/*
* Translation table to map IntSrc into equivalent RDMISC2 event flag bits.
- * static const uint16_t EventBits[][4] =
+ * static const uint16_t event_bits[][4] =
* { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };
*/
{
struct s626_private *devpriv = dev->private;
uint16_t signmask;
- uint32_t WSImage;
+ uint32_t ws_image;
uint32_t val;
/*
*/
/* Choose DAC chip select to be asserted */
- WSImage = (chan & 2) ? WS1 : WS2;
+ ws_image = (chan & 2) ? WS1 : WS2;
/* Slot 2: Transmit high data byte to target DAC */
- writel(XSD2 | XFIFO_1 | WSImage, devpriv->mmio + VECTPORT(2));
+ writel(XSD2 | XFIFO_1 | ws_image, devpriv->mmio + VECTPORT(2));
/* Slot 3: Transmit low data byte to target DAC */
- writel(XSD2 | XFIFO_0 | WSImage, devpriv->mmio + VECTPORT(3));
+ writel(XSD2 | XFIFO_0 | ws_image, devpriv->mmio + VECTPORT(3));
/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
writel(XSD2 | XFIFO_3 | WS3, devpriv->mmio + VECTPORT(4));
/* Slot 5: running after writing target DAC's low data byte */
send_dac(dev, val);
}
-static void write_trim_dac(struct comedi_device *dev, uint8_t LogicalChan,
- uint8_t DacData)
+static void write_trim_dac(struct comedi_device *dev, uint8_t logical_chan,
+ uint8_t dac_data)
{
struct s626_private *devpriv = dev->private;
uint32_t chan;
* Save the new setpoint in case the application needs to read it back
* later.
*/
- devpriv->trim_setpoint[LogicalChan] = (uint8_t)DacData;
+ devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;
/* Map logical channel number to physical channel number. */
- chan = trimchan[LogicalChan];
+ chan = trimchan[logical_chan];
/*
* Set up TSL2 records for TrimDac write operation. All slots shift
* Address the DAC channel within the trimdac device.
* Include DAC setpoint data.
*/
- send_dac(dev, (chan << 8) | DacData);
+ send_dac(dev, (chan << 8) | dac_data);
}
static void load_trim_dacs(struct comedi_device *dev)
static void reset_adc(struct comedi_device *dev, uint8_t *ppl)
{
struct s626_private *devpriv = dev->private;
- uint32_t *pRPS;
- uint32_t JmpAdrs;
+ uint32_t *rps;
+ uint32_t jmp_adrs;
uint16_t i;
uint16_t n;
- uint32_t LocalPPL;
+ uint32_t local_ppl;
struct comedi_cmd *cmd = &dev->subdevices->async->cmd;
/* Stop RPS program in case it is currently running */
s626_mc_disable(dev, MC1_ERPS1, P_MC1);
/* Set starting logical address to write RPS commands. */
- pRPS = (uint32_t *)devpriv->rps_buf.logical_base;
+ rps = (uint32_t *)devpriv->rps_buf.logical_base;
/* Initialize RPS instruction pointer */
writel((uint32_t)devpriv->rps_buf.physical_base,
/* Construct RPS program in rps_buf DMA buffer */
if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
/* Wait for Start trigger. */
- *pRPS++ = RPS_PAUSE | RPS_SIGADC;
- *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
+ *rps++ = RPS_PAUSE | RPS_SIGADC;
+ *rps++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
/*
* the previously programmed value.
