Digital Semiconductor SROM Specification. The driver currently
recognises the following chips:
- DC21040 (no SROM)
- DC21041[A]
- DC21140[A]
- DC21142
- DC21143
+ DC21040 (no SROM)
+ DC21041[A]
+ DC21140[A]
+ DC21142
+ DC21143
So far the driver is known to work with the following cards:
SMC8432
SMC9332 (w/new SROM)
ZNYX31[45]
- ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
+ ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
The driver has been tested on a relatively busy network using the DE425,
DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
loading by:
insmod de4x5 io=0xghh where g = bus number
- hh = device number
+ hh = device number
NB: autoprobing for modules is now supported by default. You may just
use:
4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
kernel with the de4x5 configuration turned off and reboot.
5) insmod de4x5 [io=0xghh]
- 6) run the net startup bits for your new eth?? interface(s) manually
- (usually /etc/rc.inet[12] at boot time).
+ 6) run the net startup bits for your new eth?? interface(s) manually
+ (usually /etc/rc.inet[12] at boot time).
7) enjoy!
- To unload a module, turn off the associated interface(s)
+ To unload a module, turn off the associated interface(s)
'ifconfig eth?? down' then 'rmmod de4x5'.
Automedia detection is included so that in principal you can disconnect
By default, the driver will now autodetect any DECchip based card.
Should you have a need to restrict the driver to DIGITAL only cards, you
can compile with a DEC_ONLY define, or if loading as a module, use the
- 'dec_only=1' parameter.
+ 'dec_only=1' parameter.
I've changed the timing routines to use the kernel timer and scheduling
functions so that the hangs and other assorted problems that occurred
following parameters are allowed:
fdx for full duplex
- autosense to set the media/speed; with the following
+ autosense to set the media/speed; with the following
sub-parameters:
TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
this automatically or include #define DE4X5_FORCE_EISA on or before
line 1040 in the driver.
- TO DO:
+ TO DO:
------
Revision History
----------------
Version Date Description
-
+
0.1 17-Nov-94 Initial writing. ALPHA code release.
0.2 13-Jan-95 Added PCI support for DE435's.
0.21 19-Jan-95 Added auto media detection.
Add request/release_region code.
Add loadable modules support for PCI.
Clean up loadable modules support.
- 0.23 28-Feb-95 Added DC21041 and DC21140 support.
+ 0.23 28-Feb-95 Added DC21041 and DC21140 support.
Fix missed frame counter value and initialisation.
Fixed EISA probe.
0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
Add kernel timer code (h/w is too flaky).
Add MII based PHY autosense.
Add new multicasting code.
- Add new autosense algorithms for media/mode
+ Add new autosense algorithms for media/mode
selection using kernel scheduling/timing.
Re-formatted.
Made changes suggested by <jeff@router.patch.net>:
Add Accton to the list of broken cards.
Fix TX under-run bug for non DC21140 chips.
Fix boot command probe bug in alloc_device() as
- reported by <koen.gadeyne@barco.com> and
+ reported by <koen.gadeyne@barco.com> and
<orava@nether.tky.hut.fi>.
Add cache locks to prevent a race condition as
- reported by <csd@microplex.com> and
+ reported by <csd@microplex.com> and
<baba@beckman.uiuc.edu>.
Upgraded alloc_device() code.
0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
with a loopback packet.
0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
by <bhat@mundook.cs.mu.OZ.AU>
- 0.45 8-Dec-96 Include endian functions for PPC use, from work
+ 0.45 8-Dec-96 Include endian functions for PPC use, from work
by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
0.451 28-Dec-96 Added fix to allow autoprobe for modules after
suggestion from <mjacob@feral.com>.
<paubert@iram.es>.
0.52 26-Apr-97 Some changes may not credit the right people -
a disk crash meant I lost some mail.
- Change RX interrupt routine to drop rather than
- defer packets to avoid hang reported by
+ Change RX interrupt routine to drop rather than
+ defer packets to avoid hang reported by
<g.thomas@opengroup.org>.
Fix srom_exec() to return for COMPACT and type 1
infoblocks.
Added DC21142 and DC21143 functions.
Added byte counters from <phil@tazenda.demon.co.uk>
- Added SA_INTERRUPT temporary fix from
+ Added SA_INTERRUPT temporary fix from
<mjacob@feral.com>.
0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
module load: bug reported by
Make above search independent of BIOS device scan
direction.
Completed DC2114[23] autosense functions.
- 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
+ 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
<robin@intercore.com
Fix type1_infoblock() bug introduced in 0.53, from
- problem reports by
+ problem reports by
<parmee@postecss.ncrfran.france.ncr.com> and
<jo@ice.dillingen.baynet.de>.
Added argument list to set up each board from either
Added generic MII PHY functionality to deal with
newer PHY chips.
Fix the mess in 2.1.67.
- 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
+ 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
<redhat@cococo.net>.
Fix bug in pci_probe() for 64 bit systems reported
by <belliott@accessone.com>.
version. I hope nothing is broken...
Add TX done interrupt modification from suggestion
by <Austin.Donnelly@cl.cam.ac.uk>.
- Fix is_anc_capable() bug reported by
+ Fix is_anc_capable() bug reported by
<Austin.Donnelly@cl.cam.ac.uk>.
Fix type[13]_infoblock() bug: during MII search, PHY
lp->rst not run because lp->ibn not initialised -
Add an_exception() for old ZYNX346 and fix compile
warning on PPC & SPARC, from <ecd@skynet.be>.
Fix lastPCI to correctly work with compiled in
- kernels and modules from bug report by
+ kernels and modules from bug report by
<Zlatko.Calusic@CARNet.hr> et al.
0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
when media is unconnected.
0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
a 21143 by <mmporter@home.com>.
Change PCI/EISA bus probing order.
- 0.545 28-Nov-99 Further Moto SROM bug fix from
+ 0.545 28-Nov-99 Further Moto SROM bug fix from
<mporter@eng.mcd.mot.com>
Remove double checking for DEBUG_RX in de4x5_dbg_rx()
from report by <geert@linux-m68k.org>
variable 'pb', on a non de4x5 PCI device, in this
case a PCI bridge (DEC chip 21152). The value of
'pb' is now only initialized if a de4x5 chip is
- present.
- <france@handhelds.org>
+ present.
+ <france@handhelds.org>
0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
generic DMA APIs. Fixed DE425 support on Alpha.
/*
** Allow per adapter set up. For modules this is simply a command line
-** parameter, e.g.:
+** parameter, e.g.:
** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
**
** For a compiled in driver, place e.g.
** Memory Alignment. Each descriptor is 4 longwords long. To force a
** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
** DESC_ALIGN. ALIGN aligns the start address of the private memory area
-** and hence the RX descriptor ring's first entry.
+** and hence the RX descriptor ring's first entry.
*/
#define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
#define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
mdelay(2); /* Wait for 2ms */\
}
-\f
-static int __devinit
+
+static int __devinit
de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
{
char name[DE4X5_NAME_LENGTH + 1];
mdelay(10);
RESET_DE4X5;
-
+
if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
return -ENXIO; /* Hardware could not reset */
}
-
- /*
+
+ /*
** Now find out what kind of DC21040/DC21041/DC21140 board we have.
*/
lp->useSROM = FALSE;
} else {
EISA_signature(name, gendev);
}
-
+
if (*name == '\0') { /* Not found a board signature */
return -ENXIO;
}
-
+
dev->base_addr = iobase;
printk ("%s: %s at 0x%04lx", gendev->bus_id, name, iobase);
-
+
printk(", h/w address ");
status = get_hw_addr(dev);
for (i = 0; i < ETH_ALEN - 1; i++) { /* get the ethernet addr. */
printk("%2.2x:", dev->dev_addr[i]);
}
printk("%2.2x,\n", dev->dev_addr[i]);
-
+
if (status != 0) {
printk(" which has an Ethernet PROM CRC error.\n");
return -ENXIO;
}
lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
-
+
/*
** Set up the RX descriptor ring (Intels)
- ** Allocate contiguous receive buffers, long word aligned (Alphas)
+ ** Allocate contiguous receive buffers, long word aligned (Alphas)
*/
#if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY)
for (i=0; i<NUM_RX_DESC; i++) {
lp->rxRingSize = NUM_RX_DESC;
lp->txRingSize = NUM_TX_DESC;
-
+
/* Write the end of list marker to the descriptor lists */
lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
outl(lp->dma_rings, DE4X5_RRBA);
outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
DE4X5_TRBA);
-
+
/* Initialise the IRQ mask and Enable/Disable */
lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
lp->irq_en = IMR_NIM | IMR_AIM;
if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
mii_get_phy(dev);
}
-
+
#ifndef __sparc_v9__
printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
#else
#endif
((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
}
-
+
if (de4x5_debug & DEBUG_VERSION) {
printk(version);
}
-
+
/* The DE4X5-specific entries in the device structure. */
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, gendev);
dev->get_stats = &de4x5_get_stats;
dev->set_multicast_list = &set_multicast_list;
dev->do_ioctl = &de4x5_ioctl;
-
+
dev->mem_start = 0;
-
+
/* Fill in the generic fields of the device structure. */
if ((status = register_netdev (dev))) {
dma_free_coherent (gendev, lp->dma_size,
lp->rx_ring, lp->dma_rings);
return status;
}
-
+
/* Let the adapter sleep to save power */
yawn(dev, SLEEP);
-
+
return status;
}
-\f
+
static int
de4x5_open(struct net_device *dev)
{
*/
yawn(dev, WAKEUP);
- /*
- ** Re-initialize the DE4X5...
