tmp64 = (u64)a * (u64)b;
do_div(tmp64, c);
- return (u32) tmp64;
+ return (u32)tmp64;
}
struct stv_base {
u8 adr;
struct i2c_adapter *i2c;
- struct mutex i2c_lock;
- struct mutex reg_lock;
+ struct mutex i2c_lock; /* shared I2C access protect */
+ struct mutex reg_lock; /* shared register write protect */
int count;
u32 extclk;
if (i2c_transfer(adap, &msg, 1) != 1) {
dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
- adr, (data[0] << 8) | data[1],
- (len > 2 ? data[2] : 0));
+ adr, (data[0] << 8) | data[1],
+ (len > 2 ? data[2] : 0));
return -EREMOTEIO;
}
return 0;
}
static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
- u16 reg, u8 *val, int count)
+ u16 reg, u8 *val, int count)
{
u8 msg[2] = {reg >> 8, reg & 0xff};
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
if (i2c_transfer(adapter, msgs, 2) != 2) {
dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
- adr, reg);
+ adr, reg);
return -EREMOTEIO;
}
return 0;
static int read_reg(struct stv *state, u16 reg, u8 *val)
{
return i2c_read_regs16(state->base->i2c, state->base->adr,
- reg, val, 1);
+ reg, val, 1);
}
static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
- symbol_rate = ((u32) symb_freq3 << 24) | ((u32) symb_freq2 << 16) |
- ((u32) symb_freq1 << 8) | (u32) symb_freq0;
- timing_offset = ((u32) tim_offs2 << 16) | ((u32) tim_offs1 << 8) |
- (u32) tim_offs0;
+ symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
+ ((u32)symb_freq1 << 8) | (u32)symb_freq0;
+ timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
+ (u32)tim_offs0;
- if ((timing_offset & (1<<23)) != 0)
+ if ((timing_offset & (1 << 23)) != 0)
timing_offset |= 0xFF000000; /* Sign extent */
- symbol_rate = (u32) (((u64) symbol_rate * state->base->mclk) >> 32);
- timing_offset = (s32) (((s64) symbol_rate * (s64) timing_offset) >> 29);
+ symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
+ timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
*p_symbol_rate = symbol_rate + timing_offset;
if (state->receive_mode == RCVMODE_DVBS2) {
read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
- state->mod_cod = (enum fe_stv0910_mod_cod) ((tmp & 0x7c) >> 2);
+ state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
state->pilots = (tmp & 0x01) != 0;
- state->fectype = (enum dvbs2_fectype) ((tmp & 0x02) >> 1);
+ state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
} else if (state->receive_mode == RCVMODE_DVBS) {
read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
}
static s32 table_lookup(struct slookup *table,
- int table_size, u32 reg_value)
+ int table_size, u32 reg_value)
{
s32 value;
int imin = 0;
s32 reg_diff;
/* Assumes Table[0].RegValue > Table[imax].RegValue */
- if (reg_value >= table[0].reg_value)
+ if (reg_value >= table[0].reg_value) {
value = table[0].value;
- else if (reg_value <= table[imax].reg_value)
+ } else if (reg_value <= table[imax].reg_value) {
value = table[imax].value;
- else {
- while (imax-imin > 1) {
+ } else {
+ while ((imax - imin) > 1) {
i = (imax + imin) / 2;
if ((table[imin].reg_value >= reg_value) &&
- (reg_value >= table[i].reg_value))
+ (reg_value >= table[i].reg_value))
imax = i;
else
imin = i;
n_lookup = ARRAY_SIZE(s1_sn_lookup);
lookup = s1_sn_lookup;
}
- data = (((u16)data1) << 8) | (u16) data0;
+ data = (((u16)data1) << 8) | (u16)data0;
*signal_to_noise = table_lookup(lookup, n_lookup, data);
return 0;
}
static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
- u32 *berdenominator)
+ u32 *berdenominator)
{
u8 regs[3];
if ((regs[0] & 0x80) == 0) {
state->last_berdenominator = 1 << ((state->berscale * 2) +
10 + 3);
- state->last_bernumerator = ((u32) (regs[0] & 0x7F) << 16) |
- ((u32) regs[1] << 8) | regs[2];
+ state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
+ ((u32)regs[1] << 8) | regs[2];
if (state->last_bernumerator < 256 && state->berscale < 6) {
state->berscale += 1;
status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
}
static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
- u32 *berdenominator)
+ u32 *berdenominator)
{
u8 regs[3];
if ((regs[0] & 0x80) == 0) {
state->last_berdenominator =
- dvbs2_nbch((enum dvbs2_mod_cod) state->mod_cod,
+ dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
state->fectype) <<
(state->berscale * 2);
- state->last_bernumerator = (((u32) regs[0] & 0x7F) << 16) |
- ((u32) regs[1] << 8) | regs[2];
+ state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
+ ((u32)regs[1] << 8) | regs[2];
if (state->last_bernumerator < 256 && state->berscale < 6) {
state->berscale += 1;
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
}
static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
- u32 *berdenominator)
+ u32 *berdenominator)
{
*bernumerator = 0;
*berdenominator = 1;
return 0;
}
-
static int gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct stv *state = fe->demodulator_priv;
u8 bbheader[2];
read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
- bbheader, 2);
+ bbheader, 2);
state->feroll_off =
- (enum fe_stv0910_roll_off) (bbheader[0] & 0x03);
+ (enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
state->is_vcm = (bbheader[0] & 0x10) == 0;
state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
} else if (state->receive_mode == RCVMODE_DVBS) {
if (!get_signal_to_noise(state, &snrval)) {
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].uvalue = 100 * snrval; /* fix scale */
- } else
+ } else {
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+ }
return 0;
}
read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
- agc = (((u32) reg[0]) << 8) | reg[1];
+ agc = (((u32)reg[0]) << 8) | reg[1];
for (i = 0; i < 5; i += 1) {
read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
- power += (u32) reg[0] * (u32) reg[0]
- + (u32) reg[1] * (u32) reg[1];
+ power += (u32)reg[0] * (u32)reg[0]
+ + (u32)reg[1] * (u32)reg[1];
usleep_range(3000, 4000);
}
power /= 5;
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
/* read ber */
- if (*status & FE_HAS_VITERBI)
+ if (*status & FE_HAS_VITERBI) {
read_ber(fe);
- else {
+ } else {
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
return 0;
}
-
static int get_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_HW;
.diseqc_send_burst = send_burst,
};
-static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
+static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
{
struct stv_base *p;
struct stv *state;
struct stv_base *base;
- state = kzalloc(sizeof(struct stv), GFP_KERNEL);
+ state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
base->count++;
state->base = base;
} else {
- base = kzalloc(sizeof(struct stv_base), GFP_KERNEL);
+ base = kzalloc(sizeof(*base), GFP_KERNEL);
if (!base)
goto fail;
base->i2c = i2c;
state->base = base;
if (probe(state) < 0) {
dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
- cfg->adr, dev_name(&i2c->dev));
+ cfg->adr, dev_name(&i2c->dev));
kfree(base);
goto fail;
}
state->nr = nr;
dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
- state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
+ state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
stv0910_init_stats(state);