*/
/* Write DEBI Write command and address to shadow RAM. */
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
- *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
+ *rps++ = RPS_LDREG | (P_DEBICMD >> 2);
+ *rps++ = DEBI_CMD_WRWORD | LP_GSEL;
+ *rps++ = RPS_LDREG | (P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM: */
- *pRPS++ = GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
+ *rps++ = GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
+ *rps++ = RPS_CLRSIGNAL | RPS_DEBI;
/* Reset "shadow RAM uploaded" flag. */
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
- *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
+ *rps++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
+ *rps++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
/*
* Digitize all slots in the poll list. This is implemented as a
* (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
* +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
*/
- LocalPPL = (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
- GSEL_BIPOLAR10V);
+ local_ppl = (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
+ GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
/* Write DEBI command and address to shadow RAM. */
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
- *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
+ *rps++ = RPS_LDREG | (P_DEBICMD >> 2);
+ *rps++ = DEBI_CMD_WRWORD | LP_GSEL;
/* Write DEBI immediate data to shadow RAM. */
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
- *pRPS++ = LocalPPL;
+ *rps++ = RPS_LDREG | (P_DEBIAD >> 2);
+ *rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
+ *rps++ = RPS_CLRSIGNAL | RPS_DEBI;
/* Invoke shadow RAM upload. */
- *pRPS++ = RPS_UPLOAD | RPS_DEBI;
+ *rps++ = RPS_UPLOAD | RPS_DEBI;
/* Wait for shadow upload to finish. */
- *pRPS++ = RPS_PAUSE | RPS_DEBI;
+ *rps++ = RPS_PAUSE | RPS_DEBI;
/* Select ADC analog input channel. */
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
+ *rps++ = RPS_LDREG | (P_DEBICMD >> 2);
/* Write DEBI command and address to shadow RAM. */
- *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
+ *rps++ = DEBI_CMD_WRWORD | LP_ISEL;
+ *rps++ = RPS_LDREG | (P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM. */
- *pRPS++ = LocalPPL;
+ *rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
+ *rps++ = RPS_CLRSIGNAL | RPS_DEBI;
/* Invoke shadow RAM upload. */
- *pRPS++ = RPS_UPLOAD | RPS_DEBI;
+ *rps++ = RPS_UPLOAD | RPS_DEBI;
/* Wait for shadow upload to finish. */
- *pRPS++ = RPS_PAUSE | RPS_DEBI;
+ *rps++ = RPS_PAUSE | RPS_DEBI;
/*
* Delay at least 10 microseconds for analog input settling.
* possible with NOPs because each RPS_JUMP flushes the RPS'
* instruction prefetch pipeline.
*/
- JmpAdrs =
+ jmp_adrs =
(uint32_t)devpriv->rps_buf.physical_base +
- (uint32_t)((unsigned long)pRPS -
+ (uint32_t)((unsigned long)rps -
(unsigned long)devpriv->
rps_buf.logical_base);
for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
- JmpAdrs += 8; /* Repeat to implement time delay: */
- *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
- *pRPS++ = JmpAdrs;
+ jmp_adrs += 8; /* Repeat to implement time delay: */
+ *rps++ = RPS_JUMP; /* Jump to next RPS instruction. */
+ *rps++ = jmp_adrs;
}
if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
/* Wait for Start trigger. */
- *pRPS++ = RPS_PAUSE | RPS_SIGADC;
- *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
+ *rps++ = RPS_PAUSE | RPS_SIGADC;
+ *rps++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
/* Start ADC by pulsing GPIO1. */
/* Begin ADC Start pulse. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2);
- *pRPS++ = GPIO_BASE | GPIO1_LO;
- *pRPS++ = RPS_NOP;
+ *rps++ = RPS_LDREG | (P_GPIO >> 2);
+ *rps++ = GPIO_BASE | GPIO1_LO;
+ *rps++ = RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
/* End ADC Start pulse. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2);
- *pRPS++ = GPIO_BASE | GPIO1_HI;
+ *rps++ = RPS_LDREG | (P_GPIO >> 2);
+ *rps++ = GPIO_BASE | GPIO1_HI;
/*
* Wait for ADC to complete (GPIO2 is asserted high when ADC not
* busy) and for data from previous conversion to shift into FB
* BUFFER 1 register.
*/
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ *rps++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
- *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
- *pRPS++ = (uint32_t)devpriv->ana_buf.physical_base +
- (devpriv->adc_items << 2);
+ *rps++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
+ *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
+ (devpriv->adc_items << 2);
/*
* If this slot's EndOfPollList flag is set, all channels have
* is sometimes set to the previous conversion's data value.