+ /*
+ ** Re-initialize the DE4X5...
*/
status = de4x5_init(dev);
spin_lock_init(&lp->lock);
lp->state = OPEN;
de4x5_dbg_open(dev);
-
- if (request_irq(dev->irq, (void *)de4x5_interrupt, SA_SHIRQ,
+
+ if (request_irq(dev->irq, (void *)de4x5_interrupt, SA_SHIRQ,
lp->adapter_name, dev)) {
printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
if (request_irq(dev->irq, de4x5_interrupt, SA_INTERRUPT | SA_SHIRQ,
lp->interrupt = UNMASK_INTERRUPTS;
dev->trans_start = jiffies;
-
+
START_DE4X5;
-
+
de4x5_setup_intr(dev);
-
+
if (de4x5_debug & DEBUG_OPEN) {
printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
}
-
+
return status;
}
*/
static int
de4x5_init(struct net_device *dev)
-{
+{
/* Lock out other processes whilst setting up the hardware */
netif_stop_queue(dev);
-
+
de4x5_sw_reset(dev);
-
+
/* Autoconfigure the connected port */
autoconf_media(dev);
-
+
return 0;
}
u_long iobase = dev->base_addr;
int i, j, status = 0;
s32 bmr, omr;
-
+
/* Select the MII or SRL port now and RESET the MAC */
if (!lp->useSROM) {
if (lp->phy[lp->active].id != 0) {
de4x5_switch_mac_port(dev);
}
- /*
+ /*
** Set the programmable burst length to 8 longwords for all the DC21140
** Fasternet chips and 4 longwords for all others: DMA errors result
** without these values. Cache align 16 long.
outl(lp->dma_rings, DE4X5_RRBA);
outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
DE4X5_TRBA);
-
+
lp->rx_new = lp->rx_old = 0;
lp->tx_new = lp->tx_old = 0;
-
+
for (i = 0; i < lp->rxRingSize; i++) {
lp->rx_ring[i].status = cpu_to_le32(R_OWN);
}
-
+
for (i = 0; i < lp->txRingSize; i++) {
lp->tx_ring[i].status = cpu_to_le32(0);
}
-
+
barrier();
/* Build the setup frame depending on filtering mode */
SetMulticastFilter(dev);
-
+
load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
outl(omr|OMR_ST, DE4X5_OMR);
outl(omr, DE4X5_OMR); /* Stop everything! */
if (j == 0) {
- printk("%s: Setup frame timed out, status %08x\n", dev->name,
+ printk("%s: Setup frame timed out, status %08x\n", dev->name,
inl(DE4X5_STS));
status = -EIO;
}
-
+
lp->tx_new = (++lp->tx_new) % lp->txRingSize;
lp->tx_old = lp->tx_new;
return status;
}
-/*
+/*
** Writes a socket buffer address to the next available transmit descriptor.
*/
static int
netif_stop_queue(dev);
if (lp->tx_enable == NO) { /* Cannot send for now */
- return -1;
+ return -1;
}
-
+
/*
** Clean out the TX ring asynchronously to interrupts - sometimes the
** interrupts are lost by delayed descriptor status updates relative to
spin_unlock_irqrestore(&lp->lock, flags);
/* Test if cache is already locked - requeue skb if so */
- if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
+ if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
return -1;
/* Transmit descriptor ring full or stale skb */
load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
lp->stats.tx_bytes += skb->len;
outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
-
+
lp->tx_new = (++lp->tx_new) % lp->txRingSize;
dev->trans_start = jiffies;
-
+
if (TX_BUFFS_AVAIL) {
netif_start_queue(dev); /* Another pkt may be queued */
}
}
if (skb) de4x5_putb_cache(dev, skb);
}
-
+
lp->cache.lock = 0;
return status;
}
/*
-** The DE4X5 interrupt handler.
-**
+** The DE4X5 interrupt handler.
+**
** I/O Read/Writes through intermediate PCI bridges are never 'posted',
** so that the asserted interrupt always has some real data to work with -
** if these I/O accesses are ever changed to memory accesses, ensure the
s32 imr, omr, sts, limit;
u_long iobase;
unsigned int handled = 0;
-
+
if (dev == NULL) {
printk ("de4x5_interrupt(): irq %d for unknown device.\n", irq);
return IRQ_NONE;
lp = netdev_priv(dev);
spin_lock(&lp->lock);
iobase = dev->base_addr;
-
+
DISABLE_IRQs; /* Ensure non re-entrancy */
if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
printk("%s: Re-entering the interrupt handler.\n", dev->name);
synchronize_irq(dev->irq);
-
+
for (limit=0; limit<8; limit++) {
sts = inl(DE4X5_STS); /* Read IRQ status */
outl(sts, DE4X5_STS); /* Reset the board interrupts */
-
+
if (!(sts & lp->irq_mask)) break;/* All done */
handled = 1;
-
+
if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
de4x5_rx(dev);
-
+
if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
- de4x5_tx(dev);
-
+ de4x5_tx(dev);
+
if (sts & STS_LNF) { /* TP Link has failed */
lp->irq_mask &= ~IMR_LFM;
}
-
+
if (sts & STS_UNF) { /* Transmit underrun */
de4x5_txur(dev);
}
-
+
if (sts & STS_SE) { /* Bus Error */
STOP_DE4X5;
printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
lp->interrupt = UNMASK_INTERRUPTS;
ENABLE_IRQs;
spin_unlock(&lp->lock);
-
+
return IRQ_RETVAL(handled);
}
u_long iobase = dev->base_addr;
int entry;
s32 status;
-
+
for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
entry=lp->rx_new) {
status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
-
+
if (lp->rx_ovf) {
if (inl(DE4X5_MFC) & MFC_FOCM) {
de4x5_rx_ovfc(dev);
if (status & RD_FS) { /* Remember the start of frame */
lp->rx_old = entry;
}
-
+
if (status & RD_LS) { /* Valid frame status */
if (lp->tx_enable) lp->linkOK++;
if (status & RD_ES) { /* There was an error. */
struct sk_buff *skb;
short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
>> 16) - 4;
-
+
if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
- printk("%s: Insufficient memory; nuking packet.\n",
+ printk("%s: Insufficient memory; nuking packet.\n",
dev->name);
lp->stats.rx_dropped++;
} else {
skb->protocol=eth_type_trans(skb,dev);
de4x5_local_stats(dev, skb->data, pkt_len);
netif_rx(skb);
-
+
/* Update stats */
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len;
}
}
-
+
/* Change buffer ownership for this frame, back to the adapter */
for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) {
lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
barrier();
}
-
+
/*
** Update entry information
*/
lp->rx_new = (++lp->rx_new) % lp->rxRingSize;
}
-
+
return 0;
}
u_long iobase = dev->base_addr;
int entry;
s32 status;
-
+
for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
if (status < 0) { /* Buffer not sent yet */
break;
} else if (status != 0x7fffffff) { /* Not setup frame */
if (status & TD_ES) { /* An error happened */
- lp->stats.tx_errors++;
+ lp->stats.tx_errors++;
if (status & TD_NC) lp->stats.tx_carrier_errors++;
