/* Bits in the SLB VSID word */
#define SLB_VSID_SHIFT 12
+#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
#define SLB_VSID_SHIFT_1T 24
#define SLB_VSID_SSIZE_SHIFT 62
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
* because of the modulo operation in vsid scramble.
*/
+/*
+ * Max Va bits we support as of now is 68 bits. We want 19 bit
+ * context ID.
+ * Restrictions:
+ * GPU has restrictions of not able to access beyond 128TB
+ * (47 bit effective address). We also cannot do more than 20bit PID.
+ * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
+ * to 16 bits (ie, we can only have 2^16 pids at the same time).
+ */
+#define VA_BITS 68
#define CONTEXT_BITS 19
-#define ESID_BITS 18
-#define ESID_BITS_1T 6
+#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
+#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
* available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
* 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
- * context maps 2^46 bytes (64TB).
+ * context maps 2^49 bytes (512TB).
*
* We also need to avoid the last segment of the last context, because that
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
/* Would be nice to use KERNEL_REGION_ID here */
#define KERNEL_REGION_CONTEXT_OFFSET (0xc - 1)
+/*
+ * For platforms that support on 65bit VA we limit the context bits
+ */
+#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
+
/*
* This should be computed such that protovosid * vsid_mulitplier
- * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
+ * doesn't overflow 64 bits. The vsid_mutliplier should also be
+ * co-prime to vsid_modulus. We also need to make sure that number
+ * of bits in multiplied result (dividend) is less than twice the number of
+ * protovsid bits for our modulus optmization to work.
+ *
+ * The below table shows the current values used.
+ * |-------+------------+----------------------+------------+-------------------|
+ * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
+ * |-------+------------+----------------------+------------+-------------------|
+ * | 1T | 24 | 25 | 49 | 50 |
+ * |-------+------------+----------------------+------------+-------------------|
+ * | 256MB | 24 | 37 | 61 | 74 |
+ * |-------+------------+----------------------+------------+-------------------|
+ *
+ * |-------+------------+----------------------+------------+--------------------|
+ * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
+ * |-------+------------+----------------------+------------+--------------------|
+ * | 1T | 24 | 28 | 52 | 56 |
+ * |-------+------------+----------------------+------------+--------------------|
+ * | 256MB | 24 | 40 | 64 | 80 |
+ * |-------+------------+----------------------+------------+--------------------|
+ *
*/
#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
-#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
-#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
+#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
+#define VSID_BITS_65_256M (65 - SID_SHIFT)
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
-#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
-#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
-
+#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
+#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
-/*
- * This macro generates asm code to compute the VSID scramble
- * function. Used in slb_allocate() and do_stab_bolted. The function
- * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
- *
- * rt = register containing the proto-VSID and into which the
- * VSID will be stored
- * rx = scratch register (clobbered)
- *
- * - rt and rx must be different registers
- * - The answer will end up in the low VSID_BITS bits of rt. The higher
- * bits may contain other garbage, so you may need to mask the
- * result.
