should be used. Of course, for this purpose the device's runtime PM has to be
enabled earlier by calling pm_runtime_enable().
-If the device bus type's or driver's ->probe() callback runs
-pm_runtime_suspend() or pm_runtime_idle() or their asynchronous counterparts,
-they will fail returning -EAGAIN, because the device's usage counter is
-incremented by the driver core before executing ->probe(). Still, it may be
-desirable to suspend the device as soon as ->probe() has finished, so the driver
-core uses pm_runtime_put_sync() to invoke the subsystem-level idle callback for
-the device at that time.
+It may be desirable to suspend the device once ->probe() has finished.
+Therefore the driver core uses the asyncronous pm_request_idle() to submit a
+request to execute the subsystem-level idle callback for the device at that
+time. A driver that makes use of the runtime autosuspend feature, may want to
+update the last busy mark before returning from ->probe().
Moreover, the driver core prevents runtime PM callbacks from racing with the bus
notifier callback in __device_release_driver(), which is necessary, because the
__pm_runtime_disable() with 'false' as the second argument for every device
right before executing the subsystem-level .suspend_late() callback for it.
- * During system resume it calls pm_runtime_enable() and pm_runtime_put_sync()
+ * During system resume it calls pm_runtime_enable() and pm_runtime_put()
for every device right after executing the subsystem-level .resume_early()
callback and right after executing the subsystem-level .resume() callback
for it, respectively.