#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
/* Write a time slot control record to TSL2. */
-#define S626_VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
+#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
static const struct comedi_lrange s626_range_table = {
2, {
struct s626_private *devpriv = dev->private;
/* Initiate upload of shadow RAM to DEBI control register */
- s626_mc_enable(dev, MC2_UPLD_DEBI, P_MC2);
+ s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
/*
* Wait for completion of upload from shadow RAM to
* DEBI control register.
*/
- while (!s626_mc_test(dev, MC2_UPLD_DEBI, P_MC2))
+ while (!s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
;
/* Wait until DEBI transfer is done */
- while (readl(devpriv->mmio + P_PSR) & PSR_DEBI_S)
+ while (readl(devpriv->mmio + S626_P_PSR) & S626_PSR_DEBI_S)
;
}
struct s626_private *devpriv = dev->private;
/* Set up DEBI control register value in shadow RAM */
- writel(DEBI_CMD_RDWORD | addr, devpriv->mmio + P_DEBICMD);
+ writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
/* Execute the DEBI transfer. */
s626_debi_transfer(dev);
- return readl(devpriv->mmio + P_DEBIAD);
+ return readl(devpriv->mmio + S626_P_DEBIAD);
}
/*
struct s626_private *devpriv = dev->private;
/* Set up DEBI control register value in shadow RAM */
- writel(DEBI_CMD_WRWORD | addr, devpriv->mmio + P_DEBICMD);
- writel(wdata, devpriv->mmio + P_DEBIAD);
+ writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
+ writel(wdata, devpriv->mmio + S626_P_DEBIAD);
/* Execute the DEBI transfer. */
s626_debi_transfer(dev);
unsigned int val;
addr &= 0xffff;
- writel(DEBI_CMD_RDWORD | addr, devpriv->mmio + P_DEBICMD);
+ writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
s626_debi_transfer(dev);
- writel(DEBI_CMD_WRWORD | addr, devpriv->mmio + P_DEBICMD);
- val = readl(devpriv->mmio + P_DEBIAD);
+ writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
+ val = readl(devpriv->mmio + S626_P_DEBIAD);
val &= mask;
val |= wdata;
- writel(val & 0xffff, devpriv->mmio + P_DEBIAD);
+ writel(val & 0xffff, devpriv->mmio + S626_P_DEBIAD);
s626_debi_transfer(dev);
}
unsigned int ctrl;
/* Write I2C command to I2C Transfer Control shadow register */
- writel(val, devpriv->mmio + P_I2CCTRL);
+ writel(val, devpriv->mmio + S626_P_I2CCTRL);
/*
* Upload I2C shadow registers into working registers and
* wait for upload confirmation.
*/
- s626_mc_enable(dev, MC2_UPLD_IIC, P_MC2);
- while (!s626_mc_test(dev, MC2_UPLD_IIC, P_MC2))
+ s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
+ while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
;
/* Wait until I2C bus transfer is finished or an error occurs */
do {
- ctrl = readl(devpriv->mmio + P_I2CCTRL);
- } while ((ctrl & (I2C_BUSY | I2C_ERR)) == I2C_BUSY);
+ ctrl = readl(devpriv->mmio + S626_P_I2CCTRL);
+ } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
/* Return non-zero if I2C error occurred */
- return ctrl & I2C_ERR;
+ return ctrl & S626_I2C_ERR;
}
/* Read uint8_t from EEPROM. */
* Byte1 = EEPROM internal target address.
* Byte0 = Not sent.
*/
- if (s626_i2c_handshake(dev, I2C_B2(I2C_ATTRSTART, devpriv->i2c_adrs) |
- I2C_B1(I2C_ATTRSTOP, addr) |
- I2C_B0(I2C_ATTRNOP, 0)))
+ if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
+ devpriv->i2c_adrs) |
+ S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
+ S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
/* Abort function and declare error if handshake failed. */
return 0;
* Byte1 receives uint8_t from EEPROM.
* Byte0 = Not sent.
*/
- if (s626_i2c_handshake(dev, I2C_B2(I2C_ATTRSTART,
+ if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
(devpriv->i2c_adrs | 1)) |
- I2C_B1(I2C_ATTRSTOP, 0) |
- I2C_B0(I2C_ATTRNOP, 0)))
+ S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
+ S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
/* Abort function and declare error if handshake failed. */
return 0;
- return (readl(devpriv->mmio + P_I2CCTRL) >> 16) & 0xff;
+ return (readl(devpriv->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
}
/* *********** DAC FUNCTIONS *********** */
* the trailing edge of WS1/WS3 (which turns off the signals), thus
* causing the signals to be inactive during the DAC write.
*/
- s626_debi_write(dev, LP_DACPOL, devpriv->dacpol);
+ s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
* then immediately terminate because the protection address is
* reached upon transfer of the first DWORD value.
*/
- s626_mc_enable(dev, MC1_A2OUT, P_MC1);
+ s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
/* While the DMA transfer is executing ... */
* other FIFO underflow/overflow flags). When set, this flag
* will indicate that we have emerged from slot 0.
*/
- writel(ISR_AFOU, devpriv->mmio + P_ISR);
+ writel(S626_ISR_AFOU, devpriv->mmio + S626_P_ISR);
/*
* Wait for the DMA transfer to finish so that there will be data
* Done by polling the DMAC enable flag; this flag is automatically
* cleared when the transfer has finished.
*/
- while (readl(devpriv->mmio + P_MC1) & MC1_A2OUT)
+ while (readl(devpriv->mmio + S626_P_MC1) & S626_MC1_A2OUT)
;
/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
* will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
* detection.
*/
- writel(XSD2 | RSD3 | SIB_A2, devpriv->mmio + S626_VECTPORT(0));
+ writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
+ devpriv->mmio + S626_VECTPORT(0));
/*
* Wait for slot 1 to execute to ensure that the Packet will be
* finished transferring the DAC's data DWORD from the output FIFO
* to the output buffer register.
*/
- while (!(readl(devpriv->mmio + P_SSR) & SSR_AF2_OUT))
+ while (!(readl(devpriv->mmio + S626_P_SSR) & S626_SSR_AF2_OUT))
;
/*
* stored in the last byte to be shifted out of the FIFO's DWORD
* buffer register.
*/
- writel(XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS,
+ writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
devpriv->mmio + S626_VECTPORT(0));
/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
* we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
* the TSL has not yet finished executing slot 5 ...
*/
- if (readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000) {
+ if (readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
/*
* The trap was set on time and we are still executing somewhere
* in slots 2-5, so we now wait for slot 0 to execute and trap
* from 0xFF to 0x00, which slot 0 causes to happen by shifting
* out/in on SD2 the 0x00 that is always referenced by slot 5.
*/
- while (readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000)
+ while (readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000)
;
}
/*
* In order to do this, we reprogram slot 0 so that it will shift in
* SD3, which is driven only by a pull-up resistor.
*/
- writel(RSD3 | SIB_A2 | EOS, devpriv->mmio + S626_VECTPORT(0));
+ writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
+ devpriv->mmio + S626_VECTPORT(0));
/*
* Wait for slot 0 to execute, at which time the TSL is setup for
* the next DAC write. This is detected when FB_BUFFER2 MSB changes
* from 0x00 to 0xFF.
*/
- while (!(readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000))
+ while (!(readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000))
;
}
*/
/* Choose DAC chip select to be asserted */
- ws_image = (chan & 2) ? WS1 : WS2;
+ ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
/* Slot 2: Transmit high data byte to target DAC */
- writel(XSD2 | XFIFO_1 | ws_image, devpriv->mmio + S626_VECTPORT(2));
+ writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
+ devpriv->mmio + S626_VECTPORT(2));
/* Slot 3: Transmit low data byte to target DAC */
- writel(XSD2 | XFIFO_0 | ws_image, devpriv->mmio + S626_VECTPORT(3));
+ writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
+ devpriv->mmio + S626_VECTPORT(3));
/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
- writel(XSD2 | XFIFO_3 | WS3, devpriv->mmio + S626_VECTPORT(4));
+ writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
+ devpriv->mmio + S626_VECTPORT(4));
/* Slot 5: running after writing target DAC's low data byte */
- writel(XSD2 | XFIFO_2 | WS3 | EOS, devpriv->mmio + S626_VECTPORT(5));
+ writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
+ devpriv->mmio + S626_VECTPORT(5));
/*
* Construct and transmit target DAC's serial packet:
*/
/* Slot 2: Send high uint8_t to target TrimDac */
- writel(XSD2 | XFIFO_1 | WS3, devpriv->mmio + S626_VECTPORT(2));
+ writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
+ devpriv->mmio + S626_VECTPORT(2));
/* Slot 3: Send low uint8_t to target TrimDac */
- writel(XSD2 | XFIFO_0 | WS3, devpriv->mmio + S626_VECTPORT(3));
+ writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
+ devpriv->mmio + S626_VECTPORT(3));
/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
- writel(XSD2 | XFIFO_3 | WS1, devpriv->mmio + S626_VECTPORT(4));
+ writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
+ devpriv->mmio + S626_VECTPORT(4));
/* Slot 5: Send NOP low uint8_t to DAC0 */
- writel(XSD2 | XFIFO_2 | WS1 | EOS, devpriv->mmio + S626_VECTPORT(5));
+ writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
+ devpriv->mmio + S626_VECTPORT(5));
/*
* Construct and transmit target DAC's serial packet:
static void s626_set_latch_source(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
- s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC),
- value << CRBBIT_LATCHSRC);
+ s626_debi_replace(dev, k->my_crb,
+ ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
+ value << S626_CRBBIT_LATCHSRC);
}
/*
static void s626_reset_cap_flags_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- s626_debi_replace(dev, k->my_crb, ~CRBMSK_INTCTRL,
- CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
+ s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
+ S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_A);
}
static void s626_reset_cap_flags_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- s626_debi_replace(dev, k->my_crb, ~CRBMSK_INTCTRL,
- CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
+ s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
+ S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_B);
}
/*
* Populate the standardized counter setup bit fields.
* Note: IndexSrc is restricted to ENC_X or IndxPol.
*/
- setup = (cra & STDMSK_LOADSRC) | /* LoadSrc = LoadSrcA. */
- ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) &
- STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcA. */
- ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) &
- STDMSK_INTSRC) | /* IntSrc = IntSrcA. */
- ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) &
- STDMSK_INDXSRC) | /* IndxSrc = IndxSrcA<1>. */
- ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) &
- STDMSK_INDXPOL) | /* IndxPol = IndxPolA. */
- ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) &
- STDMSK_CLKENAB); /* ClkEnab = ClkEnabA. */
+ setup = (cra & S626_STDMSK_LOADSRC) | /* LoadSrc = LoadSrcA. */
+ ((crb << (S626_STDBIT_LATCHSRC - S626_CRBBIT_LATCHSRC)) &
+ S626_STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcA. */
+ ((cra << (S626_STDBIT_INTSRC - S626_CRABIT_INTSRC_A)) &
+ S626_STDMSK_INTSRC) | /* IntSrc = IntSrcA. */
+ ((cra << (S626_STDBIT_INDXSRC - (S626_CRABIT_INDXSRC_A + 1))) &
+ S626_STDMSK_INDXSRC) | /* IndxSrc = IndxSrcA<1>. */
+ ((cra >> (S626_CRABIT_INDXPOL_A - S626_STDBIT_INDXPOL)) &
+ S626_STDMSK_INDXPOL) | /* IndxPol = IndxPolA. */
+ ((crb >> (S626_CRBBIT_CLKENAB_A - S626_STDBIT_CLKENAB)) &
+ S626_STDMSK_CLKENAB); /* ClkEnab = ClkEnabA. */
/* Adjust mode-dependent parameters. */
- if (cra & (2 << CRABIT_CLKSRC_A)) {
+ if (cra & (2 << S626_CRABIT_CLKSRC_A)) {
/* Timer mode (ClkSrcA<1> == 1): */
/* Indicate Timer mode. */
- setup |= CLKSRC_TIMER << STDBIT_CLKSRC;
+ setup |= S626_CLKSRC_TIMER << S626_STDBIT_CLKSRC;
/* Set ClkPol to indicate count direction (ClkSrcA<0>). */
- setup |= (cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) &
- STDMSK_CLKPOL;
+ setup |= (cra << (S626_STDBIT_CLKPOL - S626_CRABIT_CLKSRC_A)) &
+ S626_STDMSK_CLKPOL;
/* ClkMult must be 1x in Timer mode. */
- setup |= MULT_X1 << STDBIT_CLKMULT;
+ setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
} else {
/* Counter mode (ClkSrcA<1> == 0): */
/* Indicate Counter mode. */
- setup |= CLKSRC_COUNTER << STDBIT_CLKSRC;
+ setup |= S626_CLKSRC_COUNTER << S626_STDBIT_CLKSRC;
/* Pass through ClkPol. */
- setup |= (cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) &
- STDMSK_CLKPOL;
+ setup |= (cra >> (S626_CRABIT_CLKPOL_A - S626_STDBIT_CLKPOL)) &
+ S626_STDMSK_CLKPOL;
/* Force ClkMult to 1x if not legal, else pass through. */
- if ((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A))
- setup |= MULT_X1 << STDBIT_CLKMULT;
+ if ((cra & S626_CRAMSK_CLKMULT_A) ==
+ (S626_MULT_X0 << S626_CRABIT_CLKMULT_A))
+ setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
else
- setup |= (cra >> (CRABIT_CLKMULT_A - STDBIT_CLKMULT)) &
- STDMSK_CLKMULT;
+ setup |= (cra >> (S626_CRABIT_CLKMULT_A -
+ S626_STDBIT_CLKMULT)) &
+ S626_STDMSK_CLKMULT;
}
/* Return adjusted counter setup. */
* Populate the standardized counter setup bit fields.
* Note: IndexSrc is restricted to ENC_X or IndxPol.
