This is intended for use in loops which read data protected by RCU and may
have a large number of iterations. Such an example is dumping the list of
connections known to IPVS: ip_vs_conn_array() and ip_vs_conn_seq_next().
The benefits are for CONFIG_PREEMPT_RCU=y where we save CPU cycles
by moving rcu_read_lock and rcu_read_unlock out of large loops
but still allowing the current task to be preempted after every
loop iteration for the CONFIG_PREEMPT_RCU=n case.
The call to cond_resched() is not needed when CONFIG_PREEMPT_RCU=y.
Thanks to Paul E. McKenney for explaining this and for the
final version that checks the context with CONFIG_DEBUG_ATOMIC_SLEEP=y
for all possible configurations.
The function can be empty in the CONFIG_PREEMPT_RCU case,
rcu_read_lock and rcu_read_unlock are not needed in this case
because the task can be preempted on indication from scheduler.
Thanks to Peter Zijlstra for catching this and for his help
in trying a solution that changes __might_sleep.
Initial cond_resched_rcu_lock() function suggested by Eric Dumazet.
Tested-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Simon Horman <horms@verge.net.au>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
__cond_resched_softirq(); \
})
+static inline void cond_resched_rcu(void)
+{
+#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
+ rcu_read_unlock();
+ cond_resched();
+ rcu_read_lock();
+#endif
+}
+
/*
* Does a critical section need to be broken due to another
* task waiting?: (technically does not depend on CONFIG_PREEMPT,