This patch is a preparation necessary to remove the BKL from do_new_mount().
It explicitly adds calls to lock_kernel()/unlock_kernel() around
get_sb/fill_super operations for filesystems that still uses the BKL.
I've read through all the code formerly covered by the BKL inside
do_kern_mount() and have satisfied myself that it doesn't need the BKL
any more.
do_kern_mount() is already called without the BKL when mounting the rootfs
and in nfsctl. do_kern_mount() calls vfs_kern_mount(), which is called
from various places without BKL: simple_pin_fs(), nfs_do_clone_mount()
through nfs_follow_mountpoint(), afs_mntpt_do_automount() through
afs_mntpt_follow_link(). Both later functions are actually the filesystems
follow_link inode operation. vfs_kern_mount() is calling the specified
get_sb function and lets the filesystem do its job by calling the given
fill_super function.
Therefore I think it is safe to push down the BKL from the VFS to the
low-level filesystems get_sb/fill_super operation.
[arnd: do not add the BKL to those file systems that already
don't use it elsewhere]
Signed-off-by: Jan Blunck <jblunck@infradead.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Christoph Hellwig <hch@infradead.org>
struct adfs_sb_info *asb;
struct inode *root;
+ lock_kernel();
+
sb->s_flags |= MS_NODIRATIME;
asb = kzalloc(sizeof(*asb), GFP_KERNEL);
- if (!asb)
+ if (!asb) {
+ unlock_kernel();
return -ENOMEM;
+ }
sb->s_fs_info = asb;
/* set default options */
goto error;
} else
sb->s_root->d_op = &adfs_dentry_operations;
+ unlock_kernel();
return 0;
error_free_bh:
error:
sb->s_fs_info = NULL;
kfree(asb);
+ unlock_kernel();
return -EINVAL;
}
u8 sig[4];
int ret = -EINVAL;
+ lock_kernel();
+
save_mount_options(sb, data);
pr_debug("AFFS: read_super(%s)\n",data ? (const char *)data : "no options");
sb->s_flags |= MS_NODIRATIME;
sbi = kzalloc(sizeof(struct affs_sb_info), GFP_KERNEL);
- if (!sbi)
+ if (!sbi) {
+ unlock_kernel();
return -ENOMEM;
+ }
sb->s_fs_info = sbi;
mutex_init(&sbi->s_bmlock);
spin_lock_init(&sbi->symlink_lock);
printk(KERN_ERR "AFFS: Error parsing options\n");
kfree(sbi->s_prefix);
kfree(sbi);
+ unlock_kernel();
return -EINVAL;
}
/* N.B. after this point s_prefix must be released */
sb->s_root->d_op = &affs_dentry_operations;
pr_debug("AFFS: s_flags=%lX\n",sb->s_flags);
+ unlock_kernel();
return 0;
/*
kfree(sbi->s_prefix);
kfree(sbi);
sb->s_fs_info = NULL;
+ unlock_kernel();
return ret;
}
struct inode *inode = NULL;
int ret;
+ lock_kernel();
+
_enter("");
/* allocate a superblock info record */
as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
if (!as) {
_leave(" = -ENOMEM");
+ unlock_kernel();
return -ENOMEM;
}
sb->s_root = root;
_leave(" = 0");
+ unlock_kernel();
return 0;
error_inode:
sb->s_fs_info = NULL;
_leave(" = %d", ret);
+ unlock_kernel();
return ret;
}
int ret = -EINVAL;
unsigned long i_sblock, i_eblock, i_eoff, s_size;
+ lock_kernel();
+
info = kzalloc(sizeof(*info), GFP_KERNEL);
- if (!info)
+ if (!info) {
+ unlock_kernel();
return -ENOMEM;
+ }
mutex_init(&info->bfs_lock);
s->s_fs_info = info;
brelse(bh);
brelse(sbh);
dump_imap("read_super", s);
+ unlock_kernel();
return 0;
out3:
mutex_destroy(&info->bfs_lock);
kfree(info);
s->s_fs_info = NULL;
+ unlock_kernel();
return ret;
}
int flags, const char *dev_name, void *data, struct vfsmount *mnt)
{
int rc;
- struct super_block *sb = sget(fs_type, NULL, set_anon_super, NULL);
+ struct super_block *sb;
+
+ lock_kernel();
+
+ sb = sget(fs_type, NULL, set_anon_super, NULL);
cFYI(1, "Devname: %s flags: %d ", dev_name, flags);
- if (IS_ERR(sb))
+ if (IS_ERR(sb)) {
+ unlock_kernel();
return PTR_ERR(sb);
+ }
sb->s_flags = flags;
rc = cifs_read_super(sb, data, dev_name, flags & MS_SILENT ? 1 : 0);
if (rc) {
deactivate_locked_super(sb);
+ unlock_kernel();