if (status & TD_LC) lp->stats.tx_window_errors++;
if (status & TD_UF) lp->stats.tx_fifo_errors++;
if (status & TD_EC) lp->pktStats.excessive_collisions++;
if (status & TD_DE) lp->stats.tx_aborted_errors++;
-
+
if (TX_PKT_PENDING) {
outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
}
if (lp->tx_enable) lp->linkOK++;
}
/* Update the collision counter */
- lp->stats.collisions += ((status & TD_EC) ? 16 :
+ lp->stats.collisions += ((status & TD_EC) ? 16 :
((status & TD_CC) >> 3));
/* Free the buffer. */
if (lp->tx_skb[entry] != NULL)
de4x5_free_tx_buff(lp, entry);
}
-
+
/* Update all the pointers */
lp->tx_old = (++lp->tx_old) % lp->txRingSize;
}
else
netif_start_queue(dev);
}
-
+
return 0;
}
{
struct de4x5_private *lp = netdev_priv(dev);
int next_tick = DE4X5_AUTOSENSE_MS;
-
+
disable_ast(dev);
-
+
if (lp->useSROM) {
next_tick = srom_autoconf(dev);
} else if (lp->chipset == DC21140) {
}
lp->linkOK = 0;
enable_ast(dev, next_tick);
-
+
return 0;
}
}
outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
}
-
+
return 0;
}
-static int
+static int
de4x5_rx_ovfc(struct net_device *dev)
{
struct de4x5_private *lp = netdev_priv(dev);
}
outl(omr, DE4X5_OMR);
-
+
return 0;
}
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
s32 imr, omr;
-
+
disable_ast(dev);
netif_stop_queue(dev);
-
+
if (de4x5_debug & DEBUG_CLOSE) {
printk("%s: Shutting down ethercard, status was %8.8x.\n",
dev->name, inl(DE4X5_STS));
}
-
- /*
+
+ /*
** We stop the DE4X5 here... mask interrupts and stop TX & RX
*/
DISABLE_IRQs;
STOP_DE4X5;
-
+
/* Free the associated irq */
free_irq(dev->irq, dev);
lp->state = CLOSED;
/* Free any socket buffers */
de4x5_free_rx_buffs(dev);
de4x5_free_tx_buffs(dev);
-
+
/* Put the adapter to sleep to save power */
yawn(dev, SLEEP);
-
+
return 0;
}
{
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
-
+
lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
-
+
return &lp->stats;
}
(*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
lp->pktStats.unicast++;
}
-
+
lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
if (lp->pktStats.bins[0] == 0) { /* Reset counters */
memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
omr = inl(DE4X5_OMR);
omr |= OMR_PR;
outl(omr, DE4X5_OMR);
- } else {
+ } else {
SetMulticastFilter(dev);
- load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
+ load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
SETUP_FRAME_LEN, (struct sk_buff *)1);
-
+
lp->tx_new = (++lp->tx_new) % lp->txRingSize;
outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
dev->trans_start = jiffies;
omr = inl(DE4X5_OMR);
omr &= ~(OMR_PR | OMR_PM);
pa = build_setup_frame(dev, ALL); /* Build the basic frame */
-
+
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) {
omr |= OMR_PM; /* Pass all multicasts */
} else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
for (i=0;i<dev->mc_count;i++) { /* for each address in the list */
addrs=dmi->dmi_addr;
dmi=dmi->next;
- if ((*addrs & 0x01) == 1) { /* multicast address? */
+ if ((*addrs & 0x01) == 1) { /* multicast address? */
crc = ether_crc_le(ETH_ALEN, addrs);
hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
-
+
byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
-
+
byte <<= 1; /* calc offset into setup frame */
if (byte & 0x02) {
byte -= 1;
for (j=0; j<dev->mc_count; j++) {
addrs=dmi->dmi_addr;
dmi=dmi->next;
- for (i=0; i<ETH_ALEN; i++) {
+ for (i=0; i<ETH_ALEN; i++) {
*(pa + (i&1)) = *addrs++;
if (i & 0x01) pa += 4;
}
}
}
outl(omr, DE4X5_OMR);
-
+
return;
}
status = -EBUSY;
goto release_reg_1;
}
-
+
if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
status = -ENOMEM;
goto release_reg_2;
}
lp = netdev_priv(dev);
-
+
cfid = (u32) inl(PCI_CFID);
lp->cfrv = (u_short) inl(PCI_CFRV);
device = (cfid >> 8) & 0x00ffff00;
vendor = (u_short) cfid;
-
+
/* Read the EISA Configuration Registers */
regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
#ifdef CONFIG_ALPHA
* care about the EISA configuration, and thus doesn't
* configure the PLX bridge properly. Oh well... Simply mimic
* the EISA config file to sort it out. */
-
+
/* EISA REG1: Assert DecChip 21040 HW Reset */
outb (ER1_IAM | 1, EISA_REG1);
mdelay (1);
/* EISA REG3: R/W Burst Transfer Enable */
outb (ER3_BWE | ER3_BRE, EISA_REG3);
-
+
/* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
#endif
irq = de4x5_irq[(regval >> 1) & 0x03];
-
+
if (is_DC2114x) {
device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
}
outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
outl(0x00006000, PCI_CFLT);
outl(iobase, PCI_CBIO);
-
+
DevicePresent(dev, EISA_APROM);
dev->irq = irq;
dev = device->driver_data;
iobase = dev->base_addr;
-
+
unregister_netdev (dev);
free_netdev (dev);
release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
/*
** This function searches the current bus (which is >0) for a DECchip with an
-** SROM, so that in multiport cards that have one SROM shared between multiple
+** SROM, so that in multiport cards that have one SROM shared between multiple
** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
** For single port cards this is a time waster...
*/
-static void __devinit
+static void __devinit
srom_search(struct net_device *dev, struct pci_dev *pdev)
{
u_char pb;
/* Set the device number information */
lp->device = PCI_SLOT(this_dev->devfn);
lp->bus_num = pb;
-
+
/* Set the chipset information */
if (is_DC2114x) {
device = ((cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
/* Fetch the IRQ to be used */
irq = this_dev->irq;
if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
-
+
/* Check if I/O accesses are enabled */
pci_read_config_word(this_dev, PCI_COMMAND, &status);
if (!(status & PCI_COMMAND_IO)) continue;
lp = netdev_priv(dev);
lp->bus = PCI;
lp->bus_num = 0;
-
+
/* Search for an SROM on this bus */
if (lp->bus_num != pb) {
lp->bus_num = pb;
/* Set the device number information */
lp->device = dev_num;
lp->bus_num = pb;
-
+
/* Set the chipset information */
if (is_DC2114x) {
device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
error = -ENODEV;
goto free_dev;
}
-
+
/* Check if I/O accesses and Bus Mastering are enabled */
pci_read_config_word(pdev, PCI_COMMAND, &status);
#ifdef __powerpc__
}
dev->irq = irq;
-
+
if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
goto release;
