0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
+static const u32 knl_dram_rule[] = {
+ 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
+ 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
+ 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
+ 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
+ 0x100, 0x108, 0x110, 0x118, /* 20-23 */
+};
+
#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};
+static const u32 knl_interleave_list[] = {
+ 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
+ 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
+ 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
+ 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
+ 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
+};
+
struct interleave_pkg {
unsigned char start;
unsigned char end;
/* Devices 12 Function 7 */
#define TOLM 0x80
-#define TOHM 0x84
+#define TOHM 0x84
#define HASWELL_TOLM 0xd0
#define HASWELL_TOHM_0 0xd4
#define HASWELL_TOHM_1 0xd8
+#define KNL_TOLM 0xd0
+#define KNL_TOHM_0 0xd4
+#define KNL_TOHM_1 0xd8
#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
+#define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
+
#define SAD_CONTROL 0xf4
/* Device 14 function 0 */
/* Device 15, function 0 */
#define MCMTR 0x7c
+#define KNL_MCMTR 0x624
#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
0x80, 0x84, 0x88,
};
+static const int knl_mtr_reg = 0xb60;
+
#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
#define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */
#define MAX_DIMMS 3 /* Max DIMMS per channel */
+#define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
+#define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
+#define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
enum type {
IVY_BRIDGE,
HASWELL,
BROADWELL,
+ KNIGHTS_LANDING,
};
struct sbridge_pvt;
struct mem_ctl_info *mci;
};
+struct knl_pvt {
+ struct pci_dev *pci_cha[KNL_MAX_CHAS];
+ struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
+ struct pci_dev *pci_mc0;
+ struct pci_dev *pci_mc1;
+ struct pci_dev *pci_mc0_misc;
+ struct pci_dev *pci_mc1_misc;
+ struct pci_dev *pci_mc_info; /* tolm, tohm */
+};
+
struct sbridge_pvt {
struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
struct pci_dev *pci_sad0, *pci_sad1;
/* Memory description */
u64 tolm, tohm;
+ struct knl_pvt knl;
};
#define PCI_DESCR(device_id, opt) \
{0,} /* 0 terminated list. */
};
+/* Knight's Landing Support */
+/*
+ * KNL's memory channels are swizzled between memory controllers.
+ * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
+ */
+#define knl_channel_remap(channel) ((channel + 3) % 6)
+
+/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
+/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL 0x7843
+/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
+/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
+/* SAD target - 1-29-1 (1 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
+/* Caching / Home Agent */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
+/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
+#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
+
+/*
+ * KNL differs from SB, IB, and Haswell in that it has multiple
+ * instances of the same device with the same device ID, so we handle that
+ * by creating as many copies in the table as we expect to find.
+ * (Like device ID must be grouped together.)
+ */
+
+static const struct pci_id_descr pci_dev_descr_knl[] = {
+ [0] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
+ [1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
+ [2 ... 3] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
+ [4 ... 41] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
+ [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
+ [48] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
+ [49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
+};
+
+static const struct pci_id_table pci_dev_descr_knl_table[] = {
+ PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
+ {0,}