return rc;
}
sb->s_flags |= MS_ACTIVE;
simple_set_mnt(mnt, sb);
+ unlock_kernel();
return 0;
}
int error;
int idx;
+ lock_kernel();
+
idx = get_device_index((struct coda_mount_data *) data);
/* Ignore errors in data, for backward compatibility */
vc = &coda_comms[idx];
if (!vc->vc_inuse) {
printk("coda_read_super: No pseudo device\n");
+ unlock_kernel();
return -EINVAL;
}
if ( vc->vc_sb ) {
printk("coda_read_super: Device already mounted\n");
+ unlock_kernel();
return -EBUSY;
}
sb->s_root = d_alloc_root(root);
if (!sb->s_root)
goto error;
- return 0;
+ unlock_kernel();
+ return 0;
error:
bdi_destroy(&vc->bdi);
if (vc)
vc->vc_sb = NULL;
+ unlock_kernel();
return -EINVAL;
}
#include <linux/parser.h>
#include <linux/fs_stack.h>
#include <linux/slab.h>
+#include <linux/smp_lock.h> /* For lock_kernel() */
#include "ecryptfs_kernel.h"
/**
const char *err = "Getting sb failed";
int rc;
+ lock_kernel();
sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
if (!sbi) {
rc = -ENOMEM;
goto out;
}
simple_set_mnt(mnt, s);
+ unlock_kernel();
return 0;
out:
kmem_cache_free(ecryptfs_sb_info_cache, sbi);
}
printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
+ unlock_kernel();
return rc;
}
__le32 features;
int err;
+ lock_kernel();
+
+ err = -ENOMEM;
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
- return -ENOMEM;
+ goto failed_unlock;
sbi->s_blockgroup_lock =
kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
if (!sbi->s_blockgroup_lock) {
kfree(sbi);
- return -ENOMEM;
+ goto failed_unlock;
}
sb->s_fs_info = sbi;
sbi->s_sb_block = sb_block;
if (ext2_setup_super (sb, es, sb->s_flags & MS_RDONLY))
sb->s_flags |= MS_RDONLY;
ext2_write_super(sb);
+ unlock_kernel();
return 0;
cantfind_ext2:
sb->s_fs_info = NULL;
kfree(sbi->s_blockgroup_lock);
kfree(sbi);
+failed_unlock:
+ unlock_kernel();
return ret;
}
__le32 features;
int err;
+ lock_kernel();
+
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
- if (!sbi)
+ if (!sbi) {
+ unlock_kernel();
return -ENOMEM;
+ }
sbi->s_blockgroup_lock =
kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
if (!sbi->s_blockgroup_lock) {
kfree(sbi);
+ unlock_kernel();
return -ENOMEM;
}
sb->s_fs_info = sbi;
"writeback");
lock_kernel();
+ unlock_kernel();
return 0;
cantfind_ext3:
kfree(sbi->s_blockgroup_lock);
kfree(sbi);
lock_kernel();
+ unlock_kernel();
return ret;
}
int err;
unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
+ lock_kernel();
+
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
goto out_free_orig;
if (es->s_error_count)
mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
- lock_kernel();
kfree(orig_data);
return 0;
sb->s_fs_info = NULL;
kfree(sbi->s_blockgroup_lock);
kfree(sbi);
- lock_kernel();
+ kfree(orig_data);
+ return ret;
+
out_free_orig:
+ unlock_kernel();
kfree(orig_data);
return ret;
}
#include <linux/module.h>
#include <linux/time.h>
#include <linux/buffer_head.h>
+#include <linux/smp_lock.h> /* For lock_kernel() */
#include "fat.h"
/* Characters that are undesirable in an MS-DOS file name */
{
int res;
+ lock_kernel();
res = fat_fill_super(sb, data, silent, &msdos_dir_inode_operations, 0);
- if (res)
+ if (res) {
+ unlock_kernel();
return res;
+ }
sb->s_flags |= MS_NOATIME;
sb->s_root->d_op = &msdos_dentry_operations;
+ unlock_kernel();
return 0;
}
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/namei.h>
+#include <linux/smp_lock.h> /* For lock_kernel() */
#include "fat.h"
/*
{
int res;
+ lock_kernel();
res = fat_fill_super(sb, data, silent, &vfat_dir_inode_operations, 1);
- if (res)
+ if (res) {
+ unlock_kernel();
return res;
+ }
if (MSDOS_SB(sb)->options.name_check != 's')
sb->s_root->d_op = &vfat_ci_dentry_ops;
else
sb->s_root->d_op = &vfat_dentry_ops;
+ unlock_kernel();
return 0;
}
* The superblock on success, else %NULL.