}
** Auto configure the media here rather than setting the port at compile
** time. This routine is called by de4x5_init() and when a loss of media is
** detected (excessive collisions, loss of carrier, no carrier or link fail
-** [TP] or no recent receive activity) to check whether the user has been
+** [TP] or no recent receive activity) to check whether the user has been
** sneaky and changed the port on us.
*/
static int
}
enable_ast(dev, next_tick);
-
+
return (lp->media);
}
u_long iobase = dev->base_addr;
int next_tick = DE4X5_AUTOSENSE_MS;
s32 imr;
-
+
switch (lp->media) {
case INIT:
DISABLE_IRQs;
lp->local_state = 0;
next_tick = dc21040_autoconf(dev);
break;
-
+
case TP:
- next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
+ next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
TP_SUSPECT, test_tp);
break;
-
+
case TP_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
break;
-
+
case BNC:
case AUI:
case BNC_AUI:
- next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
+ next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
BNC_AUI_SUSPECT, ping_media);
break;
-
+
case BNC_AUI_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
break;
-
+
case EXT_SIA:
- next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
+ next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
NC, EXT_SIA_SUSPECT, ping_media);
break;
-
+
case EXT_SIA_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
break;
-
+
case NC:
/* default to TP for all */
reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
lp->tx_enable = NO;
break;
}
-
+
return next_tick;
}
static int
dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
- int next_state, int suspect_state,
+ int next_state, int suspect_state,
int (*fn)(struct net_device *, int))
{
struct de4x5_private *lp = netdev_priv(dev);
lp->local_state++;
next_tick = 500;
break;
-
+
case 1:
if (!lp->tx_enable) {
linkBad = fn(dev, timeout);
}
break;
}
-
+
return next_tick;
}
u_long iobase = dev->base_addr;
s32 sts, irqs, irq_mask, imr, omr;
int next_tick = DE4X5_AUTOSENSE_MS;
-
+
switch (lp->media) {
case INIT:
DISABLE_IRQs;
lp->local_state = 0;
next_tick = dc21041_autoconf(dev);
break;
-
+
case TP_NW:
if (lp->timeout < 0) {
omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
next_tick = dc21041_autoconf(dev);
}
break;
-
+
case ANS:
if (!lp->tx_enable) {
irqs = STS_LNP;
next_tick = 3000;
}
break;
-
+
case ANS_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
break;
-
+
case TP:
if (!lp->tx_enable) {
if (lp->timeout < 0) {
next_tick = 3000;
}
break;
-
+
case TP_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
break;
-
+
case AUI:
if (!lp->tx_enable) {
if (lp->timeout < 0) {
next_tick = 3000;
}
break;
-
+
case AUI_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
break;
-
+
case BNC:
switch (lp->local_state) {
case 0:
next_tick = dc21041_autoconf(dev);
}
break;
-
+
case 1:
if (!lp->tx_enable) {
if ((sts = ping_media(dev, 3000)) < 0) {
break;
}
break;
-
+
case BNC_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
break;
-
+
case NC:
omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
outl(omr | OMR_FDX, DE4X5_OMR);
lp->tx_enable = NO;
break;
}
-
+
return next_tick;
}
int ana, anlpa, cap, cr, slnk, sr;
int next_tick = DE4X5_AUTOSENSE_MS;
u_long imr, omr, iobase = dev->base_addr;
-
+
switch(lp->media) {
- case INIT:
+ case INIT:
if (lp->timeout < 0) {
DISABLE_IRQs;
lp->tx_enable = FALSE;
lp->media = _100Mb;
} else if (lp->autosense == _10Mb) {
lp->media = _10Mb;
- } else if ((lp->autosense == AUTO) &&
+ } else if ((lp->autosense == AUTO) &&
((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
next_tick = dc21140m_autoconf(dev);
}
break;
-
+
case ANS:
switch (lp->local_state) {
case 0:
next_tick = dc21140m_autoconf(dev);
}
break;
-
+
case 1:
if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) {
next_tick = sr & ~TIMER_CB;
lp->tmp = MII_SR_ASSC;
anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
- if (!(anlpa & MII_ANLPA_RF) &&
+ if (!(anlpa & MII_ANLPA_RF) &&
(cap = anlpa & MII_ANLPA_TAF & ana)) {
if (cap & MII_ANA_100M) {
lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE);
break;
}
break;
-
+
case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
if (lp->timeout < 0) {
- lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
+ lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
(~gep_rd(dev) & GEP_LNP));
SET_100Mb_PDET;
}
next_tick = dc21140m_autoconf(dev);
}
break;
-
+
case _100Mb: /* Set 100Mb/s */
next_tick = 3000;
if (!lp->tx_enable) {
}
}
break;
-
+
case NC:
if (lp->media != lp->c_media) {
de4x5_dbg_media(dev);
lp->tx_enable = FALSE;
break;
}
-
+
return next_tick;
}
lp->media = AUI;
} else {
lp->media = SPD_DET;
- if ((lp->infoblock_media == ANS) &&
+ if ((lp->infoblock_media == ANS) &&
((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
next_tick = dc2114x_autoconf(dev);
}
break;
-
+
case ANS:
switch (lp->local_state) {
case 0:
next_tick = dc2114x_autoconf(dev);
}
break;
-
+
case 1:
if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) {
next_tick = sr & ~TIMER_CB;
lp->tmp = MII_SR_ASSC;
anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
- if (!(anlpa & MII_ANLPA_RF) &&
+ if (!(anlpa & MII_ANLPA_RF) &&
(cap = anlpa & MII_ANLPA_TAF & ana)) {
if (cap & MII_ANA_100M) {
lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE);
next_tick = 3000;
}
break;
-
+
case AUI_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
break;
-
+
case BNC:
switch (lp->local_state) {
case 0:
next_tick = dc2114x_autoconf(dev);
}
break;
-
+
case 1:
if (!lp->tx_enable) {
if ((sts = ping_media(dev, 3000)) < 0) {
break;
}
break;
-
+
case BNC_SUSPECT:
next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
break;
-
+
case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
if (srom_map_media(dev) < 0) {
lp->tcount++;
next_tick = dc2114x_autoconf(dev);
} else if (((lp->media == _100Mb) && is_100_up(dev)) ||
(((lp->media == _10Mb) || (lp->media == TP) ||
- (lp->media == BNC) || (lp->media == AUI)) &&
+ (lp->media == BNC) || (lp->media == AUI)) &&
is_10_up(dev))) {
next_tick = dc2114x_autoconf(dev);
} else {
lp->media = INIT;
}
break;
-
+
case _10Mb:
next_tick = 3000;
if (!lp->tx_enable) {
lp->media = INIT;
break;
}
-
+
return next_tick;
}
struct de4x5_private *lp = netdev_priv(dev);
lp->fdx = 0;
- if (lp->infoblock_media == lp->media)
+ if (lp->infoblock_media == lp->media)
return 0;
switch(lp->infoblock_media) {
case SROM_100BASEFF:
if (!lp->params.fdx) return -1;
lp->fdx = TRUE;
- case SROM_100BASEF:
+ case SROM_100BASEF:
if (lp->params.fdx && !lp->fdx) return -1;
lp->media = _100Mb;
break;
lp->fdx = lp->params.fdx;
break;
- default:
- printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
+ default:
+ printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
lp->infoblock_media);
return -1;
break;
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
s32 sts, csr12;
-
+
if (lp->timeout < 0) {
lp->timeout = msec/100;
if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
/* clear all pending interrupts */
sts = inl(DE4X5_STS);
outl(sts, DE4X5_STS);
-
+
/* clear csr12 NRA and SRA bits */
if ((lp->chipset == DC21041) || lp->useSROM) {
csr12 = inl(DE4X5_SISR);
outl(csr12, DE4X5_SISR);
}
}
-
+
sts = inl(DE4X5_STS) & ~TIMER_CB;
-
+
if (!(sts & irqs) && --lp->timeout) {
sts = 100 | TIMER_CB;
} else {
lp->timeout = -1;
}
-
+
return sts;
}
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
int sisr;
-
+
if (lp->timeout < 0) {
lp->timeout = msec/100;
}
-
+
sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
if (sisr && --lp->timeout) {
} else {
lp->timeout = -1;
}
-
+
return sisr;
}
lp->timeout = msec/SAMPLE_INTERVAL;
}
}
-
+
if (lp->phy[lp->active].id || lp->useSROM) {
gep = is_100_up(dev) | is_spd_100(dev);
} else {
} else {
lp->timeout = -1;
}
-
+
return gep;
}
if (lp->timeout < 0) {
lp->timeout = 1;
}
-
+
if (lp->timeout--) {
return TIMER_CB;
} else {
lp->timeout = -1;
}
-
+
return 0;
}
struct de4x5_private *lp = netdev_priv(dev);
int test;
u_long iobase = dev->base_addr;
-
+
if (lp->timeout < 0) {
lp->timeout = msec/100;
}
-
+
if (pol) pol = ~0;
reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