*/
for (n = 0; n < (2 * RPSCLK_PER_US); n++)
- *pRPS++ = RPS_NOP;
+ *rps++ = RPS_NOP;
/*
* Start a dummy conversion to cause the data from the last
* conversion of interest to be shifted in.
*/
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
- *pRPS++ = GPIO_BASE | GPIO1_LO;
- *pRPS++ = RPS_NOP;
+ *rps++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
+ *rps++ = GPIO_BASE | GPIO1_LO;
+ *rps++ = RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
- *pRPS++ = GPIO_BASE | GPIO1_HI;
+ *rps++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
+ *rps++ = GPIO_BASE | GPIO1_HI;
/*
* Wait for the data from the last conversion of interest to arrive
* in FB BUFFER 1 register.
*/
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ *rps++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
- *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
- *pRPS++ = (uint32_t)devpriv->ana_buf.physical_base +
- (devpriv->adc_items << 2);
+ *rps++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
+ *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
+ (devpriv->adc_items << 2);
/* Indicate ADC scan loop is finished. */
/* Signal ReadADC() that scan is done. */
- /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC; */
+ /* *rps++= RPS_CLRSIGNAL | RPS_SIGADC; */
/* invoke interrupt */
if (devpriv->ai_cmd_running == 1)
- *pRPS++ = RPS_IRQ;
+ *rps++ = RPS_IRQ;
/* Restart RPS program at its beginning. */
- *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
- *pRPS++ = (uint32_t)devpriv->rps_buf.physical_base;
+ *rps++ = RPS_JUMP; /* Branch to start of RPS program. */
+ *rps++ = (uint32_t)devpriv->rps_buf.physical_base;
/* End of RPS program build */
}
struct s626_private *devpriv = dev->private;
uint16_t chan = CR_CHAN(insn->chanspec);
uint16_t range = CR_RANGE(insn->chanspec);
- uint16_t AdcSpec = 0;
- uint32_t GpioImage;
+ uint16_t adc_spec = 0;
+ uint32_t gpio_image;
int tmp;
int n;
* appropriate for register programming.
*/
if (range == 0)
- AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
+ adc_spec = (chan << 8) | (GSEL_BIPOLAR5V);
else
- AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
+ adc_spec = (chan << 8) | (GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
- debi_write(dev, LP_GSEL, AdcSpec); /* Set gain. */
+ debi_write(dev, LP_GSEL, adc_spec); /* Set gain. */
/* Select ADC analog input channel. */
- debi_write(dev, LP_ISEL, AdcSpec); /* Select channel. */
+ debi_write(dev, LP_ISEL, adc_spec); /* Select channel. */
for (n = 0; n < insn->n; n++) {
/* Delay 10 microseconds for analog input settling. */
udelay(10);
/* Start ADC by pulsing GPIO1 low */
- GpioImage = readl(devpriv->mmio + P_GPIO);
+ gpio_image = readl(devpriv->mmio + P_GPIO);
/* Assert ADC Start command */
- writel(GpioImage & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
/* and stretch it out */
- writel(GpioImage & ~GPIO1_HI, devpriv->mmio + P_GPIO);
- writel(GpioImage & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
/* Negate ADC Start command */
- writel(GpioImage | GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image | GPIO1_HI, devpriv->mmio + P_GPIO);
/*
* Wait for ADC to complete (GPIO2 is asserted high when
* Start a dummy conversion to cause the data from the
* previous conversion to be shifted in.