*/
- setup = ((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) &
- STDMSK_INTSRC) | /* IntSrc = IntSrcB. */
- ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) &
- STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcB. */
- ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) &
- STDMSK_LOADSRC) | /* LoadSrc = LoadSrcB. */
- ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) &
- STDMSK_INDXPOL) | /* IndxPol = IndxPolB. */
- ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) &
- STDMSK_CLKENAB) | /* ClkEnab = ClkEnabB. */
- ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) &
- STDMSK_INDXSRC); /* IndxSrc = IndxSrcB<1>. */
+ setup = ((crb << (S626_STDBIT_INTSRC - S626_CRBBIT_INTSRC_B)) &
+ S626_STDMSK_INTSRC) | /* IntSrc = IntSrcB. */
+ ((crb << (S626_STDBIT_LATCHSRC - S626_CRBBIT_LATCHSRC)) &
+ S626_STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcB. */
+ ((crb << (S626_STDBIT_LOADSRC - S626_CRBBIT_LOADSRC_B)) &
+ S626_STDMSK_LOADSRC) | /* LoadSrc = LoadSrcB. */
+ ((crb << (S626_STDBIT_INDXPOL - S626_CRBBIT_INDXPOL_B)) &
+ S626_STDMSK_INDXPOL) | /* IndxPol = IndxPolB. */
+ ((crb >> (S626_CRBBIT_CLKENAB_B - S626_STDBIT_CLKENAB)) &
+ S626_STDMSK_CLKENAB) | /* ClkEnab = ClkEnabB. */
+ ((cra >> ((S626_CRABIT_INDXSRC_B + 1) - S626_STDBIT_INDXSRC)) &
+ S626_STDMSK_INDXSRC); /* IndxSrc = IndxSrcB<1>. */
/* Adjust mode-dependent parameters. */
- if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) {
- /* Extender mode (ClkMultB == MULT_X0): */
+ if ((crb & S626_CRBMSK_CLKMULT_B) ==
+ (S626_MULT_X0 << S626_CRBBIT_CLKMULT_B)) {
+ /* Extender mode (ClkMultB == S626_MULT_X0): */
/* Indicate Extender mode. */
- setup |= CLKSRC_EXTENDER << STDBIT_CLKSRC;
+ setup |= S626_CLKSRC_EXTENDER << S626_STDBIT_CLKSRC;
/* Indicate multiplier is 1x. */
- setup |= MULT_X1 << STDBIT_CLKMULT;
+ setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
/* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
- setup |= (cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) &
- STDMSK_CLKPOL;
- } else if (cra & (2 << CRABIT_CLKSRC_B)) {
+ setup |= (cra >> (S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL)) &
+ S626_STDMSK_CLKPOL;
+ } else if (cra & (2 << S626_CRABIT_CLKSRC_B)) {
/* Timer mode (ClkSrcB<1> == 1): */
/* Indicate Timer mode. */
- setup |= CLKSRC_TIMER << STDBIT_CLKSRC;
+ setup |= S626_CLKSRC_TIMER << S626_STDBIT_CLKSRC;
/* Indicate multiplier is 1x. */
- setup |= MULT_X1 << STDBIT_CLKMULT;
+ setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
/* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
- setup |= (cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) &
- STDMSK_CLKPOL;
+ setup |= (cra >> (S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL)) &
+ S626_STDMSK_CLKPOL;
} else {
/* If Counter mode (ClkSrcB<1> == 0): */
/* Indicate Timer mode. */
- setup |= CLKSRC_COUNTER << STDBIT_CLKSRC;
+ setup |= S626_CLKSRC_COUNTER << S626_STDBIT_CLKSRC;
/* Clock multiplier is passed through. */
- setup |= (crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) &
- STDMSK_CLKMULT;
+ setup |= (crb >> (S626_CRBBIT_CLKMULT_B -
+ S626_STDBIT_CLKMULT)) & S626_STDMSK_CLKMULT;
/* Clock polarity is passed through. */
- setup |= (crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) &
- STDMSK_CLKPOL;
+ setup |= (crb << (S626_STDBIT_CLKPOL - S626_CRBBIT_CLKPOL_B)) &
+ S626_STDMSK_CLKPOL;
}
/* Return adjusted counter setup. */
/* Initialize CRA and CRB images. */
/* Preload trigger is passed through. */
- cra = setup & CRAMSK_LOADSRC_A;
+ cra = setup & S626_CRAMSK_LOADSRC_A;
/* IndexSrc is restricted to ENC_X or IndxPol. */
- cra |= ((setup & STDMSK_INDXSRC) >>
- (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)));
+ cra |= (setup & S626_STDMSK_INDXSRC) >>
+ (S626_STDBIT_INDXSRC - (S626_CRABIT_INDXSRC_A + 1));
/* Reset any pending CounterA event captures. */
- crb = CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A;
+ crb = S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_A;
/* Clock enable is passed through. */
- crb |= (setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB);
+ crb |= (setup & S626_STDMSK_CLKENAB) <<
+ (S626_CRBBIT_CLKENAB_A - S626_STDBIT_CLKENAB);
/* Force IntSrc to Disabled if disable_int_src is asserted. */
if (!disable_int_src)
- cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
- CRABIT_INTSRC_A));
+ cra |= (setup & S626_STDMSK_INTSRC) >>
+ (S626_STDBIT_INTSRC - S626_CRABIT_INTSRC_A);
/* Populate all mode-dependent attributes of CRA & CRB images. */
- switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
- case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode
- * (Extender valid only for B counters). */
- /* Fall through to case CLKSRC_TIMER: */
- case CLKSRC_TIMER: /* Timer Mode: */
+ switch ((setup & S626_STDMSK_CLKSRC) >> S626_STDBIT_CLKSRC) {
+ case S626_CLKSRC_EXTENDER: /* Extender Mode: */
+ /* Force to Timer mode (Extender valid only for B counters). */
+ /* Fall through to case S626_CLKSRC_TIMER: */
+ case S626_CLKSRC_TIMER: /* Timer Mode: */
/* ClkSrcA<1> selects system clock */
- cra |= 2 << CRABIT_CLKSRC_A;
+ cra |= 2 << S626_CRABIT_CLKSRC_A;
/* Count direction (ClkSrcA<0>) obtained from ClkPol. */
- cra |= (setup & STDMSK_CLKPOL) >>
- (STDBIT_CLKPOL - CRABIT_CLKSRC_A);
+ cra |= (setup & S626_STDMSK_CLKPOL) >>
+ (S626_STDBIT_CLKPOL - S626_CRABIT_CLKSRC_A);
/* ClkPolA behaves as always-on clock enable. */
- cra |= 1 << CRABIT_CLKPOL_A;
+ cra |= 1 << S626_CRABIT_CLKPOL_A;
/* ClkMult must be 1x. */
- cra |= MULT_X1 << CRABIT_CLKMULT_A;
+ cra |= S626_MULT_X1 << S626_CRABIT_CLKMULT_A;
break;
default: /* Counter Mode: */
/* Select ENC_C and ENC_D as clock/direction inputs. */
- cra |= CLKSRC_COUNTER;
+ cra |= S626_CLKSRC_COUNTER;
/* Clock polarity is passed through. */
- cra |= (setup & STDMSK_CLKPOL) <<
- (CRABIT_CLKPOL_A - STDBIT_CLKPOL);
+ cra |= (setup & S626_STDMSK_CLKPOL) <<
+ (S626_CRABIT_CLKPOL_A - S626_STDBIT_CLKPOL);
/* Force multiplier to x1 if not legal, else pass through. */
- if ((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT))
- cra |= MULT_X1 << CRABIT_CLKMULT_A;
+ if ((setup & S626_STDMSK_CLKMULT) ==
+ (S626_MULT_X0 << S626_STDBIT_CLKMULT))
+ cra |= S626_MULT_X1 << S626_CRABIT_CLKMULT_A;
else
- cra |= (setup & STDMSK_CLKMULT) <<
- (CRABIT_CLKMULT_A - STDBIT_CLKMULT);
+ cra |= (setup & S626_STDMSK_CLKMULT) <<
+ (S626_CRABIT_CLKMULT_A - S626_STDBIT_CLKMULT);
break;
}
* Force positive index polarity if IndxSrc is software-driven only,
* otherwise pass it through.
*/
- if (~setup & STDMSK_INDXSRC)
- cra |= (setup & STDMSK_INDXPOL) <<
- (CRABIT_INDXPOL_A - STDBIT_INDXPOL);
+ if (~setup & S626_STDMSK_INDXSRC)
+ cra |= (setup & S626_STDMSK_INDXPOL) <<
+ (S626_CRABIT_INDXPOL_A - S626_STDBIT_INDXPOL);
/*
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
* While retaining CounterB and LatchSrc configurations, program the
* new counter operating mode.
*/
- s626_debi_replace(dev, k->my_cra, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B,
- cra);
- s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A),
- crb);
+ s626_debi_replace(dev, k->my_cra,
+ S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CLKSRC_B, cra);
+ s626_debi_replace(dev, k->my_crb,
+ ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
}
static void s626_set_mode_b(struct comedi_device *dev,
/* Initialize CRA and CRB images. */
/* IndexSrc field is restricted to ENC_X or IndxPol. */
- cra = (setup & STDMSK_INDXSRC) <<
- (CRABIT_INDXSRC_B + 1 - STDBIT_INDXSRC);
+ cra = (setup & S626_STDMSK_INDXSRC) <<
+ (S626_CRABIT_INDXSRC_B + 1 - S626_STDBIT_INDXSRC);
/* Reset event captures and disable interrupts. */
- crb = CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B;
+ crb = S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_B;
/* Clock enable is passed through. */
- crb |= (setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB);
+ crb |= (setup & S626_STDMSK_CLKENAB) <<
+ (S626_CRBBIT_CLKENAB_B - S626_STDBIT_CLKENAB);
/* Preload trigger source is passed through. */
- crb |= (setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B);
+ crb |= (setup & S626_STDMSK_LOADSRC) >>
+ (S626_STDBIT_LOADSRC - S626_CRBBIT_LOADSRC_B);
/* Force IntSrc to Disabled if disable_int_src is asserted. */
if (!disable_int_src)
- crb |= (setup & STDMSK_INTSRC) >>
- (STDBIT_INTSRC - CRBBIT_INTSRC_B);
+ crb |= (setup & S626_STDMSK_INTSRC) >>
+ (S626_STDBIT_INTSRC - S626_CRBBIT_INTSRC_B);
/* Populate all mode-dependent attributes of CRA & CRB images. */
- switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
- case CLKSRC_TIMER: /* Timer Mode: */
+ switch ((setup & S626_STDMSK_CLKSRC) >> S626_STDBIT_CLKSRC) {
+ case S626_CLKSRC_TIMER: /* Timer Mode: */
/* ClkSrcB<1> selects system clock */
- cra |= 2 << CRABIT_CLKSRC_B;
+ cra |= 2 << S626_CRABIT_CLKSRC_B;
/* with direction (ClkSrcB<0>) obtained from ClkPol. */
- cra |= (setup & STDMSK_CLKPOL) <<
- (CRABIT_CLKSRC_B - STDBIT_CLKPOL);
+ cra |= (setup & S626_STDMSK_CLKPOL) <<
+ (S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL);
/* ClkPolB behaves as always-on clock enable. */
- crb |= 1 << CRBBIT_CLKPOL_B;
+ crb |= 1 << S626_CRBBIT_CLKPOL_B;
/* ClkMultB must be 1x. */
- crb |= MULT_X1 << CRBBIT_CLKMULT_B;
+ crb |= S626_MULT_X1 << S626_CRBBIT_CLKMULT_B;
break;
- case CLKSRC_EXTENDER: /* Extender Mode: */
+ case S626_CLKSRC_EXTENDER: /* Extender Mode: */
/* ClkSrcB source is OverflowA (same as "timer") */
- cra |= 2 << CRABIT_CLKSRC_B;
+ cra |= 2 << S626_CRABIT_CLKSRC_B;
/* with direction obtained from ClkPol. */
- cra |= (setup & STDMSK_CLKPOL) <<
- (CRABIT_CLKSRC_B - STDBIT_CLKPOL);
+ cra |= (setup & S626_STDMSK_CLKPOL) <<
+ (S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL);
/* ClkPolB controls IndexB -- always set to active. */
- crb |= 1 << CRBBIT_CLKPOL_B;
+ crb |= 1 << S626_CRBBIT_CLKPOL_B;
/* ClkMultB selects OverflowA as the clock source. */
- crb |= MULT_X0 << CRBBIT_CLKMULT_B;
+ crb |= S626_MULT_X0 << S626_CRBBIT_CLKMULT_B;
break;
default: /* Counter Mode: */
/* Select ENC_C and ENC_D as clock/direction inputs. */
- cra |= CLKSRC_COUNTER << CRABIT_CLKSRC_B;
+ cra |= S626_CLKSRC_COUNTER << S626_CRABIT_CLKSRC_B;
/* ClkPol is passed through. */
- crb |= (setup & STDMSK_CLKPOL) >>
- (STDBIT_CLKPOL - CRBBIT_CLKPOL_B);
+ crb |= (setup & S626_STDMSK_CLKPOL) >>
+ (S626_STDBIT_CLKPOL - S626_CRBBIT_CLKPOL_B);
/* Force ClkMult to x1 if not legal, otherwise pass through. */
- if ((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT))
- crb |= MULT_X1 << CRBBIT_CLKMULT_B;
+ if ((setup & S626_STDMSK_CLKMULT) ==
+ (S626_MULT_X0 << S626_STDBIT_CLKMULT))
+ crb |= S626_MULT_X1 << S626_CRBBIT_CLKMULT_B;
else
- crb |= (setup & STDMSK_CLKMULT) <<
- (CRBBIT_CLKMULT_B - STDBIT_CLKMULT);
+ crb |= (setup & S626_STDMSK_CLKMULT) <<
+ (S626_CRBBIT_CLKMULT_B - S626_STDBIT_CLKMULT);
break;
}
* Force positive index polarity if IndxSrc is software-driven only,
* otherwise pass it through.
*/
- if (~setup & STDMSK_INDXSRC)
- crb |= (setup & STDMSK_INDXPOL) >>
- (STDBIT_INDXPOL - CRBBIT_INDXPOL_B);
+ if (~setup & S626_STDMSK_INDXSRC)
+ crb |= (setup & S626_STDMSK_INDXPOL) >>
+ (S626_STDBIT_INDXPOL - S626_CRBBIT_INDXPOL_B);
/*
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
* While retaining CounterA and LatchSrc configurations, program the
* new counter operating mode.