test = (reg ^ pol) & mask;
-
+
if (test && --lp->timeout) {
reg = 100 | TIMER_CB;
} else {
lp->timeout = -1;
}
-
+
return reg;
}
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
int spd;
-
+
if (lp->useMII) {
spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
spd = ~(spd ^ lp->phy[lp->active].spd.value);
spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
(lp->linkOK & ~lp->asBitValid);
}
-
+
return spd;
}
{
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
-
+
if (lp->useMII) {
/* Double read for sticky bits & temporary drops */
mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
{
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
-
+
if (lp->useMII) {
/* Double read for sticky bits & temporary drops */
mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
{
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
-
+
if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII));
} else if ((lp->chipset & ~0x00ff) == DC2114x) {
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
int sisr;
-
+
if (lp->timeout < 0) {
lp->timeout = msec/100;
-
+
lp->tmp = lp->tx_new; /* Remember the ring position */
load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
lp->tx_new = (++lp->tx_new) % lp->txRingSize;
outl(POLL_DEMAND, DE4X5_TPD);
}
-
+
sisr = inl(DE4X5_SISR);
- if ((!(sisr & SISR_NCR)) &&
- ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
+ if ((!(sisr & SISR_NCR)) &&
+ ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
(--lp->timeout)) {
sisr = 100 | TIMER_CB;
} else {
- if ((!(sisr & SISR_NCR)) &&
+ if ((!(sisr & SISR_NCR)) &&
!(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
lp->timeout) {
sisr = 0;
}
lp->timeout = -1;
}
-
+
return sisr;
}
} else { /* Linear buffer */
memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
}
-
+
return p;
#endif
}
outl(lp->dma_rings, DE4X5_RRBA);
outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
DE4X5_TRBA);
-
+
lp->rx_new = lp->rx_old = 0;
lp->tx_new = lp->tx_old = 0;
-
+
for (i = 0; i < lp->rxRingSize; i++) {
lp->rx_ring[i].status = cpu_to_le32(R_OWN);
}
-
+
for (i = 0; i < lp->txRingSize; i++) {
lp->tx_ring[i].status = cpu_to_le32(0);
}
-
+
barrier();
lp->cache.save_cnt--;
START_DE4X5;
}
-
+
return;
}
gep_wr(lp->cache.gepc, dev);
gep_wr(lp->cache.gep, dev);
} else {
- reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
+ reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
lp->cache.csr15);
}
break;
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
s32 sts, ans;
-
+
if (lp->timeout < 0) {
lp->timeout = msec/100;
outl(irq_mask, DE4X5_IMR);
-
+
/* clear all pending interrupts */
sts = inl(DE4X5_STS);
outl(sts, DE4X5_STS);
}
-
+
ans = inl(DE4X5_SISR) & SISR_ANS;
sts = inl(DE4X5_STS) & ~TIMER_CB;
-
+
if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
sts = 100 | TIMER_CB;
} else {
lp->timeout = -1;
}
-
+
return sts;
}
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
s32 imr, sts;
-
+
if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
imr = 0;
UNMASK_IRQs;
outl(sts, DE4X5_STS);
ENABLE_IRQs;
}
-
+
return;
}
{
int i;
char *buf = frame;
-
+
for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
*buf++ = dev->dev_addr[i];
}
for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
*buf++ = dev->dev_addr[i];
}
-
+
*buf++ = 0; /* Packet length (2 bytes) */
*buf++ = 1;
-
+
return;
}
PCI_signature(char *name, struct de4x5_private *lp)
{
int i, status = 0, siglen = sizeof(de4x5_signatures)/sizeof(c_char *);
-
+
if (lp->chipset == DC21040) {
strcpy(name, "DE434/5");
return status;
} else if ((lp->chipset & ~0x00ff) == DC2114x) {
lp->useSROM = TRUE;
}
-
+
return status;
}
{
int i, j=0;
struct de4x5_private *lp = netdev_priv(dev);
-
+
if (lp->chipset == DC21040) {
if (lp->bus == EISA) {
enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
}
de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
}
-
+
return;
}
short sigLength=0;
s8 data;
int i, j;
-
+
dev.llsig.a = ETH_PROM_SIG;
dev.llsig.b = ETH_PROM_SIG;
sigLength = sizeof(u32) << 1;
-
+
for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
data = inb(aprom_addr);
if (dev.Sig[j] == data) { /* track signature */
}
}
}
-
+
return;
}
for (i=0,k=0,j=0;j<3;j++) {
k <<= 1;
if (k > 0xffff) k-=0xffff;
-
+
if (lp->bus == PCI) {
if (lp->chipset == DC21040) {
while ((tmp = inl(DE4X5_APROM)) < 0);
k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
dev->dev_addr[i++] = (u_char) tmp;
}
-
+
if (k > 0xffff) k-=0xffff;
}
if (k == 0xffff) k=0;
-
+
if (lp->bus == PCI) {
if (lp->chipset == DC21040) {
while ((tmp = inl(DE4X5_APROM)) < 0);
srom_repair(dev, broken);
#ifdef CONFIG_PPC_MULTIPLATFORM
- /*
+ /*
** If the address starts with 00 a0, we have to bit-reverse
** each byte of the address.
*/
for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
if ((tmp == 0) || (tmp == 0x5fa)) {
- if ((lp->chipset == last.chipset) &&
+ if ((lp->chipset == last.chipset) &&
(lp->bus_num == last.bus) && (lp->bus_num > 0)) {
for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
for (i=ETH_ALEN-1; i>2; --i) {
static int
an_exception(struct de4x5_private *lp)
{
- if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
+ if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
(*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
return -1;
}
srom_rd(u_long addr, u_char offset)
{
sendto_srom(SROM_RD | SROM_SR, addr);
-
+
srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
-
+
return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
}
sendto_srom(command, addr);
sendto_srom(command | DT_CLK, addr);
sendto_srom(command, addr);
-
+
return;
}
srom_latch(command, addr);
srom_latch(command, addr);
srom_latch((command & 0x0000ff00) | DT_CS, addr);
-
+
return;
}
srom_address(u_int command, u_long addr, u_char offset)
{
int i, a;
-
+
a = offset << 2;
for (i=0; i<6; i++, a <<= 1) {
srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
}
udelay(1);
-
+
i = (getfrom_srom(addr) >> 3) & 0x01;
-
+
return;
}
int i;
short word = 0;
s32 tmp;
-
+
for (i=0; i<16; i++) {
sendto_srom(command | DT_CLK, addr);
tmp = getfrom_srom(addr);
sendto_srom(command, addr);
-
+
word = (word << 1) | ((tmp >> 3) & 0x01);
}
-
+
sendto_srom(command & 0x0000ff00, addr);
-
+
return word;
}
srom_busy(u_int command, u_long addr)
{
sendto_srom((command & 0x0000ff00) | DT_CS, addr);
-
+
while (!((getfrom_srom(addr) >> 3) & 0x01)) {
mdelay(1);
}
-
+
sendto_srom(command & 0x0000ff00, addr);
-
+
return;
}
*/
{
outl(command, addr);
udelay(1);
-
+
return;
}
getfrom_srom(u_long addr)
{
s32 tmp;
-
+
tmp = inl(addr);
udelay(1);
-
+
return tmp;
}
}
if (i == INFOLEAF_SIZE) {
lp->useSROM = FALSE;
- printk("%s: Cannot find correct chipset for SROM decoding!\n",
+ printk("%s: Cannot find correct chipset for SROM decoding!\n",
dev->name);
return -ENXIO;
}
}
if (i == 0) {
lp->useSROM = FALSE;
- printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
+ printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
dev->name, lp->device);
return -ENXIO;
}
if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
if (lp->chipset != DC21140) RESET_SIA;
-
+
while (count--) {
- gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
+ gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
*p++ : TWIDDLE(w++)), dev);
mdelay(2); /* 2ms per action */
}
** unless I implement the DC21041 SROM functions. There's no need
** since the existing code will be satisfactory for all boards.
*/
-static int
+static int
dc21041_infoleaf(struct net_device *dev)
{
return DE4X5_AUTOSENSE_MS;
}
-static int
+static int
dc21140_infoleaf(struct net_device *dev)
{
struct de4x5_private *lp = netdev_priv(dev);
return next_tick & ~TIMER_CB;
}
-static int
+static int
dc21142_infoleaf(struct net_device *dev)
{
struct de4x5_private *lp = netdev_priv(dev);
return next_tick & ~TIMER_CB;
}
-static int
+static int
dc21143_infoleaf(struct net_device *dev)
{
struct de4x5_private *lp = netdev_priv(dev);
** The compact infoblock is only designed for DC21140[A] chips, so
** we'll reuse the dc21140m_autoconf function. Non MII media only.
*/
-static int
+static int
compact_infoblock(struct net_device *dev, u_char count, u_char *p)
{
struct de4x5_private *lp = netdev_priv(dev);