+};
+
/*
* Broadwell support
*
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
+ {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
{0,} /* 0 terminated list. */
};
int ranks = (1 << RANK_CNT_BITS(mtr));
int max = 4;
- if (type == HASWELL || type == BROADWELL)
+ if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
max = 8;
if (ranks > max) {
return GET_BITFIELD(reg, 2, 3);
}
+static u64 knl_sad_limit(u32 reg)
+{
+ return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
+}
+
+static u32 knl_interleave_mode(u32 reg)
+{
+ return GET_BITFIELD(reg, 1, 2);
+}
+
+static char *knl_show_interleave_mode(u32 reg)
+{
+ char *s;
+
+ switch (knl_interleave_mode(reg)) {
+ case 0:
+ s = "use address bits [8:6]";
+ break;
+ case 1:
+ s = "use address bits [10:8]";
+ break;
+ case 2:
+ s = "use address bits [14:12]";
+ break;
+ case 3:
+ s = "use address bits [32:30]";
+ break;
+ default:
+ WARN_ON(1);
+ break;
+ }
+
+ return s;
+}
+
+static u32 dram_attr_knl(u32 reg)
+{
+ return GET_BITFIELD(reg, 3, 4);
+}
+
+
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
u32 reg;
return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
}
+static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
+{
+ /* DDR4 RDIMMS and LRDIMMS are supported */
+ return MEM_RDDR4;
+}
+
static u8 get_node_id(struct sbridge_pvt *pvt)
{
u32 reg;
return GET_BITFIELD(reg, 0, 3);
}
+static u8 knl_get_node_id(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
+ return GET_BITFIELD(reg, 0, 2);
+}
+
+
static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
return rc | 0x1ffffff;
}
+static u64 knl_get_tolm(struct sbridge_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®);
+ return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
+}
+
+static u64 knl_get_tohm(struct sbridge_pvt *pvt)
+{
+ u64 rc;
+ u32 reg_lo, reg_hi;
+
+ pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo);
+ pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi);
+ rc = ((u64)reg_hi << 32) | reg_lo;
+ return rc | 0x3ffffff;
+}
+
+
static u64 haswell_rir_limit(u32 reg)
{
return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
case BROADWELL:
id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
break;
+ case KNIGHTS_LANDING:
+ /*
+ * KNL doesn't group things by bus the same way
+ * SB/IB/Haswell does.
+ */
+ id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
+ break;
default:
return -ENODEV;
}
- pdev = get_pdev_same_bus(bus, id);
+ if (type != KNIGHTS_LANDING)
+ pdev = get_pdev_same_bus(bus, id);
+ else
+ pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
+
if (!pdev) {
sbridge_printk(KERN_ERR, "Couldn't find PCI device "
"%04x:%04x! on bus %02d\n",
return -ENODEV;
}
- pci_read_config_dword(pdev, MCMTR, &mcmtr);
+ pci_read_config_dword(pdev,
+ type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
if (!IS_ECC_ENABLED(mcmtr)) {
sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
return -ENODEV;
return 0;
}
+/* Low bits of TAD limit, and some metadata. */
+static const u32 knl_tad_dram_limit_lo[] = {
+ 0x400, 0x500, 0x600, 0x700,
+ 0x800, 0x900, 0xa00, 0xb00,
+};
+
+/* Low bits of TAD offset. */
+static const u32 knl_tad_dram_offset_lo[] = {
+ 0x404, 0x504, 0x604, 0x704,
+ 0x804, 0x904, 0xa04, 0xb04,
+};
+
+/* High 16 bits of TAD limit and offset. */
+static const u32 knl_tad_dram_hi[] = {
+ 0x408, 0x508, 0x608, 0x708,
+ 0x808, 0x908, 0xa08, 0xb08,
+};
+
+/* Number of ways a tad entry is interleaved. */
+static const u32 knl_tad_ways[] = {
+ 8, 6, 4, 3, 2, 1,
+};
+
+/*
+ * Retrieve the n'th Target Address Decode table entry
+ * from the memory controller's TAD table.
+ *
+ * @pvt: driver private data
+ * @entry: which entry you want to retrieve
+ * @mc: which memory controller (0 or 1)
+ * @offset: output tad range offset
+ * @limit: output address of first byte above tad range
+ * @ways: output number of interleave ways
+ *
+ * The offset value has curious semantics. It's a sort of running total
+ * of the sizes of all the memory regions that aren't mapped in this
+ * tad table.