*/
- s626_debi_replace(dev, k->my_cra, ~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B),
- cra);
- s626_debi_replace(dev, k->my_crb, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC,
- crb);
+ s626_debi_replace(dev, k->my_cra,
+ ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CLKSRC_B), cra);
+ s626_debi_replace(dev, k->my_crb,
+ S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
}
/*
static void s626_set_enable_a(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t enab)
{
- s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A),
- enab << CRBBIT_CLKENAB_A);
+ s626_debi_replace(dev, k->my_crb,
+ ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A),
+ enab << S626_CRBBIT_CLKENAB_A);
}
static void s626_set_enable_b(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t enab)
{
- s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B),
- enab << CRBBIT_CLKENAB_B);
+ s626_debi_replace(dev, k->my_crb,
+ ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_B),
+ enab << S626_CRBBIT_CLKENAB_B);
}
static uint16_t s626_get_enable_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (s626_debi_read(dev, k->my_crb) >> CRBBIT_CLKENAB_A) & 1;
+ return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_CLKENAB_A) & 1;
}
static uint16_t s626_get_enable_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (s626_debi_read(dev, k->my_crb) >> CRBBIT_CLKENAB_B) & 1;
+ return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_CLKENAB_B) & 1;
}
#ifdef unused
static uint16_t s626_get_latch_source(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (s626_debi_read(dev, k->my_crb) >> CRBBIT_LATCHSRC) & 3;
+ return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_LATCHSRC) & 3;
}
#endif
static void s626_set_load_trig_a(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t trig)
{
- s626_debi_replace(dev, k->my_cra, ~CRAMSK_LOADSRC_A,
- trig << CRABIT_LOADSRC_A);
+ s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_LOADSRC_A,
+ trig << S626_CRABIT_LOADSRC_A);
}
static void s626_set_load_trig_b(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t trig)
{
- s626_debi_replace(dev, k->my_crb, ~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL),
- trig << CRBBIT_LOADSRC_B);
+ s626_debi_replace(dev, k->my_crb,
+ ~(S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL),
+ trig << S626_CRBBIT_LOADSRC_B);
}
static uint16_t s626_get_load_trig_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (s626_debi_read(dev, k->my_cra) >> CRABIT_LOADSRC_A) & 3;
+ return (s626_debi_read(dev, k->my_cra) >> S626_CRABIT_LOADSRC_A) & 3;
}
static uint16_t s626_get_load_trig_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (s626_debi_read(dev, k->my_crb) >> CRBBIT_LOADSRC_B) & 3;
+ return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_LOADSRC_B) & 3;
}
/*
struct s626_private *devpriv = dev->private;
/* Reset any pending counter overflow or index captures. */
- s626_debi_replace(dev, k->my_crb, ~CRBMSK_INTCTRL,
- CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
+ s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
+ S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_A);
/* Program counter interrupt source. */
- s626_debi_replace(dev, k->my_cra, ~CRAMSK_INTSRC_A,
- int_source << CRABIT_INTSRC_A);
+ s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_INTSRC_A,
+ int_source << S626_CRABIT_INTSRC_A);
/* Update MISC2 interrupt enable mask. */
devpriv->counter_int_enabs =
uint16_t crb;
/* Cache writeable CRB register image. */
- crb = s626_debi_read(dev, k->my_crb) & ~CRBMSK_INTCTRL;
+ crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
/* Reset any pending counter overflow or index captures. */
- s626_debi_write(dev, k->my_crb,
- (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
+ s626_debi_write(dev, k->my_crb, (crb | S626_CRBMSK_INTRESETCMD |
+ S626_CRBMSK_INTRESET_B));
/* Program counter interrupt source. */
s626_debi_write(dev, k->my_crb,
- ((crb & ~CRBMSK_INTSRC_B) |
- (int_source << CRBBIT_INTSRC_B)));
+ ((crb & ~S626_CRBMSK_INTSRC_B) |
+ (int_source << S626_CRBBIT_INTSRC_B)));
/* Update MISC2 interrupt enable mask. */
devpriv->counter_int_enabs =
static uint16_t s626_get_int_src_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (s626_debi_read(dev, k->my_cra) >> CRABIT_INTSRC_A) & 3;
+ return (s626_debi_read(dev, k->my_cra) >> S626_CRABIT_INTSRC_A) & 3;
}
static uint16_t s626_get_int_src_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (s626_debi_read(dev, k->my_crb) >> CRBBIT_INTSRC_B) & 3;
+ return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_INTSRC_B) & 3;
}
#ifdef unused
static void s626_set_clk_mult(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
- k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_CLKMULT) |
- (value << STDBIT_CLKMULT)), false);
+ k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKMULT) |
+ (value << S626_STDBIT_CLKMULT)), false);
}
static uint16_t s626_get_clk_mult(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (k->get_mode(dev, k) >> STDBIT_CLKMULT) & 3;
+ return (k->get_mode(dev, k) >> S626_STDBIT_CLKMULT) & 3;
}
/*
static void s626_set_clk_pol(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
- k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_CLKPOL) |
- (value << STDBIT_CLKPOL)), false);
+ k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKPOL) |
+ (value << S626_STDBIT_CLKPOL)), false);
}
static uint16_t s626_get_clk_pol(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (k->get_mode(dev, k) >> STDBIT_CLKPOL) & 1;
+ return (k->get_mode(dev, k) >> S626_STDBIT_CLKPOL) & 1;
}
/*
static void s626_set_clk_src(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
- k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_CLKSRC) |
- (value << STDBIT_CLKSRC)), false);
+ k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKSRC) |
+ (value << S626_STDBIT_CLKSRC)), false);
}
static uint16_t s626_get_clk_src(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (k->get_mode(dev, k) >> STDBIT_CLKSRC) & 3;
+ return (k->get_mode(dev, k) >> S626_STDBIT_CLKSRC) & 3;
}
/*
static void s626_set_index_pol(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
- k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_INDXPOL) |
- ((value != 0) << STDBIT_INDXPOL)), false);
+ k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXPOL) |
+ ((value != 0) << S626_STDBIT_INDXPOL)), false);
}
static uint16_t s626_get_index_pol(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (k->get_mode(dev, k) >> STDBIT_INDXPOL) & 1;
+ return (k->get_mode(dev, k) >> S626_STDBIT_INDXPOL) & 1;
}
/*
static void s626_set_index_src(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
- k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_INDXSRC) |
- ((value != 0) << STDBIT_INDXSRC)), false);
+ k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXSRC) |
+ ((value != 0) << S626_STDBIT_INDXSRC)), false);
}
static uint16_t s626_get_index_src(struct comedi_device *dev,
const struct s626_enc_info *k)
{
- return (k->get_mode(dev, k) >> STDBIT_INDXSRC) & 1;
+ return (k->get_mode(dev, k) >> S626_STDBIT_INDXSRC) & 1;
}
#endif
cra = s626_debi_read(dev, k->my_cra);
/* Pulse index. */
- s626_debi_write(dev, k->my_cra, (cra ^ CRAMSK_INDXPOL_A));
+ s626_debi_write(dev, k->my_cra, (cra ^ S626_CRAMSK_INDXPOL_A));
s626_debi_write(dev, k->my_cra, cra);
}
{
uint16_t crb;
- crb = s626_debi_read(dev, k->my_crb) & ~CRBMSK_INTCTRL;
+ crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
/* Pulse index. */
- s626_debi_write(dev, k->my_crb, (crb ^ CRBMSK_INDXPOL_B));
+ s626_debi_write(dev, k->my_crb, (crb ^ S626_CRBMSK_INDXPOL_B));
s626_debi_write(dev, k->my_crb, crb);
}
.set_load_trig = s626_set_load_trig_a,
.set_mode = s626_set_mode_a,
.reset_cap_flags = s626_reset_cap_flags_a,
- .my_cra = LP_CR0A,
- .my_crb = LP_CR0B,
- .my_latch_lsw = LP_CNTR0ALSW,
+ .my_cra = S626_LP_CR0A,
+ .my_crb = S626_LP_CR0B,
+ .my_latch_lsw = S626_LP_CNTR0ALSW,
.my_event_bits = S626_EVBITS(0),
}, {
.get_enable = s626_get_enable_a,
.set_load_trig = s626_set_load_trig_a,
.set_mode = s626_set_mode_a,
.reset_cap_flags = s626_reset_cap_flags_a,
- .my_cra = LP_CR1A,
- .my_crb = LP_CR1B,
- .my_latch_lsw = LP_CNTR1ALSW,
+ .my_cra = S626_LP_CR1A,
+ .my_crb = S626_LP_CR1B,
+ .my_latch_lsw = S626_LP_CNTR1ALSW,
.my_event_bits = S626_EVBITS(1),
}, {
.get_enable = s626_get_enable_a,
.set_load_trig = s626_set_load_trig_a,
.set_mode = s626_set_mode_a,
.reset_cap_flags = s626_reset_cap_flags_a,
- .my_cra = LP_CR2A,
- .my_crb = LP_CR2B,
- .my_latch_lsw = LP_CNTR2ALSW,
+ .my_cra = S626_LP_CR2A,
+ .my_crb = S626_LP_CR2B,
+ .my_latch_lsw = S626_LP_CNTR2ALSW,
.my_event_bits = S626_EVBITS(2),
}, {
.get_enable = s626_get_enable_b,
.set_load_trig = s626_set_load_trig_b,
.set_mode = s626_set_mode_b,
.reset_cap_flags = s626_reset_cap_flags_b,
- .my_cra = LP_CR0A,
- .my_crb = LP_CR0B,
- .my_latch_lsw = LP_CNTR0BLSW,
+ .my_cra = S626_LP_CR0A,
+ .my_crb = S626_LP_CR0B,
+ .my_latch_lsw = S626_LP_CNTR0BLSW,
.my_event_bits = S626_EVBITS(3),
}, {
.get_enable = s626_get_enable_b,
.set_load_trig = s626_set_load_trig_b,
.set_mode = s626_set_mode_b,
.reset_cap_flags = s626_reset_cap_flags_b,
- .my_cra = LP_CR1A,
- .my_crb = LP_CR1B,
- .my_latch_lsw = LP_CNTR1BLSW,
+ .my_cra = S626_LP_CR1A,
+ .my_crb = S626_LP_CR1B,
+ .my_latch_lsw = S626_LP_CNTR1BLSW,
.my_event_bits = S626_EVBITS(4),
}, {
.get_enable = s626_get_enable_b,
.set_load_trig = s626_set_load_trig_b,
.set_mode = s626_set_mode_b,
.reset_cap_flags = s626_reset_cap_flags_b,
- .my_cra = LP_CR2A,
- .my_crb = LP_CR2B,
- .my_latch_lsw = LP_CNTR2BLSW,
+ .my_cra = S626_LP_CR2A,
+ .my_crb = S626_LP_CR2B,
+ .my_latch_lsw = S626_LP_CNTR2BLSW,
.my_event_bits = S626_EVBITS(5),
},
};
unsigned int status;
/* set channel to capture positive edge */
- status = s626_debi_read(dev, LP_RDEDGSEL(group));
- s626_debi_write(dev, LP_WREDGSEL(group), mask | status);
+ status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
+ s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
/* enable interrupt on selected channel */
- status = s626_debi_read(dev, LP_RDINTSEL(group));
- s626_debi_write(dev, LP_WRINTSEL(group), mask | status);
+ status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
+ s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
/* enable edge capture write command */
- s626_debi_write(dev, LP_MISC1, MISC1_EDCAP);
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
/* enable edge capture on selected channel */
- status = s626_debi_read(dev, LP_RDCAPSEL(group));
- s626_debi_write(dev, LP_WRCAPSEL(group), mask | status);
+ status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
return 0;
}
unsigned int mask)
{
/* disable edge capture write command */
- s626_debi_write(dev, LP_MISC1, MISC1_NOEDCAP);
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* enable edge capture on selected channel */
- s626_debi_write(dev, LP_WRCAPSEL(group), mask);
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
return 0;
}
unsigned int group;
/* disable edge capture write command */
- s626_debi_write(dev, LP_MISC1, MISC1_NOEDCAP);
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* clear all dio pending events and interrupt */
for (group = 0; group < S626_DIO_BANKS; group++)
- s626_debi_write(dev, LP_WRCAPSEL(group), 0xffff);
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
return 0;
}
if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
cmd->start_src == TRIG_EXT) {
/* Start executing the RPS program */
- s626_mc_enable(dev, MC1_ERPS1, P_MC1);
+ s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
if (cmd->scan_begin_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
cmd->scan_begin_src == TRIG_EXT) {
/* Trigger ADC scan loop start */
- s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
if (cmd->convert_src == TRIG_EXT) {
devpriv->ai_convert_count = cmd->chanlist_len;
&s626_enc_chan_info[5];
devpriv->ai_convert_count = cmd->chanlist_len;
- k->set_enable(dev, k, CLKENAB_ALWAYS);
+ k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
}
}
if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
cmd->convert_src == TRIG_EXT) {
/* Trigger ADC scan loop start */
- s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count > 0)
for (group = 0; group < S626_DIO_BANKS; group++) {
irqbit = 0;
/* read interrupt type */
- irqbit = s626_debi_read(dev, LP_RDCAPFLG(group));
+ irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
/* check if interrupt is generated from dio channels */
if (irqbit) {
uint16_t irqbit;
/* read interrupt type */
- irqbit = s626_debi_read(dev, LP_RDMISC2);
+ irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
/* check interrupt on counters */
- if (irqbit & IRQ_COINT1A) {
+ if (irqbit & S626_IRQ_COINT1A) {
k = &s626_enc_chan_info[0];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
- if (irqbit & IRQ_COINT2A) {
+ if (irqbit & S626_IRQ_COINT2A) {
k = &s626_enc_chan_info[1];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
- if (irqbit & IRQ_COINT3A) {
+ if (irqbit & S626_IRQ_COINT3A) {
k = &s626_enc_chan_info[2];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
- if (irqbit & IRQ_COINT1B) {
+ if (irqbit & S626_IRQ_COINT1B) {
k = &s626_enc_chan_info[3];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
- if (irqbit & IRQ_COINT2B) {
+ if (irqbit & S626_IRQ_COINT2B) {
k = &s626_enc_chan_info[4];
/* clear interrupt capture flag */
if (devpriv->ai_convert_count > 0) {
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count == 0)
- k->set_enable(dev, k, CLKENAB_INDEX);
+ k->set_enable(dev, k, S626_CLKENAB_INDEX);
if (cmd->convert_src == TRIG_TIMER) {
/* Trigger ADC scan loop start */
- s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
+ s626_mc_enable(dev, S626_MC2_ADC_RPS,
+ S626_P_MC2);
}
}
}
- if (irqbit & IRQ_COINT3B) {
+ if (irqbit & S626_IRQ_COINT3B) {
k = &s626_enc_chan_info[5];
/* clear interrupt capture flag */
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Trigger ADC scan loop start */
- s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
}
if (cmd->convert_src == TRIG_TIMER) {
k = &s626_enc_chan_info[4];
devpriv->ai_convert_count = cmd->chanlist_len;
- k->set_enable(dev, k, CLKENAB_ALWAYS);
+ k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
}
}
}
devpriv->ai_cmd_running = 0;
/* Stop RPS program */
- s626_mc_disable(dev, MC1_ERPS1, P_MC1);
+ s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* send end of acquisition */
async->events |= COMEDI_CB_EOA;
spin_lock_irqsave(&dev->spinlock, flags);
/* save interrupt enable register state */
- irqstatus = readl(devpriv->mmio + P_IER);
+ irqstatus = readl(devpriv->mmio + S626_P_IER);
/* read interrupt type */
- irqtype = readl(devpriv->mmio + P_ISR);
+ irqtype = readl(devpriv->mmio + S626_P_ISR);
/* disable master interrupt */
- writel(0, devpriv->mmio + P_IER);
+ writel(0, devpriv->mmio + S626_P_IER);
/* clear interrupt */
- writel(irqtype, devpriv->mmio + P_ISR);
+ writel(irqtype, devpriv->mmio + S626_P_ISR);
switch (irqtype) {
- case IRQ_RPS1: /* end_of_scan occurs */
+ case S626_IRQ_RPS1: /* end_of_scan occurs */
if (s626_handle_eos_interrupt(dev))
irqstatus = 0;
break;
- case IRQ_GPIO3: /* check dio and counter interrupt */
+ case S626_IRQ_GPIO3: /* check dio and counter interrupt */
/* s626_dio_clear_irq(dev); */
s626_check_dio_interrupts(dev);
s626_check_counter_interrupts(dev);
}
/* enable interrupt */
- writel(irqstatus, devpriv->mmio + P_IER);
+ writel(irqstatus, devpriv->mmio + S626_P_IER);
spin_unlock_irqrestore(&dev->spinlock, flags);
return IRQ_HANDLED;
struct comedi_cmd *cmd = &dev->subdevices->async->cmd;
/* Stop RPS program in case it is currently running */
- s626_mc_disable(dev, MC1_ERPS1, P_MC1);
+ s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* Set starting logical address to write RPS commands. */
rps = (uint32_t *)devpriv->rps_buf.logical_base;
/* Initialize RPS instruction pointer */
writel((uint32_t)devpriv->rps_buf.physical_base,
- devpriv->mmio + P_RPSADDR1);
+ devpriv->mmio + S626_P_RPSADDR1);
/* Construct RPS program in rps_buf DMA buffer */
if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
/* Wait for Start trigger. */
- *rps++ = RPS_PAUSE | RPS_SIGADC;
- *rps++ = RPS_CLRSIGNAL | RPS_SIGADC;
+ *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
}
/*
* the previously programmed value.
*/
/* Write DEBI Write command and address to shadow RAM. */
- *rps++ = RPS_LDREG | (P_DEBICMD >> 2);
- *rps++ = DEBI_CMD_WRWORD | LP_GSEL;
- *rps++ = RPS_LDREG | (P_DEBIAD >> 2);
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
+ *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM: */
- *rps++ = GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
- *rps++ = RPS_CLRSIGNAL | RPS_DEBI;
+ *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Reset "shadow RAM uploaded" flag. */
- *rps++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
- *rps++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
+ /* Invoke shadow RAM upload. */
+ *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
+ /* Wait for shadow upload to finish. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/*
* Digitize all slots in the poll list. This is implemented as a
* for loop to limit the slot count to 16 in case the application
- * forgot to set the EOPL flag in the final slot.
+ * forgot to set the S626_EOPL flag in the final slot.
*/
for (devpriv->adc_items = 0; devpriv->adc_items < 16;
devpriv->adc_items++) {
* (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
* +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
*/
- local_ppl = (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
- GSEL_BIPOLAR10V);
+ local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
+ S626_GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
/* Write DEBI command and address to shadow RAM. */
- *rps++ = RPS_LDREG | (P_DEBICMD >> 2);
- *rps++ = DEBI_CMD_WRWORD | LP_GSEL;
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
+ *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
/* Write DEBI immediate data to shadow RAM. */
- *rps++ = RPS_LDREG | (P_DEBIAD >> 2);
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
*rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
- *rps++ = RPS_CLRSIGNAL | RPS_DEBI;
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Invoke shadow RAM upload. */
- *rps++ = RPS_UPLOAD | RPS_DEBI;
+ *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
- *rps++ = RPS_PAUSE | RPS_DEBI;
+ *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/* Select ADC analog input channel. */
- *rps++ = RPS_LDREG | (P_DEBICMD >> 2);
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
/* Write DEBI command and address to shadow RAM. */
- *rps++ = DEBI_CMD_WRWORD | LP_ISEL;
- *rps++ = RPS_LDREG | (P_DEBIAD >> 2);
+ *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
+ *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM. */
*rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
- *rps++ = RPS_CLRSIGNAL | RPS_DEBI;
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Invoke shadow RAM upload. */
- *rps++ = RPS_UPLOAD | RPS_DEBI;
+ *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
- *rps++ = RPS_PAUSE | RPS_DEBI;
+ *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/*
* Delay at least 10 microseconds for analog input settling.
- * Instead of padding with NOPs, we use RPS_JUMP instructions
- * here; this allows us to produce a longer delay than is
- * possible with NOPs because each RPS_JUMP flushes the RPS'
- * instruction prefetch pipeline.
+ * Instead of padding with NOPs, we use S626_RPS_JUMP
+ * instructions here; this allows us to produce a longer delay
+ * than is possible with NOPs because each S626_RPS_JUMP
+ * flushes the RPS' instruction prefetch pipeline.
*/
jmp_adrs =
(uint32_t)devpriv->rps_buf.physical_base +
(uint32_t)((unsigned long)rps -
(unsigned long)devpriv->
rps_buf.logical_base);
- for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
+ for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
jmp_adrs += 8; /* Repeat to implement time delay: */
- *rps++ = RPS_JUMP; /* Jump to next RPS instruction. */
+ /* Jump to next RPS instruction. */
+ *rps++ = S626_RPS_JUMP;
*rps++ = jmp_adrs;
}
if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
/* Wait for Start trigger. */
- *rps++ = RPS_PAUSE | RPS_SIGADC;
- *rps++ = RPS_CLRSIGNAL | RPS_SIGADC;
+ *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
+ *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
}
/* Start ADC by pulsing GPIO1. */
/* Begin ADC Start pulse. */
- *rps++ = RPS_LDREG | (P_GPIO >> 2);
- *rps++ = GPIO_BASE | GPIO1_LO;
- *rps++ = RPS_NOP;
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
+ *rps++ = S626_RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
/* End ADC Start pulse. */
- *rps++ = RPS_LDREG | (P_GPIO >> 2);
- *rps++ = GPIO_BASE | GPIO1_HI;
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
/*
* Wait for ADC to complete (GPIO2 is asserted high when ADC not
* busy) and for data from previous conversion to shift into FB
* BUFFER 1 register.