*/
- GpioImage = readl(devpriv->mmio + P_GPIO);
+ gpio_image = readl(devpriv->mmio + P_GPIO);
/* Assert ADC Start command */
- writel(GpioImage & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
/* and stretch it out */
- writel(GpioImage & ~GPIO1_HI, devpriv->mmio + P_GPIO);
- writel(GpioImage & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
/* Negate ADC Start command */
- writel(GpioImage | GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image | GPIO1_HI, devpriv->mmio + P_GPIO);
/* Wait for the data to arrive in FB BUFFER 1 register. */
static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
int tick)
{
- uint16_t Setup =
+ uint16_t setup =
(LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
(CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB);
- uint16_t valueSrclatch = LATCHSRC_A_INDXA;
+ uint16_t value_latchsrc = LATCHSRC_A_INDXA;
/* uint16_t enab = CLKENAB_ALWAYS; */
- k->set_mode(dev, k, Setup, FALSE);
+ k->set_mode(dev, k, setup, FALSE);
/* Set the preload register */
preload(dev, k, tick);
/* set interrupt on overflow */
k->set_int_src(dev, k, INTSRC_OVER);
- set_latch_source(dev, k, valueSrclatch);
+ set_latch_source(dev, k, value_latchsrc);
/* k->set_enable(dev, k, (uint16_t)(enab != 0)); */
}
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
- uint16_t Setup =
+ uint16_t setup =
(LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
(CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB);
- /* uint16_t DisableIntSrc = TRUE; */
+ /* uint16_t disable_int_src = TRUE; */
/* uint32_t Preloadvalue; //Counter initial value */
- uint16_t valueSrclatch = LATCHSRC_AB_READ;
+ uint16_t value_latchsrc = LATCHSRC_AB_READ;
uint16_t enab = CLKENAB_ALWAYS;
struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
- k->set_mode(dev, k, Setup, TRUE);
+ k->set_mode(dev, k, setup, TRUE);
preload(dev, k, data[0]);
k->pulse_index(dev, k);
- set_latch_source(dev, k, valueSrclatch);
+ set_latch_source(dev, k, value_latchsrc);
k->set_enable(dev, k, (enab != 0));
return insn->n;
return 1;
}
-static void write_misc2(struct comedi_device *dev, uint16_t NewImage)
+static void write_misc2(struct comedi_device *dev, uint16_t new_image)
{
debi_write(dev, LP_MISC1, MISC1_WENABLE); /* Enable writes to MISC2. */
- debi_write(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
+ debi_write(dev, LP_WRMISC2, new_image); /* Write new image to MISC2. */
debi_write(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2 */
}
* ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
*/
static void set_mode_a(struct comedi_device *dev, struct enc_private *k,
- uint16_t setup, uint16_t DisableIntSrc)
+ uint16_t setup, uint16_t disable_int_src)
{
struct s626_private *devpriv = dev->private;
uint16_t cra;
/* Clock enable is passed through. */
crb |= (setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB);
- /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
- if (!DisableIntSrc)
+ /* Force IntSrc to Disabled if disable_int_src is asserted. */
+ if (!disable_int_src)
cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
CRABIT_INTSRC_A));
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
* enable mask to indicate the counter interrupt is disabled.
*/
- if (DisableIntSrc)
+ if (disable_int_src)
devpriv->counter_int_enabs &= ~k->my_event_bits[3];
/*
}
static void set_mode_b(struct comedi_device *dev, struct enc_private *k,
- uint16_t setup, uint16_t DisableIntSrc)
+ uint16_t setup, uint16_t disable_int_src)
{
struct s626_private *devpriv = dev->private;
uint16_t cra;
/* Preload trigger source is passed through. */
crb |= (setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B);
- /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
- if (!DisableIntSrc)
+ /* Force IntSrc to Disabled if disable_int_src is asserted. */
+ if (!disable_int_src)
crb |= (setup & STDMSK_INTSRC) >>
(STDBIT_INTSRC - CRBBIT_INTSRC_B);
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
* enable mask to indicate the counter interrupt is disabled.
*/
- if (DisableIntSrc)
+ if (disable_int_src)
devpriv->counter_int_enabs &= ~k->my_event_bits[3];
/*
* 2=OverflowA (B counters only), 3=disabled.
*/
static void set_load_trig_a(struct comedi_device *dev, struct enc_private *k,
- uint16_t Trig)
+ uint16_t trig)
{
debi_replace(dev, k->my_cra, ~CRAMSK_LOADSRC_A,
- Trig << CRABIT_LOADSRC_A);
+ trig << CRABIT_LOADSRC_A);
}
static void set_load_trig_b(struct comedi_device *dev, struct enc_private *k,
- uint16_t Trig)
+ uint16_t trig)
{
debi_replace(dev, k->my_crb, ~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL),
- Trig << CRBBIT_LOADSRC_B);
+ trig << CRBBIT_LOADSRC_B);
}
static uint16_t get_load_trig_a(struct comedi_device *dev,
/*
* Return/set counter interrupt source and clear any captured
- * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
+ * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
* 2=IndexOnly, 3=IndexAndOverflow.
