if (!policy->governor)
return -EINVAL;
- if (policy->governor->max_transition_latency &&
- policy->cpuinfo.transition_latency >
- policy->governor->max_transition_latency) {
+ /* Platform doesn't want dynamic frequency switching ? */
+ if (policy->governor->dynamic_switching &&
+ policy->cpuinfo.transition_latency == CPUFREQ_ETERNAL) {
struct cpufreq_governor *gov = cpufreq_fallback_governor();
if (gov) {
- pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
+ pr_warn("Transition latency set to CPUFREQ_ETERNAL, can't use %s governor. Fallback to %s governor\n",
policy->governor->name, gov->name);
policy->governor = gov;
} else {
#define CPUFREQ_DBS_GOVERNOR_INITIALIZER(_name_) \
{ \
.name = _name_, \
- .max_transition_latency = TRANSITION_LATENCY_LIMIT, \
+ .dynamic_switching = true, \
.owner = THIS_MODULE, \
.init = cpufreq_dbs_governor_init, \
.exit = cpufreq_dbs_governor_exit, \
* polling frequency is 1000 times the transition latency of the processor. The
* ondemand governor will work on any processor with transition latency <= 10ms,
* using appropriate sampling rate.
- *
- * For CPUs with transition latency > 10ms (mostly drivers with CPUFREQ_ETERNAL)
- * the ondemand governor will not work. All times here are in us (microseconds).
*/
#define LATENCY_MULTIPLIER (1000)
-#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
struct cpufreq_governor {
char name[CPUFREQ_NAME_LEN];
char *buf);
int (*store_setspeed) (struct cpufreq_policy *policy,
unsigned int freq);
- unsigned int max_transition_latency; /* HW must be able to switch to
- next freq faster than this value in nano secs or we
- will fallback to performance governor */
+ /* For governors which change frequency dynamically by themselves */
+ bool dynamic_switching;
struct list_head governor_list;
struct module *owner;
};