*/
- *rps++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ /* Wait for ADC done. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
- *rps++ = RPS_STREG | (S626_BUGFIX_STREG(P_FB_BUFFER1) >> 2);
+ *rps++ = S626_RPS_STREG |
+ (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
(devpriv->adc_items << 2);
* If this slot's EndOfPollList flag is set, all channels have
* now been processed.
*/
- if (*ppl++ & EOPL) {
+ if (*ppl++ & S626_EOPL) {
devpriv->adc_items++; /* Adjust poll list item count. */
break; /* Exit poll list processing loop. */
}
* conversion. Without this delay, the last conversion's data value
* is sometimes set to the previous conversion's data value.
*/
- for (n = 0; n < (2 * RPSCLK_PER_US); n++)
- *rps++ = RPS_NOP;
+ for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
+ *rps++ = S626_RPS_NOP;
/*
* Start a dummy conversion to cause the data from the last
* conversion of interest to be shifted in.
*/
- *rps++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
- *rps++ = GPIO_BASE | GPIO1_LO;
- *rps++ = RPS_NOP;
+ /* Begin ADC Start pulse. */
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
+ *rps++ = S626_RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
- *rps++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
- *rps++ = GPIO_BASE | GPIO1_HI;
+ *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
+ *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
/*
* Wait for the data from the last conversion of interest to arrive
* in FB BUFFER 1 register.
*/
- *rps++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
- *rps++ = RPS_STREG | (S626_BUGFIX_STREG(P_FB_BUFFER1) >> 2);
+ *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
(devpriv->adc_items << 2);
/* Indicate ADC scan loop is finished. */
/* Signal ReadADC() that scan is done. */
- /* *rps++= RPS_CLRSIGNAL | RPS_SIGADC; */
+ /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
/* invoke interrupt */
if (devpriv->ai_cmd_running == 1)
- *rps++ = RPS_IRQ;
+ *rps++ = S626_RPS_IRQ;
/* Restart RPS program at its beginning. */
- *rps++ = RPS_JUMP; /* Branch to start of RPS program. */
+ *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
*rps++ = (uint32_t)devpriv->rps_buf.physical_base;
/* End of RPS program build */
int32_t *readaddr;
/* Trigger ADC scan loop start */
- s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
+ s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
/* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
- while (s626_mc_test(dev, MC2_ADC_RPS, P_MC2))
+ while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
;
/*
* appropriate for register programming.
*/
if (range == 0)
- adc_spec = (chan << 8) | (GSEL_BIPOLAR5V);
+ adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
else
- adc_spec = (chan << 8) | (GSEL_BIPOLAR10V);
+ adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
- s626_debi_write(dev, LP_GSEL, adc_spec); /* Set gain. */
+ s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
/* Select ADC analog input channel. */
- s626_debi_write(dev, LP_ISEL, adc_spec); /* Select channel. */
+ s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
for (n = 0; n < insn->n; n++) {
/* Delay 10 microseconds for analog input settling. */
udelay(10);
/* Start ADC by pulsing GPIO1 low */
- gpio_image = readl(devpriv->mmio + P_GPIO);
+ gpio_image = readl(devpriv->mmio + S626_P_GPIO);
/* Assert ADC Start command */
- writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI,
+ devpriv->mmio + S626_P_GPIO);
/* and stretch it out */
- writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
- writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI,
+ devpriv->mmio + S626_P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI,
+ devpriv->mmio + S626_P_GPIO);
/* Negate ADC Start command */
- writel(gpio_image | GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/*
* Wait for ADC to complete (GPIO2 is asserted high when
*/
/* Wait for ADC done */
- while (!(readl(devpriv->mmio + P_PSR) & PSR_GPIO2))
+ while (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_GPIO2))
;
/* Fetch ADC data */
if (n != 0) {
- tmp = readl(devpriv->mmio + P_FB_BUFFER1);
+ tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
data[n - 1] = s626_ai_reg_to_uint(tmp);
}
* Start a dummy conversion to cause the data from the
* previous conversion to be shifted in.
*/
- gpio_image = readl(devpriv->mmio + P_GPIO);
+ gpio_image = readl(devpriv->mmio + S626_P_GPIO);
/* Assert ADC Start command */
- writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* and stretch it out */
- writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
- writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
+ writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* Negate ADC Start command */
- writel(gpio_image | GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* Wait for the data to arrive in FB BUFFER 1 register. */
/* Wait for ADC done */
- while (!(readl(devpriv->mmio + P_PSR) & PSR_GPIO2))
+ while (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_GPIO2))
;
/* Fetch ADC data from audio interface's input shift register. */
/* Fetch ADC data */
if (n != 0) {
- tmp = readl(devpriv->mmio + P_FB_BUFFER1);
+ tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
data[n - 1] = s626_ai_reg_to_uint(tmp);
}
for (n = 0; n < cmd->chanlist_len; n++) {
if (CR_RANGE(cmd->chanlist[n]) == 0)
- ppl[n] = CR_CHAN(cmd->chanlist[n]) | RANGE_5V;
+ ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
else
- ppl[n] = CR_CHAN(cmd->chanlist[n]) | RANGE_10V;
+ ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
}
if (n != 0)
- ppl[n - 1] |= EOPL;
+ ppl[n - 1] |= S626_EOPL;
return n;
}
return -EINVAL;
/* Start executing the RPS program */
- s626_mc_enable(dev, MC1_ERPS1, P_MC1);
+ s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
s->async->inttrig = NULL;
const struct s626_enc_info *k, int tick)
{
uint16_t setup =
- (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB);
- uint16_t value_latchsrc = LATCHSRC_A_INDXA;
- /* uint16_t enab = CLKENAB_ALWAYS; */
+ /* Preload upon index. */
+ (S626_LOADSRC_INDX << S626_BF_LOADSRC) |
+ /* Disable hardware index. */
+ (S626_INDXSRC_SOFT << S626_BF_INDXSRC) |
+ /* Operating mode is Timer. */
+ (S626_CLKSRC_TIMER << S626_BF_CLKSRC) |
+ /* Active high clock. */
+ (S626_CLKPOL_POS << S626_BF_CLKPOL) |
+ /* Count direction is Down. */
+ (S626_CNTDIR_DOWN << S626_BF_CLKPOL) |
+ /* Clock multiplier is 1x. */
+ (S626_CLKMULT_1X << S626_BF_CLKMULT) |
+ (S626_CLKENAB_INDEX << S626_BF_CLKENAB);
+ uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
+ /* uint16_t enab = S626_CLKENAB_ALWAYS; */
k->set_mode(dev, k, setup, false);
k->set_load_trig(dev, k, 1);
/* set interrupt on overflow */
- k->set_int_src(dev, k, INTSRC_OVER);
+ k->set_int_src(dev, k, S626_INTSRC_OVER);
s626_set_latch_source(dev, k, value_latchsrc);
/* k->set_enable(dev, k, (uint16_t)(enab != 0)); */
return -EBUSY;
}
/* disable interrupt */
- writel(0, devpriv->mmio + P_IER);
+ writel(0, devpriv->mmio + S626_P_IER);
/* clear interrupt request */
- writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->mmio + P_ISR);
+ writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, devpriv->mmio + S626_P_ISR);
/* clear any pending interrupt */
s626_dio_clear_irq(dev);
/* load timer value and enable interrupt */
s626_timer_load(dev, k, tick);
- k->set_enable(dev, k, CLKENAB_ALWAYS);
+ k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
break;
case TRIG_EXT:
/* set the digital line and interrupt for scan trigger */
/* load timer value and enable interrupt */
s626_timer_load(dev, k, tick);
- k->set_enable(dev, k, CLKENAB_INDEX);
+ k->set_enable(dev, k, S626_CLKENAB_INDEX);
break;
case TRIG_EXT:
/* set the digital line and interrupt for convert trigger */
switch (cmd->start_src) {
case TRIG_NOW:
/* Trigger ADC scan loop start */
- /* s626_mc_enable(dev, MC2_ADC_RPS, P_MC2); */
+ /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
/* Start executing the RPS program */
- s626_mc_enable(dev, MC1_ERPS1, P_MC1);
+ s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
s->async->inttrig = NULL;
break;
case TRIG_EXT:
}
/* enable interrupt */
- writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->mmio + P_IER);
+ writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, devpriv->mmio + S626_P_IER);
return 0;
}
struct s626_private *devpriv = dev->private;
/* Stop RPS program in case it is currently running */
- s626_mc_disable(dev, MC1_ERPS1, P_MC1);
+ s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* disable master interrupt */
- writel(0, devpriv->mmio + P_IER);
+ writel(0, devpriv->mmio + S626_P_IER);
devpriv->ai_cmd_running = 0;
uint16_t group;
/* Prepare to treat writes to WRCapSel as capture disables. */
- s626_debi_write(dev, LP_MISC1, MISC1_NOEDCAP);
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* For each group of sixteen channels ... */
for (group = 0; group < S626_DIO_BANKS; group++) {
/* Disable all interrupts */
- s626_debi_write(dev, LP_WRINTSEL(group), 0);
+ s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
/* Disable all event captures */
- s626_debi_write(dev, LP_WRCAPSEL(group), 0xffff);
+ s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
/* Init all DIOs to default edge polarity */
- s626_debi_write(dev, LP_WREDGSEL(group), 0);
+ s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
/* Program all outputs to inactive state */
- s626_debi_write(dev, LP_WRDOUT(group), 0);
+ s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
}
}
unsigned long group = (unsigned long)s->private;
if (comedi_dio_update_state(s, data))
- s626_debi_write(dev, LP_WRDOUT(group), s->state);
+ s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
- data[1] = s626_debi_read(dev, LP_RDDIN(group));
+ data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
return insn->n;
}
if (ret)
return ret;
- s626_debi_write(dev, LP_WRDOUT(group), s->io_bits);
+ s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
return insn->n;
}
struct comedi_insn *insn, unsigned int *data)
{
uint16_t setup =
- (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB);
+ /* Preload upon index. */
+ (S626_LOADSRC_INDX << S626_BF_LOADSRC) |
+ /* Disable hardware index. */
+ (S626_INDXSRC_SOFT << S626_BF_INDXSRC) |
+ /* Operating mode is Counter. */
+ (S626_CLKSRC_COUNTER << S626_BF_CLKSRC) |
+ /* Active high clock. */
+ (S626_CLKPOL_POS << S626_BF_CLKPOL) |
+ /* Clock multiplier is 1x. */
+ (S626_CLKMULT_1X << S626_BF_CLKMULT) |
+ (S626_CLKENAB_INDEX << S626_BF_CLKENAB);
/* uint16_t disable_int_src = true; */
/* uint32_t Preloadvalue; //Counter initial value */
- uint16_t value_latchsrc = LATCHSRC_AB_READ;
- uint16_t enab = CLKENAB_ALWAYS;
+ uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
+ uint16_t enab = S626_CLKENAB_ALWAYS;
const struct s626_enc_info *k =
&s626_enc_chan_info[CR_CHAN(insn->chanspec)];
static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
{
- s626_debi_write(dev, LP_MISC1, MISC1_WENABLE);
- s626_debi_write(dev, LP_WRMISC2, new_image);
- s626_debi_write(dev, LP_MISC1, MISC1_WDISABLE);
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
+ s626_debi_write(dev, S626_LP_WRMISC2, new_image);
+ s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
}
static void s626_close_dma_b(struct comedi_device *dev,
int chan;
const struct s626_enc_info *k;
uint16_t setup =
- (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
+ /* Preload upon index. */
+ (S626_LOADSRC_INDX << S626_BF_LOADSRC) |
+ /* Disable hardware index. */
+ (S626_INDXSRC_SOFT << S626_BF_INDXSRC) |
+ /* Operating mode is counter. */
+ (S626_CLKSRC_COUNTER << S626_BF_CLKSRC) |
+ /* Active high clock. */
+ (S626_CLKPOL_POS << S626_BF_CLKPOL) |
+ /* Count direction is up. */
+ (S626_CNTDIR_UP << S626_BF_CLKPOL) |
+ /* Clock multiplier is 1x. */
+ (S626_CLKMULT_1X << S626_BF_CLKMULT) |
+ /* Enabled by index */
+ (S626_CLKENAB_INDEX << S626_BF_CLKENAB);
/*
* Disable all counter interrupts and clear any captured counter events.
k->set_mode(dev, k, setup, true);
k->set_int_src(dev, k, 0);
k->reset_cap_flags(dev, k);
- k->set_enable(dev, k, CLKENAB_ALWAYS);
+ k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
}
}
void *addr;
dma_addr_t appdma;
- addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
+ addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
if (!addr)
return -ENOMEM;
devpriv->ana_buf.logical_base = addr;
devpriv->ana_buf.physical_base = appdma;
- addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
+ addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
if (!addr)
return -ENOMEM;
devpriv->rps_buf.logical_base = addr;
int i;
/* Enable DEBI and audio pins, enable I2C interface */
- s626_mc_enable(dev, MC1_DEBI | MC1_AUDIO | MC1_I2C, P_MC1);
+ s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
+ S626_P_MC1);
/*
* Configure DEBI operating mode
* Set up byte lane steering
* Intel-compatible local bus (DEBI never times out)
*/
- writel(DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
- DEBI_SWAP | DEBI_CFG_INTEL, devpriv->mmio + P_DEBICFG);
+ writel(S626_DEBI_CFG_SLAVE16 |
+ (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
+ S626_DEBI_CFG_INTEL, devpriv->mmio + S626_P_DEBICFG);
/* Disable MMU paging */
- writel(DEBI_PAGE_DISABLE, devpriv->mmio + P_DEBIPAGE);
+ writel(S626_DEBI_PAGE_DISABLE, devpriv->mmio + S626_P_DEBIPAGE);
/* Init GPIO so that ADC Start* is negated */
- writel(GPIO_BASE | GPIO1_HI, devpriv->mmio + P_GPIO);
+ writel(S626_GPIO_BASE | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* I2C device address for onboard eeprom (revb) */
devpriv->i2c_adrs = 0xA0;
* Issue an I2C ABORT command to halt any I2C
* operation in progress and reset BUSY flag.
*/
- writel(I2C_CLKSEL | I2C_ABORT, devpriv->mmio + P_I2CSTAT);
- s626_mc_enable(dev, MC2_UPLD_IIC, P_MC2);
- while (!(readl(devpriv->mmio + P_MC2) & MC2_UPLD_IIC))
+ writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
+ devpriv->mmio + S626_P_I2CSTAT);
+ s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
+ while (!(readl(devpriv->mmio + S626_P_MC2) & S626_MC2_UPLD_IIC))
;
/*
* reg twice to reset all I2C error flags.
*/
for (i = 0; i < 2; i++) {
- writel(I2C_CLKSEL, devpriv->mmio + P_I2CSTAT);
- s626_mc_enable(dev, MC2_UPLD_IIC, P_MC2);
- while (!s626_mc_test(dev, MC2_UPLD_IIC, P_MC2))
+ writel(S626_I2C_CLKSEL, devpriv->mmio + S626_P_I2CSTAT);
+ s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
+ while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
;
}
* DAC data setup times are satisfied, enable DAC serial
* clock out.
*/
- writel(ACON2_INIT, devpriv->mmio + P_ACON2);
+ writel(S626_ACON2_INIT, devpriv->mmio + S626_P_ACON2);
/*
* Set up TSL1 slot list, which is used to control the
- * accumulation of ADC data: RSD1 = shift data in on SD1.
- * SIB_A1 = store data uint8_t at next available location
+ * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
+ * S626_SIB_A1 = store data uint8_t at next available location
* in FB BUFFER1 register.
*/
- writel(RSD1 | SIB_A1, devpriv->mmio + P_TSL1);
- writel(RSD1 | SIB_A1 | EOS, devpriv->mmio + P_TSL1 + 4);
+ writel(S626_RSD1 | S626_SIB_A1, devpriv->mmio + S626_P_TSL1);
+ writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
+ devpriv->mmio + S626_P_TSL1 + 4);
/* Enable TSL1 slot list so that it executes all the time */
- writel(ACON1_ADCSTART, devpriv->mmio + P_ACON1);
+ writel(S626_ACON1_ADCSTART, devpriv->mmio + S626_P_ACON1);
/*
* Initialize RPS registers used for ADC
/* Physical start of RPS program */
writel((uint32_t)devpriv->rps_buf.physical_base,
- devpriv->mmio + P_RPSADDR1);
+ devpriv->mmio + S626_P_RPSADDR1);
/* RPS program performs no explicit mem writes */
- writel(0, devpriv->mmio + P_RPSPAGE1);
+ writel(0, devpriv->mmio + S626_P_RPSPAGE1);
/* Disable RPS timeouts */
- writel(0, devpriv->mmio + P_RPS1_TOUT);
+ writel(0, devpriv->mmio + S626_P_RPS1_TOUT);
#if 0
/*
unsigned int data[16];
/* Create a simple polling list for analog input channel 0 */
- poll_list = EOPL;
+ poll_list = S626_EOPL;
s626_reset_adc(dev, &poll_list);
/* Get initial ADC value */
* burst length = 1 DWORD
* threshold = 1 DWORD.
