supported, a side effect of handling it at
+ * the cache level is that a program could retrieve the bandwidth
+ * via DTV_BANDWIDTH_HZ, wich may be useful for test programs.
+ */
+ if (c->delivery_system == SYS_DVBC_ANNEX_A)
+ rolloff = 115;
+ if (c->delivery_system == SYS_DVBC_ANNEX_C)
+ rolloff = 113;
+ if (rolloff)
+ c->bandwidth_hz = (c->symbol_rate * rolloff) / 100;
}
static void dtv_property_cache_submit(struct dvb_frontend *fe)
struct tda_state *state = fe->tuner_priv;
int status = 0;
int Standard;
- u32 bw;
+ u32 bw = fe->dtv_property_cache.bandwidth_hz;
+ u32 delsys = fe->dtv_property_cache.delivery_system;
- state->m_Frequency = params->frequency;
+ state->m_Frequency = fe->dtv_property_cache.frequency;
- if (fe->ops.info.type == FE_OFDM)
- switch (params->u.ofdm.bandwidth) {
- case BANDWIDTH_6_MHZ:
+ switch (delsys) {
+ case SYS_DVBT:
+ case SYS_DVBT2:
+ switch (bw) {
+ case 6000000:
Standard = HF_DVBT_6MHZ;
break;
- case BANDWIDTH_7_MHZ:
+ case 7000000:
Standard = HF_DVBT_7MHZ;
break;
- default:
- case BANDWIDTH_8_MHZ:
+ case 8000000:
Standard = HF_DVBT_8MHZ;
break;
+ default:
+ return -EINVAL;
}
- else if (fe->ops.info.type == FE_QAM) {
- /*
- * Using a higher bandwidth at the tuner filter may
- * allow inter-carrier interference.
- * So, determine the minimal channel spacing, in order
- * to better adjust the tuner filter.
- * According with ITU-T J.83, the bandwidth is given by:
- * bw = Simbol Rate * (1 + roll_off), where the roll_off
- * is equal to 0.15 for Annex A, and 0.13 for annex C
- */
- if (fe->dtv_property_cache.rolloff == ROLLOFF_13)
- bw = (params->u.qam.symbol_rate * 113) / 100;
- else
- bw = (params->u.qam.symbol_rate * 115) / 100;
+ case SYS_DVBC_ANNEX_A:
+ case SYS_DVBC_ANNEX_C:
if (bw <= 6000000)
Standard = HF_DVBC_6MHZ;
else if (bw <= 7000000)
Standard = HF_DVBC_7MHZ;
else
Standard = HF_DVBC_8MHZ;
- } else
+ default:
return -EINVAL;
+ }
do {
- status = RFTrackingFiltersCorrection(state, params->frequency);
+ status = RFTrackingFiltersCorrection(state, state->m_Frequency);
if (status < 0)
break;
- status = ChannelConfiguration(state, params->frequency, Standard);
+ status = ChannelConfiguration(state, state->m_Frequency,
+ Standard);
if (status < 0)
break;