metag: DMA
authorJames Hogan <james.hogan@imgtec.com>
Fri, 5 Oct 2012 15:27:03 +0000 (16:27 +0100)
committerJames Hogan <james.hogan@imgtec.com>
Sat, 2 Mar 2013 20:09:51 +0000 (20:09 +0000)
Add DMA mapping code.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
arch/metag/include/asm/dma-mapping.h [new file with mode: 0644]
arch/metag/kernel/dma.c [new file with mode: 0644]

diff --git a/arch/metag/include/asm/dma-mapping.h b/arch/metag/include/asm/dma-mapping.h
new file mode 100644 (file)
index 0000000..b5f80a6
--- /dev/null
@@ -0,0 +1,183 @@
+#ifndef _ASM_METAG_DMA_MAPPING_H
+#define _ASM_METAG_DMA_MAPPING_H
+
+#include <linux/mm.h>
+
+#include <asm/cache.h>
+#include <asm/io.h>
+#include <linux/scatterlist.h>
+#include <asm/bug.h>
+
+#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
+#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
+
+void *dma_alloc_coherent(struct device *dev, size_t size,
+                        dma_addr_t *dma_handle, gfp_t flag);
+
+void dma_free_coherent(struct device *dev, size_t size,
+                      void *vaddr, dma_addr_t dma_handle);
+
+void dma_sync_for_device(void *vaddr, size_t size, int dma_direction);
+void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction);
+
+int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
+                     void *cpu_addr, dma_addr_t dma_addr, size_t size);
+
+int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
+                         void *cpu_addr, dma_addr_t dma_addr, size_t size);
+
+static inline dma_addr_t
+dma_map_single(struct device *dev, void *ptr, size_t size,
+              enum dma_data_direction direction)
+{
+       BUG_ON(!valid_dma_direction(direction));
+       WARN_ON(size == 0);
+       dma_sync_for_device(ptr, size, direction);
+       return virt_to_phys(ptr);
+}
+
+static inline void
+dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
+                enum dma_data_direction direction)
+{
+       BUG_ON(!valid_dma_direction(direction));
+       dma_sync_for_cpu(phys_to_virt(dma_addr), size, direction);
+}
+
+static inline int
+dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
+          enum dma_data_direction direction)
+{
+       struct scatterlist *sg;
+       int i;
+
+       BUG_ON(!valid_dma_direction(direction));
+       WARN_ON(nents == 0 || sglist[0].length == 0);
+
+       for_each_sg(sglist, sg, nents, i) {
+               BUG_ON(!sg_page(sg));
+
+               sg->dma_address = sg_phys(sg);
+               dma_sync_for_device(sg_virt(sg), sg->length, direction);
+       }
+
+       return nents;
+}
+
+static inline dma_addr_t
+dma_map_page(struct device *dev, struct page *page, unsigned long offset,
+            size_t size, enum dma_data_direction direction)
+{
+       BUG_ON(!valid_dma_direction(direction));
+       dma_sync_for_device((void *)(page_to_phys(page) + offset), size,
+                           direction);
+       return page_to_phys(page) + offset;
+}
+
+static inline void
+dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
+              enum dma_data_direction direction)
+{
+       BUG_ON(!valid_dma_direction(direction));
+       dma_sync_for_cpu(phys_to_virt(dma_address), size, direction);
+}
+
+
+static inline void
+dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nhwentries,
+            enum dma_data_direction direction)
+{
+       struct scatterlist *sg;
+       int i;
+
+       BUG_ON(!valid_dma_direction(direction));
+       WARN_ON(nhwentries == 0 || sglist[0].length == 0);
+
+       for_each_sg(sglist, sg, nhwentries, i) {
+               BUG_ON(!sg_page(sg));
+
+               sg->dma_address = sg_phys(sg);
+               dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
+       }
+}
+
+static inline void
+dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
+                       enum dma_data_direction direction)
+{
+       dma_sync_for_cpu(phys_to_virt(dma_handle), size, direction);
+}
+
+static inline void
+dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
+                          size_t size, enum dma_data_direction direction)
+{