*/
- writel(0, devpriv->mmio + P_PCI_BT_A);
+ writel(0, devpriv->mmio + S626_P_PCI_BT_A);
/*
* Init Audio2's output DMA physical addresses. The protection
* enabled.
*/
phys_buf = devpriv->ana_buf.physical_base +
- (DAC_WDMABUF_OS * sizeof(uint32_t));
- writel((uint32_t)phys_buf, devpriv->mmio + P_BASEA2_OUT);
+ (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
+ writel((uint32_t)phys_buf, devpriv->mmio + S626_P_BASEA2_OUT);
writel((uint32_t)(phys_buf + sizeof(uint32_t)),
- devpriv->mmio + P_PROTA2_OUT);
+ devpriv->mmio + S626_P_PROTA2_OUT);
/*
* Cache Audio2's output DMA buffer logical address. This is
* where DAC data is buffered for A2 output DMA transfers.
*/
devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
- DAC_WDMABUF_OS;
+ S626_DAC_WDMABUF_OS;
/*
* Audio2's output channels does not use paging. The
* DMAC will automatically halt and its PCI address pointer
* will be reset when the protection address is reached.
*/
- writel(8, devpriv->mmio + P_PAGEA2_OUT);
+ writel(8, devpriv->mmio + S626_P_PAGEA2_OUT);
/*
* Initialize time slot list 2 (TSL2), which is used to control
*/
/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
- writel(XSD2 | RSD3 | SIB_A2 | EOS, devpriv->mmio + S626_VECTPORT(0));
+ writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
+ devpriv->mmio + S626_VECTPORT(0));
/*
* Initialize slot 1, which is constant. Slot 1 causes a
*/
/* Slot 1: Fetch DWORD from Audio2's output FIFO */
- writel(LF_A2, devpriv->mmio + S626_VECTPORT(1));
+ writel(S626_LF_A2, devpriv->mmio + S626_VECTPORT(1));
/* Start DAC's audio interface (TSL2) running */
- writel(ACON1_DACSTART, devpriv->mmio + P_ACON1);
+ writel(S626_ACON1_DACSTART, devpriv->mmio + S626_P_ACON1);
/*
* Init Trim DACs to calibrated values. Do it twice because the
* standard DIO (vs. counter overflow) mode, disable the battery
* charger, and reset the watchdog interval selector to zero.
*/
- s626_write_misc2(dev, (s626_debi_read(dev, LP_RDMISC2) &
- MISC2_BATT_ENABLE));
+ s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
+ S626_MISC2_BATT_ENABLE));
/* Initialize the digital I/O subsystem */
s626_dio_init(dev);
return -ENOMEM;
/* disable master interrupt */
- writel(0, devpriv->mmio + P_IER);
+ writel(0, devpriv->mmio + S626_P_IER);
/* soft reset */
- writel(MC1_SOFT_RESET, devpriv->mmio + P_MC1);
+ writel(S626_MC1_SOFT_RESET, devpriv->mmio + S626_P_MC1);
/* DMA FIXME DMA// */
if (devpriv->mmio) {
/* interrupt mask */
/* Disable master interrupt */
- writel(0, devpriv->mmio + P_IER);
+ writel(0, devpriv->mmio + S626_P_IER);
/* Clear board's IRQ status flag */
- writel(IRQ_GPIO3 | IRQ_RPS1,
- devpriv->mmio + P_ISR);
+ writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
+ devpriv->mmio + S626_P_ISR);
/* Disable the watchdog timer and battery charger. */
s626_write_misc2(dev, 0);
/* Close all interfaces on 7146 device */
- writel(MC1_SHUTDOWN, devpriv->mmio + P_MC1);
- writel(ACON1_BASE, devpriv->mmio + P_ACON1);
+ writel(S626_MC1_SHUTDOWN, devpriv->mmio + S626_P_MC1);
+ writel(S626_ACON1_BASE, devpriv->mmio + S626_P_ACON1);
- s626_close_dma_b(dev, &devpriv->rps_buf, DMABUF_SIZE);
- s626_close_dma_b(dev, &devpriv->ana_buf, DMABUF_SIZE);
+ s626_close_dma_b(dev, &devpriv->rps_buf,
+ S626_DMABUF_SIZE);
+ s626_close_dma_b(dev, &devpriv->ana_buf,
+ S626_DMABUF_SIZE);
}
if (dev->irq)
#ifndef S626_H_INCLUDED
#define S626_H_INCLUDED
-#define S626_SIZE 0x200
-#define DMABUF_SIZE 4096 /* 4k pages */
+#define S626_DMABUF_SIZE 4096 /* 4k pages */
#define S626_ADC_CHANNELS 16
#define S626_DAC_CHANNELS 4
#define S626_DIO_EXTCHANS 40 /* Number of extended-capability
* DIO channels. */
-#define NUM_TRIMDACS 12 /* Number of valid TrimDAC channels. */
+#define S626_NUM_TRIMDACS 12 /* Number of valid TrimDAC channels. */
/* PCI bus interface types. */
-#define INTEL 1 /* Intel bus type. */
-#define MOTOROLA 2 /* Motorola bus type. */
+#define S626_INTEL 1 /* Intel bus type. */
+#define S626_MOTOROLA 2 /* Motorola bus type. */
-#define PLATFORM INTEL /* *** SELECT PLATFORM TYPE *** */
+#define S626_PLATFORM S626_INTEL /* *** SELECT PLATFORM TYPE *** */
-#define RANGE_5V 0x10 /* +/-5V range */
-#define RANGE_10V 0x00 /* +/-10V range */
+#define S626_RANGE_5V 0x10 /* +/-5V range */
+#define S626_RANGE_10V 0x00 /* +/-10V range */
-#define EOPL 0x80 /* End of ADC poll list marker. */
-#define GSEL_BIPOLAR5V 0x00F0 /* LP_GSEL setting for 5V bipolar. */
-#define GSEL_BIPOLAR10V 0x00A0 /* LP_GSEL setting for 10V bipolar. */
+#define S626_EOPL 0x80 /* End of ADC poll list marker. */
+#define S626_GSEL_BIPOLAR5V 0x00F0 /* S626_LP_GSEL setting 5V bipolar. */
+#define S626_GSEL_BIPOLAR10V 0x00A0 /* S626_LP_GSEL setting 10V bipolar. */
/* Error codes that must be visible to this base class. */
-#define ERR_ILLEGAL_PARM 0x00010000 /* Illegal function parameter
+#define S626_ERR_ILLEGAL_PARM 0x00010000 /* Illegal function parameter
* value was specified. */
-#define ERR_I2C 0x00020000 /* I2C error. */
-#define ERR_COUNTERSETUP 0x00200000 /* Illegal setup specified for
+#define S626_ERR_I2C 0x00020000 /* I2C error. */
+#define S626_ERR_COUNTERSETUP 0x00200000 /* Illegal setup specified for
* counter channel. */
-#define ERR_DEBI_TIMEOUT 0x00400000 /* DEBI transfer timed out. */
+#define S626_ERR_DEBI_TIMEOUT 0x00400000 /* DEBI transfer timed out. */
/*
* Organization (physical order) and size (in DWORDs) of logical DMA buffers
* contained by ANA_DMABUF.
*/
-#define ADC_DMABUF_DWORDS 40 /* ADC DMA buffer must hold 16 samples,
+#define S626_ADC_DMABUF_DWORDS 40 /* ADC DMA buffer must hold 16 samples,
* plus pre/post garbage samples. */
-#define DAC_WDMABUF_DWORDS 1 /* DAC output DMA buffer holds a single
+#define S626_DAC_WDMABUF_DWORDS 1 /* DAC output DMA buffer holds a single
* sample. */
/* All remaining space in 4KB DMA buffer is available for the RPS1 program. */
/* Address offsets, in DWORDS, from base of DMA buffer. */
-#define DAC_WDMABUF_OS ADC_DMABUF_DWORDS
+#define S626_DAC_WDMABUF_OS S626_ADC_DMABUF_DWORDS
/* Interrupt enable bit in ISR and IER. */
-#define IRQ_GPIO3 0x00000040 /* IRQ enable for GPIO3. */
-#define IRQ_RPS1 0x10000000
-#define ISR_AFOU 0x00000800
+#define S626_IRQ_GPIO3 0x00000040 /* IRQ enable for GPIO3. */
+#define S626_IRQ_RPS1 0x10000000
+#define S626_ISR_AFOU 0x00000800
/* Audio fifo under/overflow detected. */
-#define IRQ_COINT1A 0x0400 /* counter 1A overflow interrupt mask */
-#define IRQ_COINT1B 0x0800 /* counter 1B overflow interrupt mask */
-#define IRQ_COINT2A 0x1000 /* counter 2A overflow interrupt mask */
-#define IRQ_COINT2B 0x2000 /* counter 2B overflow interrupt mask */
-#define IRQ_COINT3A 0x4000 /* counter 3A overflow interrupt mask */
-#define IRQ_COINT3B 0x8000 /* counter 3B overflow interrupt mask */
+#define S626_IRQ_COINT1A 0x0400 /* counter 1A overflow interrupt mask */
+#define S626_IRQ_COINT1B 0x0800 /* counter 1B overflow interrupt mask */
+#define S626_IRQ_COINT2A 0x1000 /* counter 2A overflow interrupt mask */
+#define S626_IRQ_COINT2B 0x2000 /* counter 2B overflow interrupt mask */
+#define S626_IRQ_COINT3A 0x4000 /* counter 3A overflow interrupt mask */
+#define S626_IRQ_COINT3B 0x8000 /* counter 3B overflow interrupt mask */
/* RPS command codes. */
-#define RPS_CLRSIGNAL 0x00000000 /* CLEAR SIGNAL */
-#define RPS_SETSIGNAL 0x10000000 /* SET SIGNAL */
-#define RPS_NOP 0x00000000 /* NOP */
-#define RPS_PAUSE 0x20000000 /* PAUSE */
-#define RPS_UPLOAD 0x40000000 /* UPLOAD */
-#define RPS_JUMP 0x80000000 /* JUMP */
-#define RPS_LDREG 0x90000100 /* LDREG (1 uint32_t only) */
-#define RPS_STREG 0xA0000100 /* STREG (1 uint32_t only) */
-#define RPS_STOP 0x50000000 /* STOP */
-#define RPS_IRQ 0x60000000 /* IRQ */
-
-#define RPS_LOGICAL_OR 0x08000000 /* Logical OR conditionals. */
-#define RPS_INVERT 0x04000000 /* Test for negated
+#define S626_RPS_CLRSIGNAL 0x00000000 /* CLEAR SIGNAL */
+#define S626_RPS_SETSIGNAL 0x10000000 /* SET SIGNAL */
+#define S626_RPS_NOP 0x00000000 /* NOP */
+#define S626_RPS_PAUSE 0x20000000 /* PAUSE */
+#define S626_RPS_UPLOAD 0x40000000 /* UPLOAD */
+#define S626_RPS_JUMP 0x80000000 /* JUMP */
+#define S626_RPS_LDREG 0x90000100 /* LDREG (1 uint32_t only) */
+#define S626_RPS_STREG 0xA0000100 /* STREG (1 uint32_t only) */
+#define S626_RPS_STOP 0x50000000 /* STOP */
+#define S626_RPS_IRQ 0x60000000 /* IRQ */
+
+#define S626_RPS_LOGICAL_OR 0x08000000 /* Logical OR conditionals. */
+#define S626_RPS_INVERT 0x04000000 /* Test for negated
* semaphores. */
-#define RPS_DEBI 0x00000002 /* DEBI done */
+#define S626_RPS_DEBI 0x00000002 /* DEBI done */
-#define RPS_SIG0 0x00200000 /* RPS semaphore 0
+#define S626_RPS_SIG0 0x00200000 /* RPS semaphore 0
* (used by ADC). */
-#define RPS_SIG1 0x00400000 /* RPS semaphore 1
+#define S626_RPS_SIG1 0x00400000 /* RPS semaphore 1
* (used by DAC). */
-#define RPS_SIG2 0x00800000 /* RPS semaphore 2
+#define S626_RPS_SIG2 0x00800000 /* RPS semaphore 2
* (not used). */
-#define RPS_GPIO2 0x00080000 /* RPS GPIO2 */
-#define RPS_GPIO3 0x00100000 /* RPS GPIO3 */
+#define S626_RPS_GPIO2 0x00080000 /* RPS GPIO2 */
+#define S626_RPS_GPIO3 0x00100000 /* RPS GPIO3 */
-#define RPS_SIGADC RPS_SIG0 /* Trigger/status for
+#define S626_RPS_SIGADC S626_RPS_SIG0 /* Trigger/status for
* ADC's RPS program. */
-#define RPS_SIGDAC RPS_SIG1 /* Trigger/status for
+#define S626_RPS_SIGDAC S626_RPS_SIG1 /* Trigger/status for
* DAC's RPS program. */
/* RPS clock parameters. */
-#define RPSCLK_SCALAR 8 /* This is apparent ratio of
+#define S626_RPSCLK_SCALAR 8 /* This is apparent ratio of
* PCI/RPS clks (undocumented!!). */
-#define RPSCLK_PER_US (33 / RPSCLK_SCALAR)
+#define S626_RPSCLK_PER_US (33 / S626_RPSCLK_SCALAR)
/* Number of RPS clocks in one
* microsecond. */
/* Event counter source addresses. */
-#define SBA_RPS_A0 0x27 /* Time of RPS0 busy, in PCI clocks. */
+#define S626_SBA_RPS_A0 0x27 /* Time of RPS0 busy, in PCI clocks. */
/* GPIO constants. */
-#define GPIO_BASE 0x10004000 /* GPIO 0,2,3 = inputs,
+#define S626_GPIO_BASE 0x10004000 /* GPIO 0,2,3 = inputs,
* GPIO3 = IRQ; GPIO1 = out. */
-#define GPIO1_LO 0x00000000 /* GPIO1 set to LOW. */
-#define GPIO1_HI 0x00001000 /* GPIO1 set to HIGH. */
+#define S626_GPIO1_LO 0x00000000 /* GPIO1 set to LOW. */
+#define S626_GPIO1_HI 0x00001000 /* GPIO1 set to HIGH. */
/* Primary Status Register (PSR) constants. */
-#define PSR_DEBI_E 0x00040000 /* DEBI event flag. */
-#define PSR_DEBI_S 0x00080000 /* DEBI status flag. */
-#define PSR_A2_IN 0x00008000 /* Audio output DMA2 protection
+#define S626_PSR_DEBI_E 0x00040000 /* DEBI event flag. */
+#define S626_PSR_DEBI_S 0x00080000 /* DEBI status flag. */
+#define S626_PSR_A2_IN 0x00008000 /* Audio output DMA2 protection
* address reached. */
-#define PSR_AFOU 0x00000800 /* Audio FIFO under/overflow
+#define S626_PSR_AFOU 0x00000800 /* Audio FIFO under/overflow
* detected. */
-#define PSR_GPIO2 0x00000020 /* GPIO2 input pin: 0=AdcBusy,
+#define S626_PSR_GPIO2 0x00000020 /* GPIO2 input pin: 0=AdcBusy,
* 1=AdcIdle. */
-#define PSR_EC0S 0x00000001 /* Event counter 0 threshold
+#define S626_PSR_EC0S 0x00000001 /* Event counter 0 threshold
* reached. */
/* Secondary Status Register (SSR) constants. */
-#define SSR_AF2_OUT 0x00000200 /* Audio 2 output FIFO
+#define S626_SSR_AF2_OUT 0x00000200 /* Audio 2 output FIFO
* under/overflow detected. */
/* Master Control Register 1 (MC1) constants. */
-#define MC1_SOFT_RESET 0x80000000 /* Invoke 7146 soft reset. */
-#define MC1_SHUTDOWN 0x3FFF0000 /* Shut down all MC1-controlled
+#define S626_MC1_SOFT_RESET 0x80000000 /* Invoke 7146 soft reset. */
+#define S626_MC1_SHUTDOWN 0x3FFF0000 /* Shut down all MC1-controlled
* enables. */
-#define MC1_ERPS1 0x2000 /* Enab/disable RPS task 1. */
-#define MC1_ERPS0 0x1000 /* Enab/disable RPS task 0. */
-#define MC1_DEBI 0x0800 /* Enab/disable DEBI pins. */
-#define MC1_AUDIO 0x0200 /* Enab/disable audio port pins. */
-#define MC1_I2C 0x0100 /* Enab/disable I2C interface. */
-#define MC1_A2OUT 0x0008 /* Enab/disable transfer on A2 out. */
-#define MC1_A2IN 0x0004 /* Enab/disable transfer on A2 in. */
-#define MC1_A1IN 0x0001 /* Enab/disable transfer on A1 in. */
+#define S626_MC1_ERPS1 0x2000 /* Enab/disable RPS task 1. */
+#define S626_MC1_ERPS0 0x1000 /* Enab/disable RPS task 0. */
+#define S626_MC1_DEBI 0x0800 /* Enab/disable DEBI pins. */
+#define S626_MC1_AUDIO 0x0200 /* Enab/disable audio port pins. */
+#define S626_MC1_I2C 0x0100 /* Enab/disable I2C interface. */
+#define S626_MC1_A2OUT 0x0008 /* Enab/disable transfer on A2 out. */
+#define S626_MC1_A2IN 0x0004 /* Enab/disable transfer on A2 in. */
+#define S626_MC1_A1IN 0x0001 /* Enab/disable transfer on A1 in. */
/* Master Control Register 2 (MC2) constants. */
-#define MC2_UPLD_DEBI 0x0002 /* Upload DEBI. */