+ */
+static int knl_get_tad(const struct sbridge_pvt *pvt,
+ const int entry,
+ const int mc,
+ u64 *offset,
+ u64 *limit,
+ int *ways)
+{
+ u32 reg_limit_lo, reg_offset_lo, reg_hi;
+ struct pci_dev *pci_mc;
+ int way_id;
+
+ switch (mc) {
+ case 0:
+ pci_mc = pvt->knl.pci_mc0;
+ break;
+ case 1:
+ pci_mc = pvt->knl.pci_mc1;
+ break;
+ default:
+ WARN_ON(1);
+ return -EINVAL;
+ }
+
+ pci_read_config_dword(pci_mc,
+ knl_tad_dram_limit_lo[entry], ®_limit_lo);
+ pci_read_config_dword(pci_mc,
+ knl_tad_dram_offset_lo[entry], ®_offset_lo);
+ pci_read_config_dword(pci_mc,
+ knl_tad_dram_hi[entry], ®_hi);
+
+ /* Is this TAD entry enabled? */
+ if (!GET_BITFIELD(reg_limit_lo, 0, 0))
+ return -ENODEV;
+
+ way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
+
+ if (way_id < ARRAY_SIZE(knl_tad_ways)) {
+ *ways = knl_tad_ways[way_id];
+ } else {
+ *ways = 0;
+ sbridge_printk(KERN_ERR,
+ "Unexpected value %d in mc_tad_limit_lo wayness field\n",
+ way_id);
+ return -ENODEV;
+ }
+
+ /*
+ * The least significant 6 bits of base and limit are truncated.
+ * For limit, we fill the missing bits with 1s.
+ */
+ *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
+ ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
+ *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
+ ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
+
+ return 0;
+}
+
+/* Determine which memory controller is responsible for a given channel. */
+static int knl_channel_mc(int channel)
+{
+ WARN_ON(channel < 0 || channel >= 6);
+
+ return channel < 3 ? 1 : 0;
+}
+
+/*
+ * Get the Nth entry from EDC_ROUTE_TABLE register.
+ * (This is the per-tile mapping of logical interleave targets to
+ * physical EDC modules.)
+ *
+ * entry 0: 0:2
+ * 1: 3:5
+ * 2: 6:8
+ * 3: 9:11
+ * 4: 12:14
+ * 5: 15:17
+ * 6: 18:20
+ * 7: 21:23
+ * reserved: 24:31
+ */
+static u32 knl_get_edc_route(int entry, u32 reg)
+{
+ WARN_ON(entry >= KNL_MAX_EDCS);
+ return GET_BITFIELD(reg, entry*3, (entry*3)+2);
+}
+
+/*
+ * Get the Nth entry from MC_ROUTE_TABLE register.
+ * (This is the per-tile mapping of logical interleave targets to
+ * physical DRAM channels modules.)
+ *
+ * entry 0: mc 0:2 channel 18:19
+ * 1: mc 3:5 channel 20:21
+ * 2: mc 6:8 channel 22:23
+ * 3: mc 9:11 channel 24:25
+ * 4: mc 12:14 channel 26:27
+ * 5: mc 15:17 channel 28:29
+ * reserved: 30:31
+ *
+ * Though we have 3 bits to identify the MC, we should only see
+ * the values 0 or 1.
+ */
+
+static u32 knl_get_mc_route(int entry, u32 reg)
+{
+ int mc, chan;
+
+ WARN_ON(entry >= KNL_MAX_CHANNELS);
+
+ mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
+ chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
+
+ return knl_channel_remap(mc*3 + chan);
+}
+
+/*
+ * Render the EDC_ROUTE register in human-readable form.
+ * Output string s should be at least KNL_MAX_EDCS*2 bytes.
+ */
+static void knl_show_edc_route(u32 reg, char *s)
+{
+ int i;
+
+ for (i = 0; i < KNL_MAX_EDCS; i++) {
+ s[i*2] = knl_get_edc_route(i, reg) + '0';
+ s[i*2+1] = '-';
+ }
+
+ s[KNL_MAX_EDCS*2 - 1] = '\0';
+}
+
+/*
+ * Render the MC_ROUTE register in human-readable form.
+ * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
+ */
+static void knl_show_mc_route(u32 reg, char *s)
+{
+ int i;
+
+ for (i = 0; i < KNL_MAX_CHANNELS; i++) {
+ s[i*2] = knl_get_mc_route(i, reg) + '0';
+ s[i*2+1] = '-';
+ }
+
+ s[KNL_MAX_CHANNELS*2 - 1] = '\0';
+}
+
+#define KNL_EDC_ROUTE 0xb8
+#define KNL_MC_ROUTE 0xb4
+
+/* Is this dram rule backed by regular DRAM in flat mode? */
+#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
+
+/* Is this dram rule cached? */
+#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
+
+/* Is this rule backed by edc ? */
+#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
+
+/* Is this rule backed by DRAM, cacheable in EDRAM? */
+#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
+
+/* Is this rule mod3? */
+#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
+
+/*
+ * Figure out how big our RAM modules are.