+       dma_sync_for_device(phys_to_virt(dma_handle), size, direction);
+}
+
+static inline void
+dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
+                             unsigned long offset, size_t size,
+                             enum dma_data_direction direction)
+{
+       dma_sync_for_cpu(phys_to_virt(dma_handle)+offset, size,
+                        direction);
+}
+
+static inline void
+dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
+                                unsigned long offset, size_t size,
+                                enum dma_data_direction direction)
+{
+       dma_sync_for_device(phys_to_virt(dma_handle)+offset, size,
+                           direction);
+}
+
+static inline void
+dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
+                   enum dma_data_direction direction)
+{
+       int i;
+       for (i = 0; i < nelems; i++, sg++)
+               dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
+}
+
+static inline void
+dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
+                      enum dma_data_direction direction)
+{
+       int i;
+       for (i = 0; i < nelems; i++, sg++)
+               dma_sync_for_device(sg_virt(sg), sg->length, direction);
+}
+
+static inline int
+dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
+{
+       return 0;
+}
+
+#define dma_supported(dev, mask)        (1)
+
+static inline int
+dma_set_mask(struct device *dev, u64 mask)
+{
+       if (!dev->dma_mask || !dma_supported(dev, mask))
+               return -EIO;
+
+       *dev->dma_mask = mask;
+
+       return 0;
+}
+
+/*
+ * dma_alloc_noncoherent() returns non-cacheable memory, so there's no need to
+ * do any flushing here.
+ */
+static inline void
+dma_cache_sync(struct device *dev, void *vaddr, size_t size,
+              enum dma_data_direction direction)
+{
+}
+
+#endif
diff --git a/arch/metag/kernel/dma.c b/arch/metag/kernel/dma.c
new file mode 100644 (file)
index 0000000..8c00ded
--- /dev/null
@@ -0,0 +1,507 @@
+/*
+ *  Meta version derived from arch/powerpc/lib/dma-noncoherent.c
+ *    Copyright (C) 2008 Imagination Technologies Ltd.
+ *
+ *  PowerPC version derived from arch/arm/mm/consistent.c
+ *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
+ *
+ *  Copyright (C) 2000 Russell King
+ *
+ * Consistent memory allocators.  Used for DMA devices that want to
+ * share uncached memory with the processor core.  The function return
+ * is the virtual address and 'dma_handle' is the physical address.
+ * Mostly stolen from the ARM port, with some changes for PowerPC.
+ *                                             -- Dan
+ *
+ * Reorganized to get rid of the arch-specific consistent_* functions
+ * and provide non-coherent implementations for the DMA API. -Matt
+ *
+ * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
+ * implementation. This is pulled straight from ARM and barely
+ * modified. -Matt
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/export.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/highmem.h>
+#include <linux/dma-mapping.h>
+#include <linux/slab.h>
+
+#include <asm/tlbflush.h>
+#include <asm/mmu.h>
+
+#define CONSISTENT_OFFSET(x)   (((unsigned long)(x) - CONSISTENT_START) \
+                                       >> PAGE_SHIFT)
+
+static u64 get_coherent_dma_mask(struct device *dev)
+{
+       u64 mask = ~0ULL;
+
+       if (dev) {
+               mask = dev->coherent_dma_mask;
+
+               /*
+                * Sanity check the DMA mask - it must be non-zero, and
+                * must be able to be satisfied by a DMA allocation.
+                */
+               if (mask == 0) {
+                       dev_warn(dev, "coherent DMA mask is unset\n");
+                       return 0;
+               }
+       }
+
+       return mask;
+}
+/*
+ * This is the page table (2MB) covering uncached, DMA consistent allocations
+ */
+static pte_t *consistent_pte;
+static DEFINE_SPINLOCK(consistent_lock);
+
+/*
+ * VM region handling support.
+ *
+ * This should become something generic, handling VM region allocations for
+ * vmalloc and similar (ioremap, module space, etc).