-#define MC2_UPLD_IIC 0x0001 /* Upload I2C. */
-#define MC2_RPSSIG2 0x2000 /* RPS signal 2 (not used). */
-#define MC2_RPSSIG1 0x1000 /* RPS signal 1 (DAC RPS busy). */
-#define MC2_RPSSIG0 0x0800 /* RPS signal 0 (ADC RPS busy). */
+#define S626_MC2_UPLD_DEBI 0x0002 /* Upload DEBI. */
+#define S626_MC2_UPLD_IIC 0x0001 /* Upload I2C. */
+#define S626_MC2_RPSSIG2 0x2000 /* RPS signal 2 (not used). */
+#define S626_MC2_RPSSIG1 0x1000 /* RPS signal 1 (DAC RPS busy). */
+#define S626_MC2_RPSSIG0 0x0800 /* RPS signal 0 (ADC RPS busy). */
-#define MC2_ADC_RPS MC2_RPSSIG0 /* ADC RPS busy. */
-#define MC2_DAC_RPS MC2_RPSSIG1 /* DAC RPS busy. */
+#define S626_MC2_ADC_RPS S626_MC2_RPSSIG0 /* ADC RPS busy. */
+#define S626_MC2_DAC_RPS S626_MC2_RPSSIG1 /* DAC RPS busy. */
/* PCI BUS (SAA7146) REGISTER ADDRESS OFFSETS */
-#define P_PCI_BT_A 0x004C /* Audio DMA burst/threshold control. */
-#define P_DEBICFG 0x007C /* DEBI configuration. */
-#define P_DEBICMD 0x0080 /* DEBI command. */
-#define P_DEBIPAGE 0x0084 /* DEBI page. */
-#define P_DEBIAD 0x0088 /* DEBI target address. */
-#define P_I2CCTRL 0x008C /* I2C control. */
-#define P_I2CSTAT 0x0090 /* I2C status. */
-#define P_BASEA2_IN 0x00AC /* Audio input 2 base physical DMAbuf
+#define S626_P_PCI_BT_A 0x004C /* Audio DMA burst/threshold control. */
+#define S626_P_DEBICFG 0x007C /* DEBI configuration. */
+#define S626_P_DEBICMD 0x0080 /* DEBI command. */
+#define S626_P_DEBIPAGE 0x0084 /* DEBI page. */
+#define S626_P_DEBIAD 0x0088 /* DEBI target address. */
+#define S626_P_I2CCTRL 0x008C /* I2C control. */
+#define S626_P_I2CSTAT 0x0090 /* I2C status. */
+#define S626_P_BASEA2_IN 0x00AC /* Audio input 2 base physical DMAbuf
* address. */
-#define P_PROTA2_IN 0x00B0 /* Audio input 2 physical DMAbuf
+#define S626_P_PROTA2_IN 0x00B0 /* Audio input 2 physical DMAbuf
* protection address. */
-#define P_PAGEA2_IN 0x00B4 /* Audio input 2 paging attributes. */
-#define P_BASEA2_OUT 0x00B8 /* Audio output 2 base physical DMAbuf
+#define S626_P_PAGEA2_IN 0x00B4 /* Audio input 2 paging attributes. */
+#define S626_P_BASEA2_OUT 0x00B8 /* Audio output 2 base physical DMAbuf
* address. */
-#define P_PROTA2_OUT 0x00BC /* Audio output 2 physical DMAbuf
+#define S626_P_PROTA2_OUT 0x00BC /* Audio output 2 physical DMAbuf
* protection address. */
-#define P_PAGEA2_OUT 0x00C0 /* Audio output 2 paging attributes. */
-#define P_RPSPAGE0 0x00C4 /* RPS0 page. */
-#define P_RPSPAGE1 0x00C8 /* RPS1 page. */
-#define P_RPS0_TOUT 0x00D4 /* RPS0 time-out. */
-#define P_RPS1_TOUT 0x00D8 /* RPS1 time-out. */
-#define P_IER 0x00DC /* Interrupt enable. */
-#define P_GPIO 0x00E0 /* General-purpose I/O. */
-#define P_EC1SSR 0x00E4 /* Event counter set 1 source select. */
-#define P_ECT1R 0x00EC /* Event counter threshold set 1. */
-#define P_ACON1 0x00F4 /* Audio control 1. */
-#define P_ACON2 0x00F8 /* Audio control 2. */
-#define P_MC1 0x00FC /* Master control 1. */
-#define P_MC2 0x0100 /* Master control 2. */
-#define P_RPSADDR0 0x0104 /* RPS0 instruction pointer. */
-#define P_RPSADDR1 0x0108 /* RPS1 instruction pointer. */
-#define P_ISR 0x010C /* Interrupt status. */
-#define P_PSR 0x0110 /* Primary status. */
-#define P_SSR 0x0114 /* Secondary status. */
-#define P_EC1R 0x0118 /* Event counter set 1. */
-#define P_ADP4 0x0138 /* Logical audio DMA pointer of audio
+#define S626_P_PAGEA2_OUT 0x00C0 /* Audio output 2 paging attributes. */
+#define S626_P_RPSPAGE0 0x00C4 /* RPS0 page. */
+#define S626_P_RPSPAGE1 0x00C8 /* RPS1 page. */
+#define S626_P_RPS0_TOUT 0x00D4 /* RPS0 time-out. */
+#define S626_P_RPS1_TOUT 0x00D8 /* RPS1 time-out. */
+#define S626_P_IER 0x00DC /* Interrupt enable. */
+#define S626_P_GPIO 0x00E0 /* General-purpose I/O. */
+#define S626_P_EC1SSR 0x00E4 /* Event counter set 1 source select. */
+#define S626_P_ECT1R 0x00EC /* Event counter threshold set 1. */
+#define S626_P_ACON1 0x00F4 /* Audio control 1. */
+#define S626_P_ACON2 0x00F8 /* Audio control 2. */
+#define S626_P_MC1 0x00FC /* Master control 1. */
+#define S626_P_MC2 0x0100 /* Master control 2. */
+#define S626_P_RPSADDR0 0x0104 /* RPS0 instruction pointer. */
+#define S626_P_RPSADDR1 0x0108 /* RPS1 instruction pointer. */
+#define S626_P_ISR 0x010C /* Interrupt status. */
+#define S626_P_PSR 0x0110 /* Primary status. */
+#define S626_P_SSR 0x0114 /* Secondary status. */
+#define S626_P_EC1R 0x0118 /* Event counter set 1. */
+#define S626_P_ADP4 0x0138 /* Logical audio DMA pointer of audio
* input FIFO A2_IN. */
-#define P_FB_BUFFER1 0x0144 /* Audio feedback buffer 1. */
-#define P_FB_BUFFER2 0x0148 /* Audio feedback buffer 2. */
-#define P_TSL1 0x0180 /* Audio time slot list 1. */
-#define P_TSL2 0x01C0 /* Audio time slot list 2. */
+#define S626_P_FB_BUFFER1 0x0144 /* Audio feedback buffer 1. */
+#define S626_P_FB_BUFFER2 0x0148 /* Audio feedback buffer 2. */
+#define S626_P_TSL1 0x0180 /* Audio time slot list 1. */
+#define S626_P_TSL2 0x01C0 /* Audio time slot list 2. */
/* LOCAL BUS (GATE ARRAY) REGISTER ADDRESS OFFSETS */
/* Analog I/O registers: */
-#define LP_DACPOL 0x0082 /* Write DAC polarity. */
-#define LP_GSEL 0x0084 /* Write ADC gain. */
-#define LP_ISEL 0x0086 /* Write ADC channel select. */
+#define S626_LP_DACPOL 0x0082 /* Write DAC polarity. */
+#define S626_LP_GSEL 0x0084 /* Write ADC gain. */
+#define S626_LP_ISEL 0x0086 /* Write ADC channel select. */
/* Digital I/O registers */
-#define LP_RDDIN(x) (0x0040 + (x) * 0x10) /* R: digital input */
-#define LP_WRINTSEL(x) (0x0042 + (x) * 0x10) /* W: int enable */
-#define LP_WREDGSEL(x) (0x0044 + (x) * 0x10) /* W: edge selection */
-#define LP_WRCAPSEL(x) (0x0046 + (x) * 0x10) /* W: capture enable */
-#define LP_RDCAPFLG(x) (0x0048 + (x) * 0x10) /* R: edges captured */
-#define LP_WRDOUT(x) (0x0048 + (x) * 0x10) /* W: digital output */
-#define LP_RDINTSEL(x) (0x004a + (x) * 0x10) /* R: int enable */
-#define LP_RDEDGSEL(x) (0x004c + (x) * 0x10) /* R: edge selection */
-#define LP_RDCAPSEL(x) (0x004e + (x) * 0x10) /* R: capture enable */
+#define S626_LP_RDDIN(x) (0x0040 + (x) * 0x10) /* R: digital input */
+#define S626_LP_WRINTSEL(x) (0x0042 + (x) * 0x10) /* W: int enable */
+#define S626_LP_WREDGSEL(x) (0x0044 + (x) * 0x10) /* W: edge selection */
+#define S626_LP_WRCAPSEL(x) (0x0046 + (x) * 0x10) /* W: capture enable */
+#define S626_LP_RDCAPFLG(x) (0x0048 + (x) * 0x10) /* R: edges captured */
+#define S626_LP_WRDOUT(x) (0x0048 + (x) * 0x10) /* W: digital output */
+#define S626_LP_RDINTSEL(x) (0x004a + (x) * 0x10) /* R: int enable */
+#define S626_LP_RDEDGSEL(x) (0x004c + (x) * 0x10) /* R: edge selection */
+#define S626_LP_RDCAPSEL(x) (0x004e + (x) * 0x10) /* R: capture enable */
/* Counter Registers (read/write): */
-#define LP_CR0A 0x0000 /* 0A setup register. */
-#define LP_CR0B 0x0002 /* 0B setup register. */
-#define LP_CR1A 0x0004 /* 1A setup register. */
-#define LP_CR1B 0x0006 /* 1B setup register. */
-#define LP_CR2A 0x0008 /* 2A setup register. */
-#define LP_CR2B 0x000A /* 2B setup register. */
+#define S626_LP_CR0A 0x0000 /* 0A setup register. */
+#define S626_LP_CR0B 0x0002 /* 0B setup register. */
+#define S626_LP_CR1A 0x0004 /* 1A setup register. */
+#define S626_LP_CR1B 0x0006 /* 1B setup register. */
+#define S626_LP_CR2A 0x0008 /* 2A setup register. */
+#define S626_LP_CR2B 0x000A /* 2B setup register. */
/* Counter PreLoad (write) and Latch (read) Registers: */
-#define LP_CNTR0ALSW 0x000C /* 0A lsw. */
-#define LP_CNTR0AMSW 0x000E /* 0A msw. */
-#define LP_CNTR0BLSW 0x0010 /* 0B lsw. */
-#define LP_CNTR0BMSW 0x0012 /* 0B msw. */
-#define LP_CNTR1ALSW 0x0014 /* 1A lsw. */
-#define LP_CNTR1AMSW 0x0016 /* 1A msw. */
-#define LP_CNTR1BLSW 0x0018 /* 1B lsw. */
-#define LP_CNTR1BMSW 0x001A /* 1B msw. */
-#define LP_CNTR2ALSW 0x001C /* 2A lsw. */
-#define LP_CNTR2AMSW 0x001E /* 2A msw. */
-#define LP_CNTR2BLSW 0x0020 /* 2B lsw. */
-#define LP_CNTR2BMSW 0x0022 /* 2B msw. */
+#define S626_LP_CNTR0ALSW 0x000C /* 0A lsw. */
+#define S626_LP_CNTR0AMSW 0x000E /* 0A msw. */
+#define S626_LP_CNTR0BLSW 0x0010 /* 0B lsw. */
+#define S626_LP_CNTR0BMSW 0x0012 /* 0B msw. */
+#define S626_LP_CNTR1ALSW 0x0014 /* 1A lsw. */
+#define S626_LP_CNTR1AMSW 0x0016 /* 1A msw. */
+#define S626_LP_CNTR1BLSW 0x0018 /* 1B lsw. */
+#define S626_LP_CNTR1BMSW 0x001A /* 1B msw. */
+#define S626_LP_CNTR2ALSW 0x001C /* 2A lsw. */
+#define S626_LP_CNTR2AMSW 0x001E /* 2A msw. */
+#define S626_LP_CNTR2BLSW 0x0020 /* 2B lsw. */
+#define S626_LP_CNTR2BMSW 0x0022 /* 2B msw. */
/* Miscellaneous Registers (read/write): */
-#define LP_MISC1 0x0088 /* Read/write Misc1. */
-#define LP_WRMISC2 0x0090 /* Write Misc2. */
-#define LP_RDMISC2 0x0082 /* Read Misc2. */
+#define S626_LP_MISC1 0x0088 /* Read/write Misc1. */
+#define S626_LP_WRMISC2 0x0090 /* Write Misc2. */
+#define S626_LP_RDMISC2 0x0082 /* Read Misc2. */
/* Bit masks for MISC1 register that are the same for reads and writes. */
-#define MISC1_WENABLE 0x8000 /* enab writes to MISC2 (except Clear
+#define S626_MISC1_WENABLE 0x8000 /* enab writes to MISC2 (except Clear
* Watchdog bit). */
-#define MISC1_WDISABLE 0x0000 /* Disable writes to MISC2. */
-#define MISC1_EDCAP 0x1000 /* Enable edge capture on DIO chans
- * specified by LP_WRCAPSELx. */
-#define MISC1_NOEDCAP 0x0000 /* Disable edge capture on specified
+#define S626_MISC1_WDISABLE 0x0000 /* Disable writes to MISC2. */
+#define S626_MISC1_EDCAP 0x1000 /* Enable edge capture on DIO chans
+ * specified by S626_LP_WRCAPSELx. */
+#define S626_MISC1_NOEDCAP 0x0000 /* Disable edge capture on specified
* DIO chans. */
/* Bit masks for MISC1 register reads. */
-#define RDMISC1_WDTIMEOUT 0x4000 /* Watchdog timer timed out. */
+#define S626_RDMISC1_WDTIMEOUT 0x4000 /* Watchdog timer timed out. */
/* Bit masks for MISC2 register writes. */
-#define WRMISC2_WDCLEAR 0x8000 /* Reset watchdog timer to zero. */
-#define WRMISC2_CHARGE_ENABLE 0x4000 /* Enable battery trickle charging. */
+#define S626_WRMISC2_WDCLEAR 0x8000 /* Reset watchdog timer to zero. */
+#define S626_WRMISC2_CHARGE_ENABLE 0x4000 /* Enable battery trickle charging. */
/* Bit masks for MISC2 register that are the same for reads and writes. */
-#define MISC2_BATT_ENABLE 0x0008 /* Backup battery enable. */
-#define MISC2_WDENABLE 0x0004 /* Watchdog timer enable. */
-#define MISC2_WDPERIOD_MASK 0x0003 /* Watchdog interval select mask. */
+#define S626_MISC2_BATT_ENABLE 0x0008 /* Backup battery enable. */
+#define S626_MISC2_WDENABLE 0x0004 /* Watchdog timer enable. */
+#define S626_MISC2_WDPERIOD_MASK 0x0003 /* Watchdog interval select mask. */
/* Bit masks for ACON1 register. */
-#define A2_RUN 0x40000000 /* Run A2 based on TSL2. */
-#define A1_RUN 0x20000000 /* Run A1 based on TSL1. */
-#define A1_SWAP 0x00200000 /* Use big-endian for A1. */
-#define A2_SWAP 0x00100000 /* Use big-endian for A2. */
-#define WS_MODES 0x00019999 /* WS0 = TSL1 trigger input,
+#define S626_A2_RUN 0x40000000 /* Run A2 based on TSL2. */
+#define S626_A1_RUN 0x20000000 /* Run A1 based on TSL1. */
+#define S626_A1_SWAP 0x00200000 /* Use big-endian for A1. */
+#define S626_A2_SWAP 0x00100000 /* Use big-endian for A2. */
+#define S626_WS_MODES 0x00019999 /* WS0 = TSL1 trigger input,
* WS1-WS4 = CS* outputs. */
-#if PLATFORM == INTEL /* Base ACON1 config: always run A1 based
- * on TSL1. */
-#define ACON1_BASE (WS_MODES | A1_RUN)
-#elif PLATFORM == MOTOROLA
-#define ACON1_BASE (WS_MODES | A1_RUN | A1_SWAP | A2_SWAP)
+#if S626_PLATFORM == S626_INTEL /* Base ACON1 config: always run
+ * A1 based on TSL1. */
+#define S626_ACON1_BASE (S626_WS_MODES | S626_A1_RUN)
+#elif S626_PLATFORM == S626_MOTOROLA
+#define S626_ACON1_BASE \
+ (S626_WS_MODES | S626_A1_RUN | S626_A1_SWAP | S626_A2_SWAP)
#endif
-#define ACON1_ADCSTART ACON1_BASE /* Start ADC: run A1
+#define S626_ACON1_ADCSTART S626_ACON1_BASE /* Start ADC: run A1
* based on TSL1. */
-#define ACON1_DACSTART (ACON1_BASE | A2_RUN)
+#define S626_ACON1_DACSTART (S626_ACON1_BASE | S626_A2_RUN)
/* Start transmit to DAC: run A2 based on TSL2. */
-#define ACON1_DACSTOP ACON1_BASE /* Halt A2. */
+#define S626_ACON1_DACSTOP S626_ACON1_BASE /* Halt A2. */
/* Bit masks for ACON2 register. */
-#define A1_CLKSRC_BCLK1 0x00000000 /* A1 bit rate = BCLK1 (ADC). */
-#define A2_CLKSRC_X1 0x00800000 /* A2 bit rate = ACLK/1
+#define S626_A1_CLKSRC_BCLK1 0x00000000 /* A1 bit rate = BCLK1 (ADC). */
+#define S626_A2_CLKSRC_X1 0x00800000 /* A2 bit rate = ACLK/1
* (DACs). */
-#define A2_CLKSRC_X2 0x00C00000 /* A2 bit rate = ACLK/2
+#define S626_A2_CLKSRC_X2 0x00C00000 /* A2 bit rate = ACLK/2
* (DACs). */
-#define A2_CLKSRC_X4 0x01400000 /* A2 bit rate = ACLK/4
+#define S626_A2_CLKSRC_X4 0x01400000 /* A2 bit rate = ACLK/4
* (DACs). */