+ *
+ * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
+ * have to figure this out from the SAD rules, interleave lists, route tables,
+ * and TAD rules.
+ *
+ * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
+ * inspect the TAD rules to figure out how large the SAD regions really are.
+ *
+ * When we know the real size of a SAD region and how many ways it's
+ * interleaved, we know the individual contribution of each channel to
+ * TAD is size/ways.
+ *
+ * Finally, we have to check whether each channel participates in each SAD
+ * region.
+ *
+ * Fortunately, KNL only supports one DIMM per channel, so once we know how
+ * much memory the channel uses, we know the DIMM is at least that large.
+ * (The BIOS might possibly choose not to map all available memory, in which
+ * case we will underreport the size of the DIMM.)
+ *
+ * In theory, we could try to determine the EDC sizes as well, but that would
+ * only work in flat mode, not in cache mode.
+ *
+ * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
+ * elements)
+ */
+static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
+{
+ u64 sad_base, sad_size, sad_limit = 0;
+ u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
+ int sad_rule = 0;
+ int tad_rule = 0;
+ int intrlv_ways, tad_ways;
+ u32 first_pkg, pkg;
+ int i;
+ u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
+ u32 dram_rule, interleave_reg;
+ u32 mc_route_reg[KNL_MAX_CHAS];
+ u32 edc_route_reg[KNL_MAX_CHAS];
+ int edram_only;
+ char edc_route_string[KNL_MAX_EDCS*2];
+ char mc_route_string[KNL_MAX_CHANNELS*2];
+ int cur_reg_start;
+ int mc;
+ int channel;
+ int way;
+ int participants[KNL_MAX_CHANNELS];
+ int participant_count = 0;
+
+ for (i = 0; i < KNL_MAX_CHANNELS; i++)
+ mc_sizes[i] = 0;
+
+ /* Read the EDC route table in each CHA. */
+ cur_reg_start = 0;
+ for (i = 0; i < KNL_MAX_CHAS; i++) {
+ pci_read_config_dword(pvt->knl.pci_cha[i],
+ KNL_EDC_ROUTE, &edc_route_reg[i]);
+
+ if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
+ knl_show_edc_route(edc_route_reg[i-1],
+ edc_route_string);
+ if (cur_reg_start == i-1)
+ edac_dbg(0, "edc route table for CHA %d: %s\n",
+ cur_reg_start, edc_route_string);
+ else
+ edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
+ cur_reg_start, i-1, edc_route_string);
+ cur_reg_start = i;
+ }
+ }
+ knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
+ if (cur_reg_start == i-1)
+ edac_dbg(0, "edc route table for CHA %d: %s\n",
+ cur_reg_start, edc_route_string);
+ else
+ edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
+ cur_reg_start, i-1, edc_route_string);
+
+ /* Read the MC route table in each CHA. */
+ cur_reg_start = 0;
+ for (i = 0; i < KNL_MAX_CHAS; i++) {
+ pci_read_config_dword(pvt->knl.pci_cha[i],
+ KNL_MC_ROUTE, &mc_route_reg[i]);
+
+ if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
+ knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
+ if (cur_reg_start == i-1)
+ edac_dbg(0, "mc route table for CHA %d: %s\n",
+ cur_reg_start, mc_route_string);
+ else
+ edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
+ cur_reg_start, i-1, mc_route_string);
+ cur_reg_start = i;
+ }
+ }
+ knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
+ if (cur_reg_start == i-1)
+ edac_dbg(0, "mc route table for CHA %d: %s\n",
+ cur_reg_start, mc_route_string);
+ else
+ edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
+ cur_reg_start, i-1, mc_route_string);
+
+ /* Process DRAM rules */
+ for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
+ /* previous limit becomes the new base */
+ sad_base = sad_limit;
+
+ pci_read_config_dword(pvt->pci_sad0,
+ pvt->info.dram_rule[sad_rule], &dram_rule);
+
+ if (!DRAM_RULE_ENABLE(dram_rule))
+ break;
+
+ edram_only = KNL_EDRAM_ONLY(dram_rule);
+
+ sad_limit = pvt->info.sad_limit(dram_rule)+1;
+ sad_size = sad_limit - sad_base;
+
+ pci_read_config_dword(pvt->pci_sad0,
+ pvt->info.interleave_list[sad_rule], &interleave_reg);
+
+ /*
+ * Find out how many ways this dram rule is interleaved.