- */
-#define ASM_VSID_SCRAMBLE(rt, rx, size) \
- lis rx,VSID_MULTIPLIER_##size@h; \
- ori rx,rx,VSID_MULTIPLIER_##size@l; \
- mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
- \
- srdi rx,rt,VSID_BITS_##size; \
- clrldi rt,rt,(64-VSID_BITS_##size); \
- add rt,rt,rx; /* add high and low bits */ \
- /* NOTE: explanation based on VSID_BITS_##size = 36 \
- * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
- * 2^36-1+2^28-1. That in particular means that if r3 >= \
- * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
- * the bit clear, r3 already has the answer we want, if it \
- * doesn't, the answer is the low 36 bits of r3+1. So in all \
- * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
- addi rx,rt,1; \
- srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
- add rt,rt,rx
-
/* 4 bits per slice and we have one slice per 1TB */
#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
#define vsid_scramble(protovsid, size) \
((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
-#else /* 1 */
+/* simplified form avoiding mod operation */
#define vsid_scramble(protovsid, size) \
({ \
unsigned long x; \
x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
})
+
+#else /* 1 */
+static inline unsigned long vsid_scramble(unsigned long protovsid,
+ unsigned long vsid_multiplier, int vsid_bits)
+{
+ unsigned long vsid;
+ unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
+ /*
+ * We have same multipler for both 256 and 1T segements now
+ */
+ vsid = protovsid * vsid_multiplier;
+ vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
+ return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
+}
+
#endif /* 1 */
/* Returns the segment size indicator for a user address */
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
int ssize)
{
+ unsigned long va_bits = VA_BITS;
+ unsigned long vsid_bits;
+ unsigned long protovsid;
+
/*
* Bad address. We return VSID 0 for that
*/
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
return 0;
- if (ssize == MMU_SEGSIZE_256M)
- return vsid_scramble((context << ESID_BITS)
- | ((ea >> SID_SHIFT) & ESID_BITS_MASK), 256M);
- return vsid_scramble((context << ESID_BITS_1T)
- | ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK), 1T);
+ if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
+ va_bits = 65;
+
+ if (ssize == MMU_SEGSIZE_256M) {
+ vsid_bits = va_bits - SID_SHIFT;
+ protovsid = (context << ESID_BITS) |
+ ((ea >> SID_SHIFT) & ESID_BITS_MASK);
+ return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
+ }
+ /* 1T segment */
+ vsid_bits = va_bits - SID_SHIFT_1T;
+ protovsid = (context << ESID_BITS_1T) |
+ ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
+ return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
}
/*
* Individual features below.
*/
+/*
+ * Support for 68 bit VA space. We added that from ISA 2.05
+ */
+#define MMU_FTR_68_BIT_VA ASM_CONST(0x00002000)
/*
* Kernel read only support.
* We added the ppp value 0b110 in ISA 2.04.
#define MMU_FTRS_POWER4 MMU_FTRS_DEFAULT_HPTE_ARCH_V2
#define MMU_FTRS_PPC970 MMU_FTRS_POWER4 | MMU_FTR_TLBIE_CROP_VA
#define MMU_FTRS_POWER5 MMU_FTRS_POWER4 | MMU_FTR_LOCKLESS_TLBIE
-#define MMU_FTRS_POWER6 MMU_FTRS_POWER4 | MMU_FTR_LOCKLESS_TLBIE | MMU_FTR_KERNEL_RO
-#define MMU_FTRS_POWER7 MMU_FTRS_POWER4 | MMU_FTR_LOCKLESS_TLBIE | MMU_FTR_KERNEL_RO
-#define MMU_FTRS_POWER8 MMU_FTRS_POWER4 | MMU_FTR_LOCKLESS_TLBIE | MMU_FTR_KERNEL_RO
-#define MMU_FTRS_POWER9 MMU_FTRS_POWER4 | MMU_FTR_LOCKLESS_TLBIE | MMU_FTR_KERNEL_RO
+#define MMU_FTRS_POWER6 MMU_FTRS_POWER5 | MMU_FTR_KERNEL_RO | MMU_FTR_68_BIT_VA
+#define MMU_FTRS_POWER7 MMU_FTRS_POWER6
+#define MMU_FTRS_POWER8 MMU_FTRS_POWER6
+#define MMU_FTRS_POWER9 MMU_FTRS_POWER6
#define MMU_FTRS_CELL MMU_FTRS_DEFAULT_HPTE_ARCH_V2 | \
MMU_FTR_CI_LARGE_PAGE
#define MMU_FTRS_PA6T MMU_FTRS_DEFAULT_HPTE_ARCH_V2 | \
MMU_FTR_NO_SLBIE_B | MMU_FTR_16M_PAGE | MMU_FTR_TLBIEL |
MMU_FTR_LOCKLESS_TLBIE | MMU_FTR_CI_LARGE_PAGE |
MMU_FTR_1T_SEGMENT | MMU_FTR_TLBIE_CROP_VA |
- MMU_FTR_KERNEL_RO |
+ MMU_FTR_KERNEL_RO | MMU_FTR_68_BIT_VA |
#ifdef CONFIG_PPC_RADIX_MMU
MMU_FTR_TYPE_RADIX |
#endif
#define MMU_PAGE_16G 14
#define MMU_PAGE_64G 15
-/* N.B. we need to change the type of hpte_page_sizes if this gets to be > 16 */
+/*
+ * N.B. we need to change the type of hpte_page_sizes if this gets to be > 16
+ * Also we need to change he type of mm_context.low/high_slices_psize.