+ *
+ * I envisage vmalloc()'s supporting vm_struct becoming:
+ *
+ *  struct vm_struct {
+ *    struct metag_vm_region   region;
+ *    unsigned long    flags;
+ *    struct page      **pages;
+ *    unsigned int     nr_pages;
+ *    unsigned long    phys_addr;
+ *  };
+ *
+ * get_vm_area() would then call metag_vm_region_alloc with an appropriate
+ * struct metag_vm_region head (eg):
+ *
+ *  struct metag_vm_region vmalloc_head = {
+ *     .vm_list        = LIST_HEAD_INIT(vmalloc_head.vm_list),
+ *     .vm_start       = VMALLOC_START,
+ *     .vm_end         = VMALLOC_END,
+ *  };
+ *
+ * However, vmalloc_head.vm_start is variable (typically, it is dependent on
+ * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
+ * would have to initialise this each time prior to calling
+ * metag_vm_region_alloc().
+ */
+struct metag_vm_region {
+       struct list_head vm_list;
+       unsigned long vm_start;
+       unsigned long vm_end;
+       struct page             *vm_pages;
+       int                     vm_active;
+};
+
+static struct metag_vm_region consistent_head = {
+       .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
+       .vm_start = CONSISTENT_START,
+       .vm_end = CONSISTENT_END,
+};
+
+static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
+                                                    *head, size_t size,
+                                                    gfp_t gfp)
+{
+       unsigned long addr = head->vm_start, end = head->vm_end - size;
+       unsigned long flags;
+       struct metag_vm_region *c, *new;
+
+       new = kmalloc(sizeof(struct metag_vm_region), gfp);
+       if (!new)
+               goto out;
+
+       spin_lock_irqsave(&consistent_lock, flags);
+
+       list_for_each_entry(c, &head->vm_list, vm_list) {
+               if ((addr + size) < addr)
+                       goto nospc;
+               if ((addr + size) <= c->vm_start)
+                       goto found;
+               addr = c->vm_end;
+               if (addr > end)
+                       goto nospc;
+       }
+
+found:
+       /*
+        * Insert this entry _before_ the one we found.
+        */
+       list_add_tail(&new->vm_list, &c->vm_list);
+       new->vm_start = addr;
+       new->vm_end = addr + size;
+       new->vm_active = 1;
+
+       spin_unlock_irqrestore(&consistent_lock, flags);
+       return new;
+
+nospc:
+       spin_unlock_irqrestore(&consistent_lock, flags);
+       kfree(new);
+out:
+       return NULL;
+}
+
+static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
+                                                   *head, unsigned long addr)
+{
+       struct metag_vm_region *c;
+
+       list_for_each_entry(c, &head->vm_list, vm_list) {
+               if (c->vm_active && c->vm_start == addr)
+                       goto out;
+       }
+       c = NULL;
+out:
+       return c;
+}
+
+/*
+ * Allocate DMA-coherent memory space and return both the kernel remapped
+ * virtual and bus address for that space.
+ */
+void *dma_alloc_coherent(struct device *dev, size_t size,
+                        dma_addr_t *handle, gfp_t gfp)
+{
+       struct page *page;
+       struct metag_vm_region *c;
+       unsigned long order;
+       u64 mask = get_coherent_dma_mask(dev);
+       u64 limit;
+
+       if (!consistent_pte) {
+               pr_err("%s: not initialised\n", __func__);
+               dump_stack();
+               return NULL;
+       }
+
+       if (!mask)
+               goto no_page;
+       size = PAGE_ALIGN(size);
+       limit = (mask + 1) & ~mask;
+       if ((limit && size >= limit)
+           || size >= (CONSISTENT_END - CONSISTENT_START)) {
+               pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
+                       size, mask);
+               return NULL;
+       }
+
+       order = get_order(size);
+
+       if (mask != 0xffffffff)
+               gfp |= GFP_DMA;
+
+       page = alloc_pages(gfp, order);
+       if (!page)
+               goto no_page;
+
+       /*
+        * Invalidate any data that might be lurking in the
+        * kernel direct-mapped region for device DMA.
+        */
+       {
+               void *kaddr = page_address(page);
+               memset(kaddr, 0, size);
+               flush_dcache_region(kaddr, size);
+       }
+
+       /*
+        * Allocate a virtual address in the consistent mapping region.