/*
** This block describes non MII media for the DC21140[A] only.
*/
-static int
+static int
type0_infoblock(struct net_device *dev, u_char count, u_char *p)
{
struct de4x5_private *lp = netdev_priv(dev);
/* These functions are under construction! */
-static int
+static int
type1_infoblock(struct net_device *dev, u_char count, u_char *p)
{
struct de4x5_private *lp = netdev_priv(dev);
return dc21140m_autoconf(dev);
}
-static int
+static int
type2_infoblock(struct net_device *dev, u_char count, u_char *p)
{
struct de4x5_private *lp = netdev_priv(dev);
return dc2114x_autoconf(dev);
}
-static int
+static int
type3_infoblock(struct net_device *dev, u_char count, u_char *p)
{
struct de4x5_private *lp = netdev_priv(dev);
return dc2114x_autoconf(dev);
}
-static int
+static int
type4_infoblock(struct net_device *dev, u_char count, u_char *p)
{
struct de4x5_private *lp = netdev_priv(dev);
** This block type provides information for resetting external devices
** (chips) through the General Purpose Register.
*/
-static int
+static int
type5_infoblock(struct net_device *dev, u_char count, u_char *p)
{
struct de4x5_private *lp = netdev_priv(dev);
mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
mii_address(phyreg, ioaddr); /* PHY Register to read */
mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
-
+
return mii_rdata(ioaddr); /* Read data */
}
mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
data = mii_swap(data, 16); /* Swap data bit ordering */
mii_wdata(data, 16, ioaddr); /* Write data */
-
+
return;
}
{
int i;
s32 tmp = 0;
-
+
for (i=0; i<16; i++) {
tmp <<= 1;
tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
}
-
+
return tmp;
}
mii_wdata(int data, int len, u_long ioaddr)
{
int i;
-
+
for (i=0; i<len; i++) {
sendto_mii(MII_MWR | MII_WR, data, ioaddr);
data >>= 1;
}
-
+
return;
}
mii_address(u_char addr, u_long ioaddr)
{
int i;
-
+
addr = mii_swap(addr, 5);
for (i=0; i<5; i++) {
sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
addr >>= 1;
}
-
+
return;
}
mii_ta(u_long rw, u_long ioaddr)
{
if (rw == MII_STWR) {
- sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
- sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
+ sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
+ sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
} else {
getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
}
-
+
return;
}
mii_swap(int data, int len)
{
int i, tmp = 0;
-
+
for (i=0; i<len; i++) {
tmp <<= 1;
tmp |= (data & 1);
data >>= 1;
}
-
+
return tmp;
}
sendto_mii(u32 command, int data, u_long ioaddr)
{
u32 j;
-
+
j = (data & 1) << 17;
outl(command | j, ioaddr);
udelay(1);
outl(command | MII_MDC | j, ioaddr);
udelay(1);
-
+
return;
}
udelay(1);
outl(command | MII_MDC, ioaddr);
udelay(1);
-
+
return ((inl(ioaddr) >> 19) & 1);
}
u_long iobase = dev->base_addr;
int i, j, k, n, limit=sizeof(phy_info)/sizeof(struct phy_table);
int id;
-
+
lp->active = 0;
lp->useMII = TRUE;
lp->phy[lp->active].addr = i;
if (i==0) n++; /* Count cycles */
while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
- id = mii_get_oui(i, DE4X5_MII);
+ id = mii_get_oui(i, DE4X5_MII);
if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
for (j=0; j<limit; j++) { /* Search PHY table */
if (id != phy_info[j].id) continue; /* ID match? */
for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/
mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
-
+
de4x5_dbg_mii(dev, k);
}
}
struct de4x5_private *lp = netdev_priv(dev);
int i;
char *pa = lp->setup_frame;
-
+
/* Initialise the setup frame */
if (mode == ALL) {
memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
}
-
+
if (lp->setup_f == HASH_PERF) {
for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
*(pa + i) = dev->dev_addr[i]; /* Host address */
if (i & 0x01) pa += 4;
}
}
-
+
return pa; /* Points to the next entry */
}
enable_ast(struct net_device *dev, u32 time_out)
{
timeout(dev, (void *)&de4x5_ast, (u_long)dev, time_out);
-
+
return;
}
disable_ast(struct net_device *dev)
{
struct de4x5_private *lp = netdev_priv(dev);
-
+
del_timer(&lp->timer);
-
+
return;
}
omr |= lp->infoblock_csr6;
if (omr & OMR_PS) omr |= OMR_HBD;
outl(omr, DE4X5_OMR);
-
+
/* Soft Reset */
RESET_DE4X5;
-
+
/* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
if (lp->chipset == DC21140) {
gep_wr(lp->cache.gepc, dev);
{
struct de4x5_private *lp = netdev_priv(dev);
int dt;
-
+
/* First, cancel any pending timer events */
del_timer(&lp->timer);
-
+
/* Convert msec to ticks */
dt = (msec * HZ) / 1000;
if (dt==0) dt=1;
-
+
/* Set up timer */
init_timer(&lp->timer);
lp->timer.expires = jiffies + dt;
lp->timer.function = fn;
lp->timer.data = data;
add_timer(&lp->timer);
-
+
return;
}
{
struct de4x5_private *lp = netdev_priv(dev);
int i;
-
+
if (de4x5_debug & DEBUG_OPEN) {
printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
printk("\tphysical address: ");
}
}
printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
- printk("Ring size: \nRX: %d\nTX: %d\n",
- (short)lp->rxRingSize,
- (short)lp->txRingSize);
+ printk("Ring size: \nRX: %d\nTX: %d\n",
+ (short)lp->rxRingSize,
+ (short)lp->txRingSize);
}
-
+
return;
}
{
struct de4x5_private *lp = netdev_priv(dev);
u_long iobase = dev->base_addr;
-
+
if (de4x5_debug & DEBUG_MII) {
printk("\nMII device address: %d\n", lp->phy[k].addr);
printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
}
}
-
+
return;
}
de4x5_dbg_media(struct net_device *dev)
{
struct de4x5_private *lp = netdev_priv(dev);
-
+
if (lp->media != lp->c_media) {
if (de4x5_debug & DEBUG_MEDIA) {
printk("%s: media is %s%s\n", dev->name,
(lp->media == NC ? "unconnected, link down or incompatible connection" :
(lp->media == TP ? "TP" :
(lp->media == ANS ? "TP/Nway" :
- (lp->media == BNC ? "BNC" :
- (lp->media == AUI ? "AUI" :
- (lp->media == BNC_AUI ? "BNC/AUI" :
- (lp->media == EXT_SIA ? "EXT SIA" :
+ (lp->media == BNC ? "BNC" :
+ (lp->media == AUI ? "AUI" :
+ (lp->media == BNC_AUI ? "BNC/AUI" :
+ (lp->media == EXT_SIA ? "EXT SIA" :
(lp->media == _100Mb ? "100Mb/s" :
(lp->media == _10Mb ? "10Mb/s" :
"???"
}
lp->c_media = lp->media;
}
-
+
return;
}
u32 lval[36];
} tmp;
u_long flags = 0;
-
+
switch(ioc->cmd) {
case DE4X5_GET_HWADDR: /* Get the hardware address */
ioc->len = ETH_ALEN;
}
build_setup_frame(dev, PHYS_ADDR_ONLY);
/* Set up the descriptor and give ownership to the card */
- load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
+ load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
SETUP_FRAME_LEN, (struct sk_buff *)1);
lp->tx_new = (++lp->tx_new) % lp->txRingSize;
outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
spin_lock_irqsave(&lp->lock, flags);
memcpy(&statbuf, &lp->pktStats, ioc->len);
spin_unlock_irqrestore(&lp->lock, flags);
- if (copy_to_user(ioc->data, &statbuf, ioc->len))
- return -EFAULT;
+ if (copy_to_user(ioc->data, &statbuf, ioc->len))
+ return -EFAULT;
break;
}
case DE4X5_CLR_STATS: /* Zero out the driver statistics */
ioc->len = j;
if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
break;
-
+
#define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
-/*
+/*
case DE4X5_DUMP:
j = 0;
tmp.addr[j++] = dev->irq;
tmp.addr[j++] = lp->rxRingSize;
tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
-
+
for (i=0;i<lp->rxRingSize-1;i++){
if (i < 3) {
tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
}
}
tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
-
+
for (i=0;i<lp->rxRingSize-1;i++){
if (i < 3) {
tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
}
}
tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
-
+
for (i=0;i<lp->rxRingSize;i++){
tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
}
for (i=0;i<lp->txRingSize;i++){
tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
}
-
+
tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
- tmp.lval[j>>2] = lp->chipset; j+=4;
+ tmp.lval[j>>2] = lp->chipset; j+=4;
if (lp->chipset == DC21140) {
tmp.lval[j>>2] = gep_rd(dev); j+=4;
} else {
tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
- tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
+ tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
}
- tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
+ tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
- tmp.lval[j>>2] = lp->active; j+=4;
+ tmp.lval[j>>2] = lp->active; j+=4;
tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
}
}
-
+
tmp.addr[j++] = lp->txRingSize;
tmp.addr[j++] = netif_queue_stopped(dev);
-
+
ioc->len = j;
if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
break;
default:
return -EOPNOTSUPP;
}
-
+
return status;
}
/*
- * xircom_cb: A driver for the (tulip-like) Xircom Cardbus ethernet cards
+ * xircom_cb: A driver for the (tulip-like) Xircom Cardbus ethernet cards
*
* This software is (C) by the respective authors, and licensed under the GPL
* License.