+ */
#define MMU_PAGE_COUNT 16
#ifdef CONFIG_PPC_BOOK3S_64
#include <asm/pgtable.h>
#include <asm/firmware.h>
+/*
+ * This macro generates asm code to compute the VSID scramble
+ * function. Used in slb_allocate() and do_stab_bolted. The function
+ * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
+ *
+ * rt = register containing the proto-VSID and into which the
+ * VSID will be stored
+ * rx = scratch register (clobbered)
+ * rf = flags
+ *
+ * - rt and rx must be different registers
+ * - The answer will end up in the low VSID_BITS bits of rt. The higher
+ * bits may contain other garbage, so you may need to mask the
+ * result.
+ */
+#define ASM_VSID_SCRAMBLE(rt, rx, rf, size) \
+ lis rx,VSID_MULTIPLIER_##size@h; \
+ ori rx,rx,VSID_MULTIPLIER_##size@l; \
+ mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
+/* \
+ * powermac get slb fault before feature fixup, so make 65 bit part \
+ * the default part of feature fixup \
+ */ \
+BEGIN_MMU_FTR_SECTION \
+ srdi rx,rt,VSID_BITS_65_##size; \
+ clrldi rt,rt,(64-VSID_BITS_65_##size); \
+ add rt,rt,rx; \
+ addi rx,rt,1; \
+ srdi rx,rx,VSID_BITS_65_##size; \
+ add rt,rt,rx; \
+ rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_65_##size)); \
+MMU_FTR_SECTION_ELSE \
+ srdi rx,rt,VSID_BITS_##size; \
+ clrldi rt,rt,(64-VSID_BITS_##size); \
+ add rt,rt,rx; /* add high and low bits */ \
+ addi rx,rt,1; \
+ srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
+ add rt,rt,rx; \
+ rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_##size)); \
+ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_68_BIT_VA)
+
+
/* void slb_allocate_realmode(unsigned long ea);
*
* Create an SLB entry for the given EA (user or kernel).
*/
.Lslb_finish_load:
rldimi r10,r9,ESID_BITS,0
- ASM_VSID_SCRAMBLE(r10,r9,256M)
- /*
- * bits above VSID_BITS_256M need to be ignored from r10
- * also combine VSID and flags
- */
- rldimi r11,r10,SLB_VSID_SHIFT,(64 - (SLB_VSID_SHIFT + VSID_BITS_256M))
-
+ ASM_VSID_SCRAMBLE(r10,r9,r11,256M)
/* r3 = EA, r11 = VSID data */
/*
* Find a slot, round robin. Previously we tried to find a
.Lslb_finish_load_1T:
srdi r10,r10,(SID_SHIFT_1T - SID_SHIFT) /* get 1T ESID */
rldimi r10,r9,ESID_BITS_1T,0
- ASM_VSID_SCRAMBLE(r10,r9,1T)
+ ASM_VSID_SCRAMBLE(r10,r9,r11,1T)
/*
* bits above VSID_BITS_1T need to be ignored from r10
* also combine VSID and flags
*/
- rldimi r11,r10,SLB_VSID_SHIFT_1T,(64 - (SLB_VSID_SHIFT_1T + VSID_BITS_1T))
+
li r10,MMU_SEGSIZE_1T
rldimi r11,r10,SLB_VSID_SSIZE_SHIFT,0 /* insert segment size */