*
* Locking:
- * We are under the bkl and @sbp->s_lock.
+ * We are under @sbp->s_lock.
*/
static int vxfs_fill_super(struct super_block *sbp, void *dp, int silent)
{
struct inode *root;
int ret = -EINVAL;
+ lock_kernel();
+
sbp->s_flags |= MS_RDONLY;
infp = kzalloc(sizeof(*infp), GFP_KERNEL);
if (!infp) {
printk(KERN_WARNING "vxfs: unable to allocate incore superblock\n");
+ unlock_kernel();
return -ENOMEM;
}
goto out_free_ilist;
}
+ unlock_kernel();
return 0;
out_free_ilist:
out:
brelse(bp);
kfree(infp);
+ unlock_kernel();
return ret;
}
struct inode *root_inode;
int res;
+ lock_kernel();
+
sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
- if (!sbi)
+ if (!sbi) {
+ unlock_kernel();
return -ENOMEM;
+ }
sb->s_fs_info = sbi;
INIT_HLIST_HEAD(&sbi->rsrc_inodes);
sb->s_root->d_op = &hfs_dentry_operations;
/* everything's okay */
+ unlock_kernel();
return 0;
bail_iput:
printk(KERN_ERR "hfs: get root inode failed.\n");
bail:
hfs_mdb_put(sb);
+ unlock_kernel();
return res;
}
int o;
+ lock_kernel();
+
save_mount_options(s, options);
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
- if (!sbi)
+ if (!sbi) {
+ unlock_kernel();
return -ENOMEM;
+ }
s->s_fs_info = sbi;
sbi->sb_bmp_dir = NULL;
root->i_blocks = 5;
hpfs_brelse4(&qbh);
}
+ unlock_kernel();
return 0;
bail4: brelse(bh2);
kfree(sbi->sb_cp_table);
s->s_fs_info = NULL;
kfree(sbi);
+ unlock_kernel();
return -EINVAL;
}
int table, error = -EINVAL;
unsigned int vol_desc_start;
+ lock_kernel();
+
save_mount_options(s, data);
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
- if (!sbi)
+ if (!sbi) {
+ unlock_kernel();
return -ENOMEM;
+ }
s->s_fs_info = sbi;
if (!parse_options((char *)data, &opt))
kfree(opt.iocharset);
+ unlock_kernel();
return 0;
/*
kfree(opt.iocharset);
kfree(sbi);
s->s_fs_info = NULL;
+ unlock_kernel();
return error;
}
static int jffs2_fill_super(struct super_block *sb, void *data, int silent)
{
struct jffs2_sb_info *c;
+ int ret;
+
+ lock_kernel();
D1(printk(KERN_DEBUG "jffs2_get_sb_mtd():"
" New superblock for device %d (\"%s\")\n",
sb->s_mtd->index, sb->s_mtd->name));
c = kzalloc(sizeof(*c), GFP_KERNEL);
- if (!c)
+ if (!c) {
+ unlock_kernel();
return -ENOMEM;
+ }
c->mtd = sb->s_mtd;
c->os_priv = sb;
#ifdef CONFIG_JFFS2_FS_POSIX_ACL
sb->s_flags |= MS_POSIXACL;
#endif
- return jffs2_do_fill_super(sb, data, silent);
+ ret = jffs2_do_fill_super(sb, data, silent);
+ unlock_kernel();
+ return ret;
}
static int jffs2_get_sb(struct file_system_type *fs_type,
s64 newLVSize = 0;
int flag, ret = -EINVAL;
+ lock_kernel();
+
jfs_info("In jfs_read_super: s_flags=0x%lx", sb->s_flags);
- if (!new_valid_dev(sb->s_bdev->bd_dev))
+ if (!new_valid_dev(sb->s_bdev->bd_dev)) {