*
* Written by Arjan van de Ven for Red Hat, Inc.
- * Based on work by Jeff Garzik, Doug Ledford and Donald Becker
+ * Based on work by Jeff Garzik, Doug Ledford and Donald Becker
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
unsigned long io_port;
int open;
-
+
/* transmit_used is the rotating counter that indicates which transmit
descriptor has to be used next */
int transmit_used;
MODULE_DEVICE_TABLE(pci, xircom_pci_table);
static struct pci_driver xircom_ops = {
- .name = "xircom_cb",
- .id_table = xircom_pci_table,
- .probe = xircom_probe,
- .remove = xircom_remove,
+ .name = "xircom_cb",
+ .id_table = xircom_pci_table,
+ .probe = xircom_probe,
+ .remove = xircom_remove,
.suspend =NULL,
.resume =NULL
};
buffer[i2++]='1';
else
buffer[i2++]='0';
- if ((i&3)==0)
+ if ((i&3)==0)
buffer[i2++]=' ';
}
printk("%s\n",buffer);
/* xircom_probe is the code that gets called on device insertion.
it sets up the hardware and registers the device to the networklayer.
-
+
TODO: Send 1 or 2 "dummy" packets here as the card seems to discard the
first two packets that get send, and pump hates that.
-
+
*/
static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
unsigned long flags;
unsigned short tmp16;
enter("xircom_probe");
-
+
/* First do the PCI initialisation */
if (pci_enable_device(pdev))
/* disable all powermanagement */
pci_write_config_dword(pdev, PCI_POWERMGMT, 0x0000);
-
+
pci_set_master(pdev); /* Why isn't this done by pci_enable_device ?*/
- /* clear PCI status, if any */
- pci_read_config_word (pdev,PCI_STATUS, &tmp16);
+ /* clear PCI status, if any */
+ pci_read_config_word (pdev,PCI_STATUS, &tmp16);
pci_write_config_word (pdev, PCI_STATUS,tmp16);
-
+
pci_read_config_byte(pdev, PCI_REVISION_ID, &chip_rev);
-
+
if (!request_region(pci_resource_start(pdev, 0), 128, "xircom_cb")) {
printk(KERN_ERR "xircom_probe: failed to allocate io-region\n");
return -ENODEV;
}
- /*
+ /*
Before changing the hardware, allocate the memory.
This way, we can fail gracefully if not enough memory
- is available.
+ is available.
*/
dev = alloc_etherdev(sizeof(struct xircom_private));
if (!dev) {
goto device_fail;
}
private = netdev_priv(dev);
-
+
/* Allocate the send/receive buffers */
private->rx_buffer = pci_alloc_consistent(pdev,8192,&private->rx_dma_handle);
if (private->rx_buffer == NULL) {
printk(KERN_ERR "xircom_probe: no memory for rx buffer \n");
goto rx_buf_fail;
- }
+ }
private->tx_buffer = pci_alloc_consistent(pdev,8192,&private->tx_dma_handle);
if (private->tx_buffer == NULL) {
printk(KERN_ERR "xircom_probe: no memory for tx buffer \n");
spin_lock_init(&private->lock);
dev->irq = pdev->irq;
dev->base_addr = private->io_port;
-
+
initialize_card(private);
read_mac_address(private);
setup_descriptors(private);
-
+
dev->open = &xircom_open;
dev->hard_start_xmit = &xircom_start_xmit;
dev->stop = &xircom_close;
printk(KERN_ERR "xircom_probe: netdevice registration failed.\n");
goto reg_fail;
}
-
+
printk(KERN_INFO "%s: Xircom cardbus revision %i at irq %i \n", dev->name, chip_rev, pdev->irq);
/* start the transmitter to get a heartbeat */
/* TODO: send 2 dummy packets here */
transceiver_voodoo(private);
-
+
spin_lock_irqsave(&private->lock,flags);
activate_transmitter(private);
activate_receiver(private);
spin_unlock_irqrestore(&private->lock,flags);
-
+
trigger_receive(private);
-
+
leave("xircom_probe");
return 0;
free_netdev(dev);
pci_set_drvdata(pdev, NULL);
leave("xircom_remove");
-}
+}
static irqreturn_t xircom_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
spin_lock(&card->lock);
status = inl(card->io_port+CSR5);
-#ifdef DEBUG
+#ifdef DEBUG
print_binary(status);
printk("tx status 0x%08x 0x%08x \n",card->tx_buffer[0],card->tx_buffer[4]);
printk("rx status 0x%08x 0x%08x \n",card->rx_buffer[0],card->rx_buffer[4]);
-#endif
+#endif
/* Handle shared irq and hotplug */
if (status == 0 || status == 0xffffffff) {
spin_unlock(&card->lock);
netif_carrier_on(dev);
else
netif_carrier_off(dev);
-
+
}
- /* Clear all remaining interrupts */
+ /* Clear all remaining interrupts */
status |= 0xffffffff; /* FIXME: make this clear only the
real existing bits */
outl(status,card->io_port+CSR5);
-
- for (i=0;i<NUMDESCRIPTORS;i++)
+
+ for (i=0;i<NUMDESCRIPTORS;i++)
investigate_write_descriptor(dev,card,i,bufferoffsets[i]);
- for (i=0;i<NUMDESCRIPTORS;i++)
+ for (i=0;i<NUMDESCRIPTORS;i++)
investigate_read_descriptor(dev,card,i,bufferoffsets[i]);
-
+
spin_unlock(&card->lock);
leave("xircom_interrupt");
return IRQ_HANDLED;
int nextdescriptor;
int desc;
enter("xircom_start_xmit");
-
+
card = netdev_priv(dev);
spin_lock_irqsave(&card->lock,flags);
-
+
/* First see if we can free some descriptors */
- for (desc=0;desc<NUMDESCRIPTORS;desc++)
+ for (desc=0;desc<NUMDESCRIPTORS;desc++)
investigate_write_descriptor(dev,card,desc,bufferoffsets[desc]);
-
-
+
+
nextdescriptor = (card->transmit_used +1) % (NUMDESCRIPTORS);
desc = card->transmit_used;
-
+
/* only send the packet if the descriptor is free */
if (card->tx_buffer[4*desc]==0) {
/* Copy the packet data; zero the memory first as the card
sometimes sends more than you ask it to. */
-
+
memset(&card->tx_buffer[bufferoffsets[desc]/4],0,1536);
memcpy(&(card->tx_buffer[bufferoffsets[desc]/4]),skb->data,skb->len);
-
-
+
+
/* FIXME: The specification tells us that the length we send HAS to be a multiple of
4 bytes. */
-
+
card->tx_buffer[4*desc+1] = skb->len;
if (desc == NUMDESCRIPTORS-1)
card->tx_buffer[4*desc+1] |= (1<<25); /* bit 25: last descriptor of the ring */
card->tx_buffer[4*desc+1] |= 0xF0000000;
- /* 0xF0... means want interrupts*/
+ /* 0xF0... means want interrupts*/
card->tx_skb[desc] = skb;
-
+
wmb();
/* This gives the descriptor to the card */
card->tx_buffer[4*desc] = 0x80000000;
netif_stop_queue(dev);
}
card->transmit_used = nextdescriptor;
- leave("xircom-start_xmit - sent");
+ leave("xircom-start_xmit - sent");
spin_unlock_irqrestore(&card->lock,flags);
return 0;
}
-
+
/* Uh oh... no free descriptor... drop the packet */
netif_stop_queue(dev);
spin_unlock_irqrestore(&card->lock,flags);
trigger_transmit(card);
-
+
return -EIO;
}
leave("xircom_open - No IRQ");
return retval;
}
-
+
xircom_up(xp);
xp->open = 1;
leave("xircom_open");
{
struct xircom_private *card;
unsigned long flags;
-
+
enter("xircom_close");
card = netdev_priv(dev);
netif_stop_queue(dev); /* we don't want new packets */
-
+
spin_lock_irqsave(&card->lock,flags);
-
+
disable_all_interrupts(card);
-#if 0
+#if 0
/* We can enable this again once we send dummy packets on ifconfig ethX up */
deactivate_receiver(card);
deactivate_transmitter(card);
-#endif
+#endif
remove_descriptors(card);
-
+
spin_unlock_irqrestore(&card->lock,flags);
-
+
card->open = 0;
free_irq(dev->irq,dev);
-
+
leave("xircom_close");