-#define INVERT_BCLK2 0x00100000 /* Invert BCLK2 (DACs). */
-#define BCLK2_OE 0x00040000 /* Enable BCLK2 (DACs). */
-#define ACON2_XORMASK 0x000C0000 /* XOR mask for ACON2
+#define S626_INVERT_BCLK2 0x00100000 /* Invert BCLK2 (DACs). */
+#define S626_BCLK2_OE 0x00040000 /* Enable BCLK2 (DACs). */
+#define S626_ACON2_XORMASK 0x000C0000 /* XOR mask for ACON2
* active-low bits. */
-#define ACON2_INIT (ACON2_XORMASK ^ \
- (A1_CLKSRC_BCLK1 | A2_CLKSRC_X2 | \
- INVERT_BCLK2 | BCLK2_OE))
+#define S626_ACON2_INIT (S626_ACON2_XORMASK ^ \
+ (S626_A1_CLKSRC_BCLK1 | S626_A2_CLKSRC_X2 | \
+ S626_INVERT_BCLK2 | S626_BCLK2_OE))
/* Bit masks for timeslot records. */
-#define WS1 0x40000000 /* WS output to assert. */
-#define WS2 0x20000000
-#define WS3 0x10000000
-#define WS4 0x08000000
-#define RSD1 0x01000000 /* Shift A1 data in on SD1. */
-#define SDW_A1 0x00800000 /* Store rcv'd char at next char
+#define S626_WS1 0x40000000 /* WS output to assert. */
+#define S626_WS2 0x20000000
+#define S626_WS3 0x10000000
+#define S626_WS4 0x08000000
+#define S626_RSD1 0x01000000 /* Shift A1 data in on SD1. */
+#define S626_SDW_A1 0x00800000 /* Store rcv'd char at next char
* slot of DWORD1 buffer. */
-#define SIB_A1 0x00400000 /* Store rcv'd char at next
+#define S626_SIB_A1 0x00400000 /* Store rcv'd char at next
* char slot of FB1 buffer. */
-#define SF_A1 0x00200000 /* Write unsigned long
+#define S626_SF_A1 0x00200000 /* Write unsigned long
* buffer to input FIFO. */
/* Select parallel-to-serial converter's data source: */
-#define XFIFO_0 0x00000000 /* Data fifo byte 0. */
-#define XFIFO_1 0x00000010 /* Data fifo byte 1. */
-#define XFIFO_2 0x00000020 /* Data fifo byte 2. */
-#define XFIFO_3 0x00000030 /* Data fifo byte 3. */
-#define XFB0 0x00000040 /* FB_BUFFER byte 0. */
-#define XFB1 0x00000050 /* FB_BUFFER byte 1. */
-#define XFB2 0x00000060 /* FB_BUFFER byte 2. */
-#define XFB3 0x00000070 /* FB_BUFFER byte 3. */
-#define SIB_A2 0x00000200 /* Store next dword from A2's
+#define S626_XFIFO_0 0x00000000 /* Data fifo byte 0. */
+#define S626_XFIFO_1 0x00000010 /* Data fifo byte 1. */
+#define S626_XFIFO_2 0x00000020 /* Data fifo byte 2. */
+#define S626_XFIFO_3 0x00000030 /* Data fifo byte 3. */
+#define S626_XFB0 0x00000040 /* FB_BUFFER byte 0. */
+#define S626_XFB1 0x00000050 /* FB_BUFFER byte 1. */
+#define S626_XFB2 0x00000060 /* FB_BUFFER byte 2. */
+#define S626_XFB3 0x00000070 /* FB_BUFFER byte 3. */
+#define S626_SIB_A2 0x00000200 /* Store next dword from A2's
* input shifter to FB2
* buffer. */
-#define SF_A2 0x00000100 /* Store next dword from A2's
+#define S626_SF_A2 0x00000100 /* Store next dword from A2's
* input shifter to its input
* fifo. */
-#define LF_A2 0x00000080 /* Load next dword from A2's
+#define S626_LF_A2 0x00000080 /* Load next dword from A2's
* output fifo into its
* output dword buffer. */
-#define XSD2 0x00000008 /* Shift data out on SD2. */
-#define RSD3 0x00001800 /* Shift data in on SD3. */
-#define RSD2 0x00001000 /* Shift data in on SD2. */
-#define LOW_A2 0x00000002 /* Drive last SD low for 7 clks,
+#define S626_XSD2 0x00000008 /* Shift data out on SD2. */
+#define S626_RSD3 0x00001800 /* Shift data in on SD3. */
+#define S626_RSD2 0x00001000 /* Shift data in on SD2. */
+#define S626_LOW_A2 0x00000002 /* Drive last SD low for 7 clks,
* then tri-state. */
-#define EOS 0x00000001 /* End of superframe. */
+#define S626_EOS 0x00000001 /* End of superframe. */
/* I2C configuration constants. */
-#define I2C_CLKSEL 0x0400 /* I2C bit rate =
+#define S626_I2C_CLKSEL 0x0400 /* I2C bit rate =
* PCIclk/480 = 68.75 KHz. */
-#define I2C_BITRATE 68.75 /* I2C bus data bit rate
- * (determined by I2C_CLKSEL)
- * in KHz. */
-#define I2C_WRTIME 15.0 /* Worst case time, in msec,
+#define S626_I2C_BITRATE 68.75 /* I2C bus data bit rate
+ * (determined by
+ * S626_I2C_CLKSEL) in KHz. */
+#define S626_I2C_WRTIME 15.0 /* Worst case time, in msec,
* for EEPROM internal write
* op. */
/* I2C manifest constants. */
/* Max retries to wait for EEPROM write. */
-#define I2C_RETRIES (I2C_WRTIME * I2C_BITRATE / 9.0)
-#define I2C_ERR 0x0002 /* I2C control/status flag ERROR. */
-#define I2C_BUSY 0x0001 /* I2C control/status flag BUSY. */
-#define I2C_ABORT 0x0080 /* I2C status flag ABORT. */
-#define I2C_ATTRSTART 0x3 /* I2C attribute START. */
-#define I2C_ATTRCONT 0x2 /* I2C attribute CONT. */
-#define I2C_ATTRSTOP 0x1 /* I2C attribute STOP. */
-#define I2C_ATTRNOP 0x0 /* I2C attribute NOP. */
+#define S626_I2C_RETRIES (S626_I2C_WRTIME * S626_I2C_BITRATE / 9.0)
+#define S626_I2C_ERR 0x0002 /* I2C control/status flag ERROR. */
+#define S626_I2C_BUSY 0x0001 /* I2C control/status flag BUSY. */
+#define S626_I2C_ABORT 0x0080 /* I2C status flag ABORT. */
+#define S626_I2C_ATTRSTART 0x3 /* I2C attribute START. */
+#define S626_I2C_ATTRCONT 0x2 /* I2C attribute CONT. */
+#define S626_I2C_ATTRSTOP 0x1 /* I2C attribute STOP. */
+#define S626_I2C_ATTRNOP 0x0 /* I2C attribute NOP. */
/* Code macros used for constructing I2C command bytes. */
-#define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
-#define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
-#define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
+#define S626_I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
+#define S626_I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
+#define S626_I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
/* DEBI command constants. */
-#define DEBI_CMD_SIZE16 (2 << 17) /* Transfer size is always
+#define S626_DEBI_CMD_SIZE16 (2 << 17) /* Transfer size is always
* 2 bytes. */
-#define DEBI_CMD_READ 0x00010000 /* Read operation. */
-#define DEBI_CMD_WRITE 0x00000000 /* Write operation. */
+#define S626_DEBI_CMD_READ 0x00010000 /* Read operation. */
+#define S626_DEBI_CMD_WRITE 0x00000000 /* Write operation. */
/* Read immediate 2 bytes. */
-#define DEBI_CMD_RDWORD (DEBI_CMD_READ | DEBI_CMD_SIZE16)
+#define S626_DEBI_CMD_RDWORD (S626_DEBI_CMD_READ | S626_DEBI_CMD_SIZE16)
/* Write immediate 2 bytes. */
-#define DEBI_CMD_WRWORD (DEBI_CMD_WRITE | DEBI_CMD_SIZE16)
+#define S626_DEBI_CMD_WRWORD (S626_DEBI_CMD_WRITE | S626_DEBI_CMD_SIZE16)
/* DEBI configuration constants. */
-#define DEBI_CFG_XIRQ_EN 0x80000000 /* Enable external interrupt
+#define S626_DEBI_CFG_XIRQ_EN 0x80000000 /* Enable external interrupt
* on GPIO3. */
-#define DEBI_CFG_XRESUME 0x40000000 /* Resume block */
+#define S626_DEBI_CFG_XRESUME 0x40000000 /* Resume block */
/* Transfer when XIRQ
* deasserted. */
-#define DEBI_CFG_TOQ 0x03C00000 /* Timeout (15 PCI cycles). */
-#define DEBI_CFG_FAST 0x10000000 /* Fast mode enable. */
+#define S626_DEBI_CFG_TOQ 0x03C00000 /* Timeout (15 PCI cycles). */
+#define S626_DEBI_CFG_FAST 0x10000000 /* Fast mode enable. */
/* 4-bit field that specifies DEBI timeout value in PCI clock cycles: */
-#define DEBI_CFG_TOUT_BIT 22 /* Finish DEBI cycle after this many
+#define S626_DEBI_CFG_TOUT_BIT 22 /* Finish DEBI cycle after this many
* clocks. */
/* 2-bit field that specifies Endian byte lane steering: */
-#define DEBI_CFG_SWAP_NONE 0x00000000 /* Straight - don't swap any
+#define S626_DEBI_CFG_SWAP_NONE 0x00000000 /* Straight - don't swap any
* bytes (Intel). */
-#define DEBI_CFG_SWAP_2 0x00100000 /* 2-byte swap (Motorola). */
-#define DEBI_CFG_SWAP_4 0x00200000 /* 4-byte swap. */
-#define DEBI_CFG_SLAVE16 0x00080000 /* Slave is able to serve
+#define S626_DEBI_CFG_SWAP_2 0x00100000 /* 2-byte swap (Motorola). */
+#define S626_DEBI_CFG_SWAP_4 0x00200000 /* 4-byte swap. */
+#define S626_DEBI_CFG_SLAVE16 0x00080000 /* Slave is able to serve
* 16-bit cycles. */
-#define DEBI_CFG_INC 0x00040000 /* Enable address increment
+#define S626_DEBI_CFG_INC 0x00040000 /* Enable address increment
* for block transfers. */
-#define DEBI_CFG_INTEL 0x00020000 /* Intel style local bus. */
-#define DEBI_CFG_TIMEROFF 0x00010000 /* Disable timer. */
+#define S626_DEBI_CFG_INTEL 0x00020000 /* Intel style local bus. */
+#define S626_DEBI_CFG_TIMEROFF 0x00010000 /* Disable timer. */
-#if PLATFORM == INTEL
+#if S626_PLATFORM == S626_INTEL
-#define DEBI_TOUT 7 /* Wait 7 PCI clocks (212 ns) before
+#define S626_DEBI_TOUT 7 /* Wait 7 PCI clocks (212 ns) before
* polling RDY. */
/* Intel byte lane steering (pass through all byte lanes). */
-#define DEBI_SWAP DEBI_CFG_SWAP_NONE
+#define S626_DEBI_SWAP S626_DEBI_CFG_SWAP_NONE
-#elif PLATFORM == MOTOROLA
+#elif S626_PLATFORM == S626_MOTOROLA
-#define DEBI_TOUT 15 /* Wait 15 PCI clocks (454 ns) maximum
+#define S626_DEBI_TOUT 15 /* Wait 15 PCI clocks (454 ns) maximum
* before timing out. */
/* Motorola byte lane steering. */
-#define DEBI_SWAP DEBI_CFG_SWAP_2
+#define S626_DEBI_SWAP S626_DEBI_CFG_SWAP_2
#endif
/* DEBI page table constants. */
-#define DEBI_PAGE_DISABLE 0x00000000 /* Paging disable. */
+#define S626_DEBI_PAGE_DISABLE 0x00000000 /* Paging disable. */
/* ******* EXTRA FROM OTHER SENSORAY * .h ******* */
/* LoadSrc values: */
-#define LOADSRC_INDX 0 /* Preload core in response to Index. */
-#define LOADSRC_OVER 1 /* Preload core in response to
+#define S626_LOADSRC_INDX 0 /* Preload core in response to Index. */
+#define S626_LOADSRC_OVER 1 /* Preload core in response to
* Overflow. */
-#define LOADSRCB_OVERA 2 /* Preload B core in response to
+#define S626_LOADSRCB_OVERA 2 /* Preload B core in response to
* A Overflow. */
-#define LOADSRC_NONE 3 /* Never preload core. */
+#define S626_LOADSRC_NONE 3 /* Never preload core. */
/* IntSrc values: */
-#define INTSRC_NONE 0 /* Interrupts disabled. */
-#define INTSRC_OVER 1 /* Interrupt on Overflow. */
-#define INTSRC_INDX 2 /* Interrupt on Index. */
-#define INTSRC_BOTH 3 /* Interrupt on Index or Overflow. */
+#define S626_INTSRC_NONE 0 /* Interrupts disabled. */
+#define S626_INTSRC_OVER 1 /* Interrupt on Overflow. */
+#define S626_INTSRC_INDX 2 /* Interrupt on Index. */
+#define S626_INTSRC_BOTH 3 /* Interrupt on Index or Overflow. */
/* LatchSrc values: */
-#define LATCHSRC_AB_READ 0 /* Latch on read. */
-#define LATCHSRC_A_INDXA 1 /* Latch A on A Index. */
-#define LATCHSRC_B_INDXB 2 /* Latch B on B Index. */
-#define LATCHSRC_B_OVERA 3 /* Latch B on A Overflow. */
+#define S626_LATCHSRC_AB_READ 0 /* Latch on read. */
+#define S626_LATCHSRC_A_INDXA 1 /* Latch A on A Index. */
+#define S626_LATCHSRC_B_INDXB 2 /* Latch B on B Index. */
+#define S626_LATCHSRC_B_OVERA 3 /* Latch B on A Overflow. */
/* IndxSrc values: */
-#define INDXSRC_HARD 0 /* Hardware or software index. */
-#define INDXSRC_SOFT 1 /* Software index only. */
+#define S626_INDXSRC_HARD 0 /* Hardware or software index. */
+#define S626_INDXSRC_SOFT 1 /* Software index only. */
/* IndxPol values: */
-#define INDXPOL_POS 0 /* Index input is active high. */
-#define INDXPOL_NEG 1 /* Index input is active low. */
+#define S626_INDXPOL_POS 0 /* Index input is active high. */
+#define S626_INDXPOL_NEG 1 /* Index input is active low. */
/* ClkSrc values: */
-#define CLKSRC_COUNTER 0 /* Counter mode. */
-#define CLKSRC_TIMER 2 /* Timer mode. */
-#define CLKSRC_EXTENDER 3 /* Extender mode. */
+#define S626_CLKSRC_COUNTER 0 /* Counter mode. */
+#define S626_CLKSRC_TIMER 2 /* Timer mode. */
+#define S626_CLKSRC_EXTENDER 3 /* Extender mode. */
/* ClkPol values: */
-#define CLKPOL_POS 0 /* Counter/Extender clock is
+#define S626_CLKPOL_POS 0 /* Counter/Extender clock is
* active high. */
-#define CLKPOL_NEG 1 /* Counter/Extender clock is
+#define S626_CLKPOL_NEG 1 /* Counter/Extender clock is
* active low. */
-#define CNTDIR_UP 0 /* Timer counts up. */
-#define CNTDIR_DOWN 1 /* Timer counts down. */
+#define S626_CNTDIR_UP 0 /* Timer counts up. */
+#define S626_CNTDIR_DOWN 1 /* Timer counts down. */
/* ClkEnab values: */
-#define CLKENAB_ALWAYS 0 /* Clock always enabled. */
-#define CLKENAB_INDEX 1 /* Clock is enabled by index. */
+#define S626_CLKENAB_ALWAYS 0 /* Clock always enabled. */
+#define S626_CLKENAB_INDEX 1 /* Clock is enabled by index. */
/* ClkMult values: */
-#define CLKMULT_4X 0 /* 4x clock multiplier. */
-#define CLKMULT_2X 1 /* 2x clock multiplier. */
-#define CLKMULT_1X 2 /* 1x clock multiplier. */
+#define S626_CLKMULT_4X 0 /* 4x clock multiplier. */
+#define S626_CLKMULT_2X 1 /* 2x clock multiplier. */
+#define S626_CLKMULT_1X 2 /* 1x clock multiplier. */
/* Bit Field positions in COUNTER_SETUP structure: */
-#define BF_LOADSRC 9 /* Preload trigger. */
-#define BF_INDXSRC 7 /* Index source. */
-#define BF_INDXPOL 6 /* Index polarity. */
-#define BF_CLKSRC 4 /* Clock source. */
-#define BF_CLKPOL 3 /* Clock polarity/count direction. */
-#define BF_CLKMULT 1 /* Clock multiplier. */
-#define BF_CLKENAB 0 /* Clock enable. */
-
-/*
- * Enumerated counter operating modes specified by ClkSrc bit field in
- * a COUNTER_SETUP.