+        */
+       c = metag_vm_region_alloc(&consistent_head, size,
+                                 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
+       if (c) {
+               unsigned long vaddr = c->vm_start;
+               pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
+               struct page *end = page + (1 << order);
+
+               c->vm_pages = page;
+               split_page(page, order);
+
+               /*
+                * Set the "dma handle"
+                */
+               *handle = page_to_bus(page);
+
+               do {
+                       BUG_ON(!pte_none(*pte));
+
+                       SetPageReserved(page);
+                       set_pte_at(&init_mm, vaddr,
+                                  pte, mk_pte(page,
+                                              pgprot_writecombine
+                                              (PAGE_KERNEL)));
+                       page++;
+                       pte++;
+                       vaddr += PAGE_SIZE;
+               } while (size -= PAGE_SIZE);
+
+               /*
+                * Free the otherwise unused pages.
+                */
+               while (page < end) {
+                       __free_page(page);
+                       page++;
+               }
+
+               return (void *)c->vm_start;
+       }
+
+       if (page)
+               __free_pages(page, order);
+no_page:
+       return NULL;
+}
+EXPORT_SYMBOL(dma_alloc_coherent);
+
+/*
+ * free a page as defined by the above mapping.
+ */
+void dma_free_coherent(struct device *dev, size_t size,
+                      void *vaddr, dma_addr_t dma_handle)
+{
+       struct metag_vm_region *c;
+       unsigned long flags, addr;
+       pte_t *ptep;
+
+       size = PAGE_ALIGN(size);
+
+       spin_lock_irqsave(&consistent_lock, flags);
+
+       c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
+       if (!c)
+               goto no_area;
+
+       c->vm_active = 0;
+       if ((c->vm_end - c->vm_start) != size) {
+               pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
+                      __func__, c->vm_end - c->vm_start, size);
+               dump_stack();
+               size = c->vm_end - c->vm_start;
+       }
+
+       ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
+       addr = c->vm_start;
+       do {
+               pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
+               unsigned long pfn;
+
+               ptep++;
+               addr += PAGE_SIZE;
+
+               if (!pte_none(pte) && pte_present(pte)) {
+                       pfn = pte_pfn(pte);
+
+                       if (pfn_valid(pfn)) {
+                               struct page *page = pfn_to_page(pfn);
+                               ClearPageReserved(page);
+
+                               __free_page(page);
+                               continue;
+                       }
+               }
+
+               pr_crit("%s: bad page in kernel page table\n",
+                       __func__);
+       } while (size -= PAGE_SIZE);
+
+       flush_tlb_kernel_range(c->vm_start, c->vm_end);
+
+       list_del(&c->vm_list);
+
+       spin_unlock_irqrestore(&consistent_lock, flags);
+
+       kfree(c);
+       return;
+
+no_area:
+       spin_unlock_irqrestore(&consistent_lock, flags);
+       pr_err("%s: trying to free invalid coherent area: %p\n",
+              __func__, vaddr);
+       dump_stack();
+}
+EXPORT_SYMBOL(dma_free_coherent);
+
+
+static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
+                   void *cpu_addr, dma_addr_t dma_addr, size_t size)
+{
+       int ret = -ENXIO;
+
+       unsigned long flags, user_size, kern_size;
+       struct metag_vm_region *c;
+
+       user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
+
+       spin_lock_irqsave(&consistent_lock, flags);
+       c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
+       spin_unlock_irqrestore(&consistent_lock, flags);
+
+       if (c) {
+               unsigned long off = vma->vm_pgoff;
+
+               kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
+
+               if (off < kern_size &&
+                   user_size <= (kern_size - off)) {
+                       ret = remap_pfn_range(vma, vma->vm_start,
+                                             page_to_pfn(c->vm_pages) + off,
+                                             user_size << PAGE_SHIFT,
+                                             vma->vm_page_prot);
+               }
+       }
+
+
+       return ret;
+}
+
+int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
+                     void *cpu_addr, dma_addr_t dma_addr, size_t size)
+{
+       vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
+       return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
+}
+EXPORT_SYMBOL(dma_mmap_coherent);
+
+int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
+                         void *cpu_addr, dma_addr_t dma_addr, size_t size)
+{
+       vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
+       return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
+}
+EXPORT_SYMBOL(dma_mmap_writecombine);
+
+
+
+
+/*
+ * Initialise the consistent memory allocation.