+ * We stop when we see the first channel again.
+ */
+ first_pkg = sad_pkg(pvt->info.interleave_pkg,
+ interleave_reg, 0);
+ for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
+ pkg = sad_pkg(pvt->info.interleave_pkg,
+ interleave_reg, intrlv_ways);
+
+ if ((pkg & 0x8) == 0) {
+ /*
+ * 0 bit means memory is non-local,
+ * which KNL doesn't support
+ */
+ edac_dbg(0, "Unexpected interleave target %d\n",
+ pkg);
+ return -1;
+ }
+
+ if (pkg == first_pkg)
+ break;
+ }
+ if (KNL_MOD3(dram_rule))
+ intrlv_ways *= 3;
+
+ edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
+ sad_rule,
+ sad_base,
+ sad_limit,
+ intrlv_ways,
+ edram_only ? ", EDRAM" : "");
+
+ /*
+ * Find out how big the SAD region really is by iterating
+ * over TAD tables (SAD regions may contain holes).
+ * Each memory controller might have a different TAD table, so
+ * we have to look at both.
+ *
+ * Livespace is the memory that's mapped in this TAD table,
+ * deadspace is the holes (this could be the MMIO hole, or it
+ * could be memory that's mapped by the other TAD table but
+ * not this one).
+ */
+ for (mc = 0; mc < 2; mc++) {
+ sad_actual_size[mc] = 0;
+ tad_livespace = 0;
+ for (tad_rule = 0;
+ tad_rule < ARRAY_SIZE(
+ knl_tad_dram_limit_lo);
+ tad_rule++) {
+ if (knl_get_tad(pvt,
+ tad_rule,
+ mc,
+ &tad_deadspace,
+ &tad_limit,
+ &tad_ways))
+ break;
+
+ tad_size = (tad_limit+1) -
+ (tad_livespace + tad_deadspace);
+ tad_livespace += tad_size;
+ tad_base = (tad_limit+1) - tad_size;
+
+ if (tad_base < sad_base) {
+ if (tad_limit > sad_base)
+ edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
+ } else if (tad_base < sad_limit) {
+ if (tad_limit+1 > sad_limit) {
+ edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
+ } else {
+ /* TAD region is completely inside SAD region */
+ edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
+ tad_rule, tad_base,
+ tad_limit, tad_size,
+ mc);
+ sad_actual_size[mc] += tad_size;
+ }
+ }
+ tad_base = tad_limit+1;
+ }
+ }
+
+ for (mc = 0; mc < 2; mc++) {
+ edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
+ mc, sad_actual_size[mc], sad_actual_size[mc]);
+ }
+
+ /* Ignore EDRAM rule */
+ if (edram_only)
+ continue;
+
+ /* Figure out which channels participate in interleave. */
+ for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
+ participants[channel] = 0;
+
+ /* For each channel, does at least one CHA have
+ * this channel mapped to the given target?