+ unlock_kernel();
return -EOVERFLOW;
+ }
sbi = kzalloc(sizeof (struct jfs_sb_info), GFP_KERNEL);
- if (!sbi)
+ if (!sbi) {
+ unlock_kernel();
return -ENOMEM;
+ }
sb->s_fs_info = sbi;
sbi->sb = sb;
sbi->uid = sbi->gid = sbi->umask = -1;
sb->s_maxbytes = min(((u64) PAGE_CACHE_SIZE << 32) - 1, (u64)sb->s_maxbytes);
#endif
sb->s_time_gran = 1;
+ unlock_kernel();
return 0;
out_no_root:
unload_nls(sbi->nls_tab);
out_kfree:
kfree(sbi);
+ unlock_kernel();
return ret;
}
if (!(flags & MS_RDONLY))
mode |= FMODE_WRITE;
+ lock_kernel();
sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
- if (IS_ERR(sd.bdev))
+ if (IS_ERR(sd.bdev)) {
+ unlock_kernel();
return PTR_ERR(sd.bdev);
+ }
/*
* To get mount instance using sget() vfs-routine, NILFS needs
if (need_to_close)
close_bdev_exclusive(sd.bdev, mode);
simple_set_mnt(mnt, s);
+ unlock_kernel();
return 0;
failed_unlock:
failed:
close_bdev_exclusive(sd.bdev, mode);
+ unlock_kernel();
return err;
cancel_new:
* We must finish all post-cleaning before this call;
* put_nilfs() needs the block device.
*/
+ unlock_kernel();
return err;
}
struct inode *tmp_ino;
int blocksize, result;
+ lock_kernel();
+
/*
* We do a pretty difficult piece of bootstrap by reading the
* MFT (and other metadata) from disk into memory. We'll only
ntfs_error(sb, "Allocation of NTFS volume structure "
"failed. Aborting mount...");
lockdep_on();
+ unlock_kernel();
return -ENOMEM;
}
/* Initialize ntfs_volume structure. */
sb->s_export_op = &ntfs_export_ops;
lock_kernel();
lockdep_on();
+ unlock_kernel();
return 0;
}
ntfs_error(sb, "Failed to allocate root directory.");
kfree(vol);
ntfs_debug("Failed, returning -EINVAL.");
lockdep_on();
+ unlock_kernel();
return -EINVAL;
}
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/poll.h>
+#include <linux/smp_lock.h>
#include <asm/uaccess.h>
struct inode * inode;
struct dentry * root;
+ lock_kernel();
+
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = DLMFS_MAGIC;
sb->s_op = &dlmfs_ops;
inode = dlmfs_get_root_inode(sb);
- if (!inode)
+ if (!inode) {
+ unlock_kernel();
return -ENOMEM;
+ }
root = d_alloc_root(inode);
if (!root) {
iput(inode);
+ unlock_kernel();
return -ENOMEM;
}
sb->s_root = root;
+ unlock_kernel();
return 0;
}
char nodestr[8];
struct ocfs2_blockcheck_stats stats;
+ lock_kernel();
+
mlog_entry("%p, %p, %i", sb, data, silent);
if (!ocfs2_parse_options(sb, data, &parsed_options, 0)) {
atomic_set(&osb->vol_state, VOLUME_DISABLED);
wake_up(&osb->osb_mount_event);
mlog_exit(status);
+ unlock_kernel();
return status;
}
}
ocfs2_orphan_scan_start(osb);
mlog_exit(status);
+ unlock_kernel();
return status;
read_super_error:
}
mlog_exit(status);