- */
-
-#define CLKSRC_COUNTER 0 /* Counter: ENC_C clock,
- * ENC_D direction. */
-#define CLKSRC_TIMER 2 /* Timer: SYS_C clock, direction
- * specified by ClkPol. */
-#define CLKSRC_EXTENDER 3 /* Extender: OVR_A clock,
- * ENC_D direction. */
+#define S626_BF_LOADSRC 9 /* Preload trigger. */
+#define S626_BF_INDXSRC 7 /* Index source. */
+#define S626_BF_INDXPOL 6 /* Index polarity. */
+#define S626_BF_CLKSRC 4 /* Clock source. */
+#define S626_BF_CLKPOL 3 /* Clock polarity/count direction. */
+#define S626_BF_CLKMULT 1 /* Clock multiplier. */
+#define S626_BF_CLKENAB 0 /* Clock enable. */
/* Enumerated counter clock multipliers. */
-#define MULT_X0 0x0003 /* Supports no multipliers;
+#define S626_MULT_X0 0x0003 /* Supports no multipliers;
* fixed physical multiplier = 3. */
-#define MULT_X1 0x0002 /* Supports multiplier x1;
+#define S626_MULT_X1 0x0002 /* Supports multiplier x1;
* fixed physical multiplier = 2. */
-#define MULT_X2 0x0001 /* Supports multipliers x1, x2;
+#define S626_MULT_X2 0x0001 /* Supports multipliers x1, x2;
* physical multipliers = 1 or 2. */
-#define MULT_X4 0x0000 /* Supports multipliers x1, x2, x4;
+#define S626_MULT_X4 0x0000 /* Supports multipliers x1, x2, x4;
* physical multipliers = 0, 1 or 2. */
/* Sanity-check limits for parameters. */
-#define NUM_COUNTERS 6 /* Maximum valid counter
+#define S626_NUM_COUNTERS 6 /* Maximum valid counter
* logical channel number. */
-#define NUM_INTSOURCES 4
-#define NUM_LATCHSOURCES 4
-#define NUM_CLKMULTS 4
-#define NUM_CLKSOURCES 4
-#define NUM_CLKPOLS 2
-#define NUM_INDEXPOLS 2
-#define NUM_INDEXSOURCES 2
-#define NUM_LOADTRIGS 4
+#define S626_NUM_INTSOURCES 4
+#define S626_NUM_LATCHSOURCES 4
+#define S626_NUM_CLKMULTS 4
+#define S626_NUM_CLKSOURCES 4
+#define S626_NUM_CLKPOLS 2
+#define S626_NUM_INDEXPOLS 2
+#define S626_NUM_INDEXSOURCES 2
+#define S626_NUM_LOADTRIGS 4
/* Bit field positions in CRA and CRB counter control registers. */
/* Bit field positions in CRA: */
-#define CRABIT_INDXSRC_B 14 /* B index source. */
-#define CRABIT_CLKSRC_B 12 /* B clock source. */
-#define CRABIT_INDXPOL_A 11 /* A index polarity. */
-#define CRABIT_LOADSRC_A 9 /* A preload trigger. */
-#define CRABIT_CLKMULT_A 7 /* A clock multiplier. */
-#define CRABIT_INTSRC_A 5 /* A interrupt source. */
-#define CRABIT_CLKPOL_A 4 /* A clock polarity. */
-#define CRABIT_INDXSRC_A 2 /* A index source. */
-#define CRABIT_CLKSRC_A 0 /* A clock source. */
+#define S626_CRABIT_INDXSRC_B 14 /* B index source. */
+#define S626_CRABIT_CLKSRC_B 12 /* B clock source. */
+#define S626_CRABIT_INDXPOL_A 11 /* A index polarity. */
+#define S626_CRABIT_LOADSRC_A 9 /* A preload trigger. */
+#define S626_CRABIT_CLKMULT_A 7 /* A clock multiplier. */
+#define S626_CRABIT_INTSRC_A 5 /* A interrupt source. */
+#define S626_CRABIT_CLKPOL_A 4 /* A clock polarity. */
+#define S626_CRABIT_INDXSRC_A 2 /* A index source. */
+#define S626_CRABIT_CLKSRC_A 0 /* A clock source. */
/* Bit field positions in CRB: */
-#define CRBBIT_INTRESETCMD 15 /* Interrupt reset command. */
-#define CRBBIT_INTRESET_B 14 /* B interrupt reset enable. */
-#define CRBBIT_INTRESET_A 13 /* A interrupt reset enable. */
-#define CRBBIT_CLKENAB_A 12 /* A clock enable. */
-#define CRBBIT_INTSRC_B 10 /* B interrupt source. */
-#define CRBBIT_LATCHSRC 8 /* A/B latch source. */
-#define CRBBIT_LOADSRC_B 6 /* B preload trigger. */
-#define CRBBIT_CLKMULT_B 3 /* B clock multiplier. */
-#define CRBBIT_CLKENAB_B 2 /* B clock enable. */
-#define CRBBIT_INDXPOL_B 1 /* B index polarity. */
-#define CRBBIT_CLKPOL_B 0 /* B clock polarity. */
+#define S626_CRBBIT_INTRESETCMD 15 /* Interrupt reset command. */
+#define S626_CRBBIT_INTRESET_B 14 /* B interrupt reset enable. */
+#define S626_CRBBIT_INTRESET_A 13 /* A interrupt reset enable. */
+#define S626_CRBBIT_CLKENAB_A 12 /* A clock enable. */
+#define S626_CRBBIT_INTSRC_B 10 /* B interrupt source. */
+#define S626_CRBBIT_LATCHSRC 8 /* A/B latch source. */
+#define S626_CRBBIT_LOADSRC_B 6 /* B preload trigger. */
+#define S626_CRBBIT_CLKMULT_B 3 /* B clock multiplier. */
+#define S626_CRBBIT_CLKENAB_B 2 /* B clock enable. */
+#define S626_CRBBIT_INDXPOL_B 1 /* B index polarity. */
+#define S626_CRBBIT_CLKPOL_B 0 /* B clock polarity. */
/* Bit field masks for CRA and CRB. */
-#define CRAMSK_INDXSRC_B (3 << CRABIT_INDXSRC_B)
-#define CRAMSK_CLKSRC_B (3 << CRABIT_CLKSRC_B)
-#define CRAMSK_INDXPOL_A (1 << CRABIT_INDXPOL_A)
-#define CRAMSK_LOADSRC_A (3 << CRABIT_LOADSRC_A)
-#define CRAMSK_CLKMULT_A (3 << CRABIT_CLKMULT_A)
-#define CRAMSK_INTSRC_A (3 << CRABIT_INTSRC_A)
-#define CRAMSK_CLKPOL_A (3 << CRABIT_CLKPOL_A)
-#define CRAMSK_INDXSRC_A (3 << CRABIT_INDXSRC_A)
-#define CRAMSK_CLKSRC_A (3 << CRABIT_CLKSRC_A)
-
-#define CRBMSK_INTRESETCMD (1 << CRBBIT_INTRESETCMD)
-#define CRBMSK_INTRESET_B (1 << CRBBIT_INTRESET_B)
-#define CRBMSK_INTRESET_A (1 << CRBBIT_INTRESET_A)
-#define CRBMSK_CLKENAB_A (1 << CRBBIT_CLKENAB_A)
-#define CRBMSK_INTSRC_B (3 << CRBBIT_INTSRC_B)
-#define CRBMSK_LATCHSRC (3 << CRBBIT_LATCHSRC)
-#define CRBMSK_LOADSRC_B (3 << CRBBIT_LOADSRC_B)
-#define CRBMSK_CLKMULT_B (3 << CRBBIT_CLKMULT_B)
-#define CRBMSK_CLKENAB_B (1 << CRBBIT_CLKENAB_B)
-#define CRBMSK_INDXPOL_B (1 << CRBBIT_INDXPOL_B)
-#define CRBMSK_CLKPOL_B (1 << CRBBIT_CLKPOL_B)
+#define S626_CRAMSK_INDXSRC_B (3 << S626_CRABIT_INDXSRC_B)
+#define S626_CRAMSK_CLKSRC_B (3 << S626_CRABIT_CLKSRC_B)
+#define S626_CRAMSK_INDXPOL_A (1 << S626_CRABIT_INDXPOL_A)
+#define S626_CRAMSK_LOADSRC_A (3 << S626_CRABIT_LOADSRC_A)
+#define S626_CRAMSK_CLKMULT_A (3 << S626_CRABIT_CLKMULT_A)
+#define S626_CRAMSK_INTSRC_A (3 << S626_CRABIT_INTSRC_A)
+#define S626_CRAMSK_CLKPOL_A (3 << S626_CRABIT_CLKPOL_A)
+#define S626_CRAMSK_INDXSRC_A (3 << S626_CRABIT_INDXSRC_A)
+#define S626_CRAMSK_CLKSRC_A (3 << S626_CRABIT_CLKSRC_A)
+
+#define S626_CRBMSK_INTRESETCMD (1 << S626_CRBBIT_INTRESETCMD)
+#define S626_CRBMSK_INTRESET_B (1 << S626_CRBBIT_INTRESET_B)
+#define S626_CRBMSK_INTRESET_A (1 << S626_CRBBIT_INTRESET_A)
+#define S626_CRBMSK_CLKENAB_A (1 << S626_CRBBIT_CLKENAB_A)
+#define S626_CRBMSK_INTSRC_B (3 << S626_CRBBIT_INTSRC_B)
+#define S626_CRBMSK_LATCHSRC (3 << S626_CRBBIT_LATCHSRC)
+#define S626_CRBMSK_LOADSRC_B (3 << S626_CRBBIT_LOADSRC_B)
+#define S626_CRBMSK_CLKMULT_B (3 << S626_CRBBIT_CLKMULT_B)
+#define S626_CRBMSK_CLKENAB_B (1 << S626_CRBBIT_CLKENAB_B)
+#define S626_CRBMSK_INDXPOL_B (1 << S626_CRBBIT_INDXPOL_B)
+#define S626_CRBMSK_CLKPOL_B (1 << S626_CRBBIT_CLKPOL_B)
/* Interrupt reset control bits. */
-#define CRBMSK_INTCTRL \
- (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A | CRBMSK_INTRESET_B)
+#define S626_CRBMSK_INTCTRL (S626_CRBMSK_INTRESETCMD | \
+ S626_CRBMSK_INTRESET_A | \
+ S626_CRBMSK_INTRESET_B)
/* Bit field positions for standardized SETUP structure. */
-#define STDBIT_INTSRC 13
-#define STDBIT_LATCHSRC 11
-#define STDBIT_LOADSRC 9
-#define STDBIT_INDXSRC 7
-#define STDBIT_INDXPOL 6
-#define STDBIT_CLKSRC 4
-#define STDBIT_CLKPOL 3
-#define STDBIT_CLKMULT 1
-#define STDBIT_CLKENAB 0
+#define S626_STDBIT_INTSRC 13
+#define S626_STDBIT_LATCHSRC 11
+#define S626_STDBIT_LOADSRC 9
+#define S626_STDBIT_INDXSRC 7
+#define S626_STDBIT_INDXPOL 6
+#define S626_STDBIT_CLKSRC 4
+#define S626_STDBIT_CLKPOL 3
+#define S626_STDBIT_CLKMULT 1
+#define S626_STDBIT_CLKENAB 0
/* Bit field masks for standardized SETUP structure. */
-#define STDMSK_INTSRC (3 << STDBIT_INTSRC)
-#define STDMSK_LATCHSRC (3 << STDBIT_LATCHSRC)
-#define STDMSK_LOADSRC (3 << STDBIT_LOADSRC)
-#define STDMSK_INDXSRC (1 << STDBIT_INDXSRC)
-#define STDMSK_INDXPOL (1 << STDBIT_INDXPOL)
-#define STDMSK_CLKSRC (3 << STDBIT_CLKSRC)
-#define STDMSK_CLKPOL (1 << STDBIT_CLKPOL)
-#define STDMSK_CLKMULT (3 << STDBIT_CLKMULT)
-#define STDMSK_CLKENAB (1 << STDBIT_CLKENAB)
+#define S626_STDMSK_INTSRC (3 << S626_STDBIT_INTSRC)
+#define S626_STDMSK_LATCHSRC (3 << S626_STDBIT_LATCHSRC)
+#define S626_STDMSK_LOADSRC (3 << S626_STDBIT_LOADSRC)
+#define S626_STDMSK_INDXSRC (1 << S626_STDBIT_INDXSRC)
+#define S626_STDMSK_INDXPOL (1 << S626_STDBIT_INDXPOL)
+#define S626_STDMSK_CLKSRC (3 << S626_STDBIT_CLKSRC)
+#define S626_STDMSK_CLKPOL (1 << S626_STDBIT_CLKPOL)
+#define S626_STDMSK_CLKMULT (3 << S626_STDBIT_CLKMULT)
+#define S626_STDMSK_CLKENAB (1 << S626_STDBIT_CLKENAB)
#endif