+ */
+ for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
+ for (way = 0; way < intrlv_ways; way++) {
+ int target;
+ int cha;
+
+ if (KNL_MOD3(dram_rule))
+ target = way;
+ else
+ target = 0x7 & sad_pkg(
+ pvt->info.interleave_pkg, interleave_reg, way);
+
+ for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
+ if (knl_get_mc_route(target,
+ mc_route_reg[cha]) == channel
+ && participants[channel]) {
+ participant_count++;
+ participants[channel] = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ if (participant_count != intrlv_ways)
+ edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
+ participant_count, intrlv_ways);
+
+ for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
+ mc = knl_channel_mc(channel);
+ if (participants[channel]) {
+ edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
+ channel,
+ sad_actual_size[mc]/intrlv_ways,
+ sad_rule);
+ mc_sizes[channel] +=
+ sad_actual_size[mc]/intrlv_ways;
+ }
+ }
+ }
+
+ return 0;
+}
+
static int get_dimm_config(struct mem_ctl_info *mci)
{
struct sbridge_pvt *pvt = mci->pvt_info;
u32 reg;
enum edac_type mode;
enum mem_type mtype;
+ int channels = pvt->info.type == KNIGHTS_LANDING ?
+ KNL_MAX_CHANNELS : NUM_CHANNELS;
+ u64 knl_mc_sizes[KNL_MAX_CHANNELS];
- if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
+ if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
+ pvt->info.type == KNIGHTS_LANDING)
pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®);
else
pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®);
- pvt->sbridge_dev->source_id = SOURCE_ID(reg);
+ if (pvt->info.type == KNIGHTS_LANDING)
+ pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
+ else
+ pvt->sbridge_dev->source_id = SOURCE_ID(reg);
pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
pvt->sbridge_dev->node_id,
pvt->sbridge_dev->source_id);
- pci_read_config_dword(pvt->pci_ras, RASENABLES, ®);
- if (IS_MIRROR_ENABLED(reg)) {
- edac_dbg(0, "Memory mirror is enabled\n");
- pvt->is_mirrored = true;
- } else {
- edac_dbg(0, "Memory mirror is disabled\n");
+ /* KNL doesn't support mirroring or lockstep,
+ * and is always closed page
+ */
+ if (pvt->info.type == KNIGHTS_LANDING) {
+ mode = EDAC_S4ECD4ED;
pvt->is_mirrored = false;
- }
- pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
- if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
- edac_dbg(0, "Lockstep is enabled\n");
- mode = EDAC_S8ECD8ED;
- pvt->is_lockstep = true;
+ if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
+ return -1;
} else {
- edac_dbg(0, "Lockstep is disabled\n");
- mode = EDAC_S4ECD4ED;
- pvt->is_lockstep = false;
- }
- if (IS_CLOSE_PG(pvt->info.mcmtr)) {
- edac_dbg(0, "address map is on closed page mode\n");
- pvt->is_close_pg = true;
- } else {
- edac_dbg(0, "address map is on open page mode\n");
- pvt->is_close_pg = false;
+ pci_read_config_dword(pvt->pci_ras, RASENABLES, ®);
+ if (IS_MIRROR_ENABLED(reg)) {
+ edac_dbg(0, "Memory mirror is enabled\n");
+ pvt->is_mirrored = true;
+ } else {
+ edac_dbg(0, "Memory mirror is disabled\n");
+ pvt->is_mirrored = false;
+ }
+
+ pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
+ if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
+ edac_dbg(0, "Lockstep is enabled\n");
+ mode = EDAC_S8ECD8ED;
+ pvt->is_lockstep = true;
+ } else {
+ edac_dbg(0, "Lockstep is disabled\n");
+ mode = EDAC_S4ECD4ED;
+ pvt->is_lockstep = false;
+ }
+ if (IS_CLOSE_PG(pvt->info.mcmtr)) {
+ edac_dbg(0, "address map is on closed page mode\n");
+ pvt->is_close_pg = true;
+ } else {
+ edac_dbg(0, "address map is on open page mode\n");
+ pvt->is_close_pg = false;
+ }
}
mtype = pvt->info.get_memory_type(pvt);
else
banks = 8;
- for (i = 0; i < NUM_CHANNELS; i++) {
+ for (i = 0; i < channels; i++) {
u32 mtr;
