return 1;
}
+static inline unsigned long task_util(struct task_struct *p)
+{
+ return p->se.avg.util_avg;
+}
+
+static unsigned int capacity_margin = 1280; /* ~20% margin */
+
+static inline bool __task_fits(struct task_struct *p, int cpu, int util)
+{
+ unsigned long capacity = capacity_of(cpu);
+
+ util += task_util(p);
+
+ return (capacity * 1024) > (util * capacity_margin);
+}
+
+static inline bool task_fits_max(struct task_struct *p, int cpu)
+{
+ unsigned long capacity = capacity_of(cpu);
+ unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity;
+
+ if (capacity == max_capacity)
+ return true;
+
+ if (capacity * capacity_margin > max_capacity * 1024)
+ return true;
+
+ return __task_fits(p, cpu, 0);
+}
+
+static int cpu_util(int cpu);
+
+static inline bool task_fits_spare(struct task_struct *p, int cpu)
+{
+ return __task_fits(p, cpu, cpu_util(cpu));
+}
+
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
+ struct sched_group *fit_group = NULL;
unsigned long min_load = ULONG_MAX, this_load = 0;
+ unsigned long fit_capacity = ULONG_MAX;
int load_idx = sd->forkexec_idx;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
load = target_load(i, load_idx);
avg_load += load;
+
+ /*
+ * Look for most energy-efficient group that can fit
+ * that can fit the task.
+ */
+ if (capacity_of(i) < fit_capacity && task_fits_spare(p, i)) {
+ fit_capacity = capacity_of(i);
+ fit_group = group;
+ }
}
/* Adjust by relative CPU capacity of the group */
}
} while (group = group->next, group != sd->groups);
+ if (fit_group)
+ return fit_group;
+
if (!idlest || 100*this_load < imbalance*min_load)
return NULL;
return idlest;
/* Traverse only the allowed CPUs */
for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
- if (idle_cpu(i)) {
+ if (task_fits_spare(p, i)) {
struct rq *rq = cpu_rq(i);
struct cpuidle_state *idle = idle_get_state(rq);
if (idle && idle->exit_latency < min_exit_latency) {
min_exit_latency = idle->exit_latency;
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
- } else if ((!idle || idle->exit_latency == min_exit_latency) &&
+ } else if (idle_cpu(i) &&
+ (!idle || idle->exit_latency == min_exit_latency) &&
rq->idle_stamp > latest_idle_timestamp) {
/*
* If equal or no active idle state, then
*/
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
+ } else if (shallowest_idle_cpu == -1) {
+ /*
+ * If we haven't found an idle CPU yet
+ * pick a non-idle one that can fit the task as
+ * fallback.
+ */
+ shallowest_idle_cpu = i;
}
} else if (shallowest_idle_cpu == -1) {
load = weighted_cpuload(i);
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE)
- want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
+ want_affine = !wake_wide(p) && task_fits_max(p, cpu) &&
+ cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
rcu_read_lock();
for_each_domain(cpu, tmp) {