return res & mask;
}
-/*
- * Now the non-atomic variants. We let the compiler handle all
- * optimisations for these. These are all _native_ endian.
- */
-static inline void __set_bit(int nr, volatile unsigned long *p)
-{
- p[nr >> 5] |= (1UL << (nr & 31));
-}
-
-static inline void __clear_bit(int nr, volatile unsigned long *p)
-{
- p[nr >> 5] &= ~(1UL << (nr & 31));
-}
-
-static inline void __change_bit(int nr, volatile unsigned long *p)
-{
- p[nr >> 5] ^= (1UL << (nr & 31));
-}
-
-static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
-{
- unsigned long oldval, mask = 1UL << (nr & 31);
-
- p += nr >> 5;
-
- oldval = *p;
- *p = oldval | mask;
- return oldval & mask;
-}
-
-static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
-{
- unsigned long oldval, mask = 1UL << (nr & 31);
-
- p += nr >> 5;
-
- oldval = *p;
- *p = oldval & ~mask;
- return oldval & mask;
-}
-
-static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
-{
- unsigned long oldval, mask = 1UL << (nr & 31);
-
- p += nr >> 5;
-
- oldval = *p;
- *p = oldval ^ mask;
- return oldval & mask;
-}
-
-/*
- * This routine doesn't need to be atomic.
- */
-static inline int __test_bit(int nr, const volatile unsigned long * p)
-{
- return (p[nr >> 5] >> (nr & 31)) & 1UL;
-}
+#include <asm-generic/bitops/non-atomic.h>
/*
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
#define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
#define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
#define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
-#define test_bit(nr,p) __test_bit(nr,p)
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
#define WORD_BITOFF_TO_LE(x) ((x))
-/*
- * ffz = Find First Zero in word. Undefined if no zero exists,
- * so code should check against ~0UL first..
- */
-static inline unsigned long ffz(unsigned long word)
-{
- int k;
-
- word = ~word;
- k = 31;
- if (word & 0x0000ffff) { k -= 16; word <<= 16; }
- if (word & 0x00ff0000) { k -= 8; word <<= 8; }
- if (word & 0x0f000000) { k -= 4; word <<= 4; }
- if (word & 0x30000000) { k -= 2; word <<= 2; }
- if (word & 0x40000000) { k -= 1; }
- return k;
-}
-
-/*
- * ffz = Find First Zero in word. Undefined if no zero exists,
- * so code should check against ~0UL first..
- */
-static inline unsigned long __ffs(unsigned long word)
-{
- int k;
-
- k = 31;
- if (word & 0x0000ffff) { k -= 16; word <<= 16; }
- if (word & 0x00ff0000) { k -= 8; word <<= 8; }
- if (word & 0x0f000000) { k -= 4; word <<= 4; }
- if (word & 0x30000000) { k -= 2; word <<= 2; }
- if (word & 0x40000000) { k -= 1; }
- return k;
-}
-
-/*
- * fls: find last bit set.
- */
-
-#define fls(x) generic_fls(x)
-#define fls64(x) generic_fls64(x)
-
-/*
- * ffs: find first bit set. This is defined the same way as
- * the libc and compiler builtin ffs routines, therefore
- * differs in spirit from the above ffz (man ffs).
- */
-
-#define ffs(x) generic_ffs(x)
-
-/*
- * Find first bit set in a 168-bit bitmap, where the first
- * 128 bits are unlikely to be set.
- */
-static inline int sched_find_first_bit(unsigned long *b)
-{
- unsigned long v;
- unsigned int off;
-
- for (off = 0; v = b[off], off < 4; off++) {
- if (unlikely(v))
- break;
- }
- return __ffs(v) + off * 32;
-}
-
-/*
- * hweightN: returns the hamming weight (i.e. the number
- * of bits set) of a N-bit word
- */
-
-#define hweight32(x) generic_hweight32(x)
-#define hweight16(x) generic_hweight16(x)
-#define hweight8(x) generic_hweight8(x)
+#include <asm-generic/bitops/ffz.h>
+#include <asm-generic/bitops/__ffs.h>
+#include <asm-generic/bitops/fls.h>
+#include <asm-generic/bitops/fls64.h>
+#include <asm-generic/bitops/ffs.h>
+#include <asm-generic/bitops/sched.h>
+#include <asm-generic/bitops/hweight.h>
/*
* Ext2 is defined to use little-endian byte ordering.
#define ext2_clear_bit_atomic(lock,nr,p) \
test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_test_bit(nr,p) \
- __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+ test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_find_first_zero_bit(p,sz) \
_find_first_zero_bit_le(p,sz)
#define ext2_find_next_zero_bit(p,sz,off) \
#define minix_set_bit(nr,p) \
__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_bit(nr,p) \
- __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
+ test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_and_set_bit(nr,p) \
__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_and_clear_bit(nr,p) \