*/
static void set_int_src_a(struct comedi_device *dev, struct enc_private *k,
- uint16_t IntSource)
+ uint16_t int_source)
{
struct s626_private *devpriv = dev->private;
/* Program counter interrupt source. */
debi_replace(dev, k->my_cra, ~CRAMSK_INTSRC_A,
- IntSource << CRABIT_INTSRC_A);
+ int_source << CRABIT_INTSRC_A);
/* Update MISC2 interrupt enable mask. */
devpriv->counter_int_enabs =
(devpriv->counter_int_enabs & ~k->my_event_bits[3]) |
- k->my_event_bits[IntSource];
+ k->my_event_bits[int_source];
}
static void set_int_src_b(struct comedi_device *dev, struct enc_private *k,
- uint16_t IntSource)
+ uint16_t int_source)
{
struct s626_private *devpriv = dev->private;
uint16_t crb;
/* Program counter interrupt source. */
debi_write(dev, k->my_crb,
(uint16_t)((crb & ~CRBMSK_INTSRC_B) |
- (IntSource << CRBBIT_INTSRC_B)));
+ (int_source << CRBBIT_INTSRC_B)));
/* Update MISC2 interrupt enable mask. */
devpriv->counter_int_enabs =
(devpriv->counter_int_enabs & ~k->my_event_bits[3]) |
- k->my_event_bits[IntSource];
+ k->my_event_bits[int_source];
}
static uint16_t get_int_src_a(struct comedi_device *dev, struct enc_private *k)
{
int chan;
struct enc_private *k;
- uint16_t Setup =
+ uint16_t setup =
(LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
*/
for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
k = &encpriv[chan];
- k->set_mode(dev, k, Setup, TRUE);
+ k->set_mode(dev, k, setup, TRUE);
k->set_int_src(dev, k, 0);
k->reset_cap_flags(dev, k);
k->set_enable(dev, k, CLKENAB_ALWAYS);
static void s626_initialize(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
- dma_addr_t pPhysBuf;
+ dma_addr_t phys_buf;
uint16_t chan;
int i;
* a defined state after a PCI reset.
*/
{
- uint8_t PollList;
- uint16_t AdcData;
- uint16_t StartVal;
+ uint8_t poll_list;
+ uint16_t adc_data;
+ uint16_t start_val;
uint16_t index;
unsigned int data[16];
/* Create a simple polling list for analog input channel 0 */
- PollList = EOPL;
- reset_adc(dev, &PollList);
+ poll_list = EOPL;
+ reset_adc(dev, &poll_list);
/* Get initial ADC value */
s626_ai_rinsn(dev, dev->subdevices, NULL, data);
- StartVal = data[0];
+ start_val = data[0];
/*
* VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
*/
for (index = 0; index < 500; index++) {
s626_ai_rinsn(dev, dev->subdevices, NULL, data);
- AdcData = data[0];
- if (AdcData != StartVal)
+ adc_data = data[0];
+ if (adc_data != start_val)
break;
}
}
* single DWORD will be transferred each time a DMA transfer is
* enabled.
*/
- pPhysBuf = devpriv->ana_buf.physical_base +
+ phys_buf = devpriv->ana_buf.physical_base +
(DAC_WDMABUF_OS * sizeof(uint32_t));
- writel((uint32_t)pPhysBuf, devpriv->mmio + P_BASEA2_OUT);
- writel((uint32_t)(pPhysBuf + sizeof(uint32_t)),
+ writel((uint32_t)phys_buf, devpriv->mmio + P_BASEA2_OUT);
+ writel((uint32_t)(phys_buf + sizeof(uint32_t)),
devpriv->mmio + P_PROTA2_OUT);
/*