-
+
return 0;
-
+
}
{
struct xircom_private *card = netdev_priv(dev);
return &card->stats;
-}
-
+}
+
#ifdef CONFIG_NET_POLL_CONTROLLER
static void xircom_poll_controller(struct net_device *dev)
outl(val, card->io_port + CSR0);
- val = 0; /* Value 0x00 is a safe and conservative value
+ val = 0; /* Value 0x00 is a safe and conservative value
for the PCI configuration settings */
outl(val, card->io_port + CSR0);
/* Rx Descr2: address of the buffer
we store the buffer at the 2nd half of the page */
-
+
address = (unsigned long) card->rx_dma_handle;
card->rx_buffer[i*4 + 2] = cpu_to_le32(address + bufferoffsets[i]);
/* Rx Desc3: address of 2nd buffer -> 0 */
card->rx_buffer[i*4 + 3] = 0;
}
-
+
wmb();
/* Write the receive descriptor ring address to the card */
address = (unsigned long) card->rx_dma_handle;
- val = cpu_to_le32(address);
+ val = cpu_to_le32(address);
outl(val, card->io_port + CSR3); /* Receive descr list address */
/* transmit descriptors */
memset(card->tx_buffer, 0, 128); /* clear the descriptors */
-
+
for (i=0;i<NUMDESCRIPTORS;i++ ) {
/* Tx Descr0: Empty, we own it, no errors -> 0x00000000 */
card->tx_buffer[i*4 + 0] = 0x00000000;
card->tx_buffer[i*4 + 1] = 1536;
if (i==NUMDESCRIPTORS-1)
card->tx_buffer[i*4 + 1] |= (1 << 25); /* bit 25 is "last descriptor" */
-
+
/* Tx Descr2: address of the buffer
we store the buffer at the 2nd half of the page */
address = (unsigned long) card->tx_dma_handle;
activate_receiver enables the receiver on the card.
Before being allowed to active the receiver, the receiver
must be completely de-activated. To achieve this,
-this code actually disables the receiver first; then it waits for the
+this code actually disables the receiver first; then it waits for the
receiver to become inactive, then it activates the receiver and then
it waits for the receiver to be active.
val = inl(card->io_port + CSR6); /* Operation mode */
-
+
/* If the "active" bit is set and the receiver is already
active, no need to do the expensive thing */
if ((val&2) && (receive_active(card)))
return;
-
-
+
+
val = val & ~2; /* disable the receiver */
outl(val, card->io_port + CSR6);
/*
deactivate_receiver disables the receiver on the card.
-To achieve this this code disables the receiver first;
+To achieve this this code disables the receiver first;
then it waits for the receiver to become inactive.
must be called with the lock held and interrupts disabled.
activate_transmitter enables the transmitter on the card.
Before being allowed to active the transmitter, the transmitter
must be completely de-activated. To achieve this,
-this code actually disables the transmitter first; then it waits for the
+this code actually disables the transmitter first; then it waits for the
transmitter to become inactive, then it activates the transmitter and then
it waits for the transmitter to be active again.
val = inl(card->io_port + CSR6); /* Operation mode */
/* If the "active" bit is set and the receiver is already
- active, no need to do the expensive thing */
+ active, no need to do the expensive thing */
if ((val&(1<<13)) && (transmit_active(card)))
return;
/*
deactivate_transmitter disables the transmitter on the card.
-To achieve this this code disables the transmitter first;
+To achieve this this code disables the transmitter first;
then it waits for the transmitter to become inactive.
must be called with the lock held and interrupts disabled.
{
unsigned int val;
enter("enable_all_interrupts");
-
+
val = 0; /* disable all interrupts */
outl(val, card->io_port + CSR7);
unsigned int val;
enter("enable_promisc");
- val = inl(card->io_port + CSR6);
- val = val | (1 << 6);
+ val = inl(card->io_port + CSR6);
+ val = val | (1 << 6);
outl(val, card->io_port + CSR6);
leave("enable_promisc");
-/*
+/*
link_status() checks the the links status and will return 0 for no link, 10 for 10mbit link and 100 for.. guess what.
Must be called in locked state with interrupts disabled
{
unsigned int val;
enter("link_status");
-
+
val = inb(card->io_port + CSR12);
-
+
if (!(val&(1<<2))) /* bit 2 is 0 for 10mbit link, 1 for not an 10mbit link */
return 10;
if (!(val&(1<<1))) /* bit 1 is 0 for 100mbit link, 1 for not an 100mbit link */
return 100;
-
- /* If we get here -> no link at all */
+
+ /* If we get here -> no link at all */
leave("link_status");
return 0;
/*
read_mac_address() reads the MAC address from the NIC and stores it in the "dev" structure.
-
+
This function will take the spinlock itself and can, as a result, not be called with the lock helt.
*/
static void read_mac_address(struct xircom_private *card)
int i;
enter("read_mac_address");
-
+
spin_lock_irqsave(&card->lock, flags);
outl(1 << 12, card->io_port + CSR9); /* enable boot rom access */
outl(i + 3, card->io_port + CSR10);
data_count = inl(card->io_port + CSR9) & 0xff;
if ((tuple == 0x22) && (data_id == 0x04) && (data_count == 0x06)) {
- /*
+ /*
* This is it. We have the data we want.
*/
for (j = 0; j < 6; j++) {
spin_lock_irqsave(&card->lock, flags);
outl(0x0008, card->io_port + CSR15);
- udelay(25);
+ udelay(25);
outl(0xa8050000, card->io_port + CSR15);
udelay(25);
outl(0xa00f0000, card->io_port + CSR15);
udelay(25);
-
+
spin_unlock_irqrestore(&card->lock, flags);
netif_start_queue(card->dev);
spin_lock_irqsave(&card->lock, flags);
-
+
enable_link_interrupt(card);
enable_transmit_interrupt(card);
enable_receive_interrupt(card);
enable_common_interrupts(card);
enable_promisc(card);
-
+
/* The card can have received packets already, read them away now */
- for (i=0;i<NUMDESCRIPTORS;i++)
+ for (i=0;i<NUMDESCRIPTORS;i++)
investigate_read_descriptor(card->dev,card,i,bufferoffsets[i]);
/* Bufferoffset is in BYTES */
static void investigate_read_descriptor(struct net_device *dev,struct xircom_private *card, int descnr, unsigned int bufferoffset)
{
- int status;
-
+ int status;
+
enter("investigate_read_descriptor");
status = card->rx_buffer[4*descnr];
-
+
if ((status > 0)) { /* packet received */
-
+
/* TODO: discard error packets */
-
+
short pkt_len = ((status >> 16) & 0x7ff) - 4; /* minus 4, we don't want the CRC */
struct sk_buff *skb;
dev->last_rx = jiffies;
card->stats.rx_packets++;
card->stats.rx_bytes += pkt_len;
-
+
out:
/* give the buffer back to the card */
card->rx_buffer[4*descnr] = 0x80000000;
int status;
enter("investigate_write_descriptor");
-
+
status = card->tx_buffer[4*descnr];
-#if 0
+#if 0
if (status & 0x8000) { /* Major error */
printk(KERN_ERR "Major transmit error status %x \n", status);
card->tx_buffer[4*descnr] = 0;
}
leave("investigate_write_descriptor");
-
+
}
static void __exit xircom_exit(void)
{
pci_unregister_driver(&xircom_ops);
-}
+}
-module_init(xircom_init)
+module_init(xircom_init)
module_exit(xircom_exit)