+ unlock_kernel();
return status;
}
struct qnx4_sb_info *qs;
int ret = -EINVAL;
+ lock_kernel();
+
qs = kzalloc(sizeof(struct qnx4_sb_info), GFP_KERNEL);
- if (!qs)
+ if (!qs) {
+ unlock_kernel();
return -ENOMEM;
+ }
s->s_fs_info = qs;
sb_set_blocksize(s, QNX4_BLOCK_SIZE);
brelse(bh);
+ unlock_kernel();
return 0;
outi:
outnobh:
kfree(qs);
s->s_fs_info = NULL;
+ unlock_kernel();
return ret;
}
void *mem;
static int warn_count;
+ lock_kernel();
+
if (warn_count < 5) {
warn_count++;
printk(KERN_EMERG "smbfs is deprecated and will be removed"
smb_new_dentry(sb->s_root);
+ unlock_kernel();
return 0;
out_no_root:
out_no_data:
printk(KERN_ERR "smb_fill_super: missing data argument\n");
out_fail:
+ unlock_kernel();
return -EINVAL;
out_no_server:
printk(KERN_ERR "smb_fill_super: cannot allocate struct smb_sb_info\n");
+ unlock_kernel();
return -ENOMEM;
}
u64 lookup_table_start, xattr_id_table_start;
int err;
+ lock_kernel();
+
TRACE("Entered squashfs_fill_superblock\n");
sb->s_fs_info = kzalloc(sizeof(*msblk), GFP_KERNEL);
if (sb->s_fs_info == NULL) {
ERROR("Failed to allocate squashfs_sb_info\n");
+ unlock_kernel();
return -ENOMEM;
}
msblk = sb->s_fs_info;
TRACE("Leaving squashfs_fill_super\n");
kfree(sblk);
+ unlock_kernel();
return 0;
failed_mount:
kfree(sb->s_fs_info);
sb->s_fs_info = NULL;
kfree(sblk);
+ unlock_kernel();
return err;
failure:
kfree(sb->s_fs_info);
sb->s_fs_info = NULL;
+ unlock_kernel();
return -ENOMEM;
}
struct kernel_lb_addr rootdir, fileset;
struct udf_sb_info *sbi;
+ lock_kernel();
+
uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
uopt.uid = -1;
uopt.gid = -1;
uopt.dmode = UDF_INVALID_MODE;
sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
- if (!sbi)
+ if (!sbi) {
+ unlock_kernel();
return -ENOMEM;
+ }
sb->s_fs_info = sbi;
goto error_out;
}
sb->s_maxbytes = MAX_LFS_FILESIZE;
+ unlock_kernel();
return 0;
error_out:
kfree(sbi);
sb->s_fs_info = NULL;
+ unlock_kernel();
return -EINVAL;
}
unsigned maxsymlen;
int ret = -EINVAL;
+ lock_kernel();
+
uspi = NULL;
ubh = NULL;
flags = 0;
goto failed;
UFSD("EXIT\n");
+ unlock_kernel();
return 0;
dalloc_failed:
kfree(sbi);
sb->s_fs_info = NULL;
UFSD("EXIT (FAILED)\n");
+ unlock_kernel();
return ret;
failed_nomem:
UFSD("EXIT (NOMEM)\n");
+ unlock_kernel();
return -ENOMEM;
}
struct super_block *sb;
struct cgroupfs_root *new_root;
+ lock_kernel();
+
/* First find the desired set of subsystems */
mutex_lock(&cgroup_mutex);
ret = parse_cgroupfs_options(data, &opts);
simple_set_mnt(mnt, sb);
kfree(opts.release_agent);
kfree(opts.name);
+ unlock_kernel();
return 0;
drop_new_super:
out_err:
kfree(opts.release_agent);
kfree(opts.name);
+ unlock_kernel();
return ret;
}