+ */
+static int __init dma_alloc_init(void)
+{
+       pgd_t *pgd, *pgd_k;
+       pud_t *pud, *pud_k;
+       pmd_t *pmd, *pmd_k;
+       pte_t *pte;
+       int ret = 0;
+
+       do {
+               int offset = pgd_index(CONSISTENT_START);
+               pgd = pgd_offset(&init_mm, CONSISTENT_START);
+               pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
+               pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
+               if (!pmd) {
+                       pr_err("%s: no pmd tables\n", __func__);
+                       ret = -ENOMEM;
+                       break;
+               }
+               WARN_ON(!pmd_none(*pmd));
+
+               pte = pte_alloc_kernel(pmd, CONSISTENT_START);
+               if (!pte) {
+                       pr_err("%s: no pte tables\n", __func__);
+                       ret = -ENOMEM;
+                       break;
+               }
+
+               pgd_k = ((pgd_t *) mmu_get_base()) + offset;
+               pud_k = pud_offset(pgd_k, CONSISTENT_START);
+               pmd_k = pmd_offset(pud_k, CONSISTENT_START);
+               set_pmd(pmd_k, *pmd);
+
+               consistent_pte = pte;
+       } while (0);
+
+       return ret;
+}
+early_initcall(dma_alloc_init);
+
+/*
+ * make an area consistent to devices.
+ */
+void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
+{
+       /*
+        * Ensure any writes get through the write combiner. This is necessary
+        * even with DMA_FROM_DEVICE, or the write may dirty the cache after
+        * we've invalidated it and get written back during the DMA.
+        */
+
+       barrier();
+
+       switch (dma_direction) {
+       case DMA_BIDIRECTIONAL:
+               /*
+                * Writeback to ensure the device can see our latest changes and
+                * so that we have no dirty lines, and invalidate the cache
+                * lines too in preparation for receiving the buffer back
+                * (dma_sync_for_cpu) later.
+                */
+               flush_dcache_region(vaddr, size);
+               break;
+       case DMA_TO_DEVICE:
+               /*
+                * Writeback to ensure the device can see our latest changes.
+                * There's no need to invalidate as the device shouldn't write
+                * to the buffer.
+                */
+               writeback_dcache_region(vaddr, size);
+               break;
+       case DMA_FROM_DEVICE:
+               /*
+                * Invalidate to ensure we have no dirty lines that could get
+                * written back during the DMA. It's also safe to flush
+                * (writeback) here if necessary.
+                */
+               invalidate_dcache_region(vaddr, size);
+               break;
+       case DMA_NONE:
+               BUG();
+       }
+
+       wmb();
+}
+EXPORT_SYMBOL(dma_sync_for_device);
+
+/*
+ * make an area consistent to the core.
+ */
+void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
+{
+       /*
+        * Hardware L2 cache prefetch doesn't occur across 4K physical
+        * boundaries, however according to Documentation/DMA-API-HOWTO.txt
+        * kmalloc'd memory is DMA'able, so accesses in nearby memory could
+        * trigger a cache fill in the DMA buffer.
+        *
+        * This should never cause dirty lines, so a flush or invalidate should
+        * be safe to allow us to see data from the device.
+        */
+       if (_meta_l2c_pf_is_enabled()) {
+               switch (dma_direction) {
+               case DMA_BIDIRECTIONAL:
+               case DMA_FROM_DEVICE:
+                       invalidate_dcache_region(vaddr, size);
+                       break;
+               case DMA_TO_DEVICE:
+                       /* The device shouldn't have written to the buffer */
+                       break;
+               case DMA_NONE:
+                       BUG();
+               }
+       }
+
+       rmb();
+}
+EXPORT_SYMBOL(dma_sync_for_cpu);