- if (!pvt->pci_tad[i])
- continue;
- for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
+ int max_dimms_per_channel;
+
+ if (pvt->info.type == KNIGHTS_LANDING) {
+ max_dimms_per_channel = 1;
+ if (!pvt->knl.pci_channel[i])
+ continue;
+ } else {
+ max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
+ if (!pvt->pci_tad[i])
+ continue;
+ }
+
+ for (j = 0; j < max_dimms_per_channel; j++) {
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
i, j, 0);
- pci_read_config_dword(pvt->pci_tad[i],
- mtr_regs[j], &mtr);
+ if (pvt->info.type == KNIGHTS_LANDING) {
+ pci_read_config_dword(pvt->knl.pci_channel[i],
+ knl_mtr_reg, &mtr);
+ } else {
+ pci_read_config_dword(pvt->pci_tad[i],
+ mtr_regs[j], &mtr);
+ }
edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
if (IS_DIMM_PRESENT(mtr)) {
pvt->channel[i].dimms++;
ranks = numrank(pvt->info.type, mtr);
- rows = numrow(mtr);
- cols = numcol(mtr);
+
+ if (pvt->info.type == KNIGHTS_LANDING) {
+ /* For DDR4, this is fixed. */
+ cols = 1 << 10;
+ rows = knl_mc_sizes[i] /
+ ((u64) cols * ranks * banks * 8);
+ } else {
+ rows = numrow(mtr);
+ cols = numcol(mtr);
+ }
size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
npages = MiB_TO_PAGES(size);
}
}
+ if (pvt->info.type == KNIGHTS_LANDING)
+ return;
+
/*
* Step 3) Get TAD range
*/
#define sbridge_get_all_devices(num_mc, table) \
sbridge_get_all_devices_full(num_mc, table, 0, 0)
+#define sbridge_get_all_devices_knl(num_mc, table) \
+ sbridge_get_all_devices_full(num_mc, table, 1, 1)
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
return -ENODEV;
}
+static int knl_mci_bind_devs(struct mem_ctl_info *mci,
+ struct sbridge_dev *sbridge_dev)
+{
+ struct sbridge_pvt *pvt = mci->pvt_info;
+ struct pci_dev *pdev;
+ int dev, func;
+
+ int i;
+ int devidx;
+
+ for (i = 0; i < sbridge_dev->n_devs; i++) {
+ pdev = sbridge_dev->pdev[i];
+ if (!pdev)
+ continue;
+
+ /* Extract PCI device and function. */
+ dev = (pdev->devfn >> 3) & 0x1f;
+ func = pdev->devfn & 0x7;
+
+ switch (pdev->device) {
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
+ if (dev == 8)
+ pvt->knl.pci_mc0 = pdev;
+ else if (dev == 9)
+ pvt->knl.pci_mc1 = pdev;
+ else {
+ sbridge_printk(KERN_ERR,
+ "Memory controller in unexpected place! (dev %d, fn %d)\n",
+ dev, func);
+ continue;
+ }
+ break;
+
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
+ pvt->pci_sad0 = pdev;
+ break;
+
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
+ pvt->pci_sad1 = pdev;
+ break;
+
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
+ /* There are one of these per tile, and range from
+ * 1.14.0 to 1.18.5.
+ */
+ devidx = ((dev-14)*8)+func;
+
+ if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
+ sbridge_printk(KERN_ERR,
+ "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
+ dev, func);
+ continue;
+ }
+
+ WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
+
+ pvt->knl.pci_cha[devidx] = pdev;
+ break;
+
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
+ devidx = -1;
+
+ /*
+ * MC0 channels 0-2 are device 9 function 2-4,
+ * MC1 channels 3-5 are device 8 function 2-4.
+ */
+
+ if (dev == 9)
+ devidx = func-2;
+ else if (dev == 8)
+ devidx = 3 + (func-2);
+
+ if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
+ sbridge_printk(KERN_ERR,
+ "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
+ dev, func);
+ continue;
+ }
+
+ WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
+ pvt->knl.pci_channel[devidx] = pdev;
+ break;
+
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
+ pvt->knl.pci_mc_info = pdev;
+ break;
+
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
+ pvt->pci_ta = pdev;
+ break;
+
+ default:
+ sbridge_printk(KERN_ERR, "Unexpected device %d\n",
+ pdev->device);
+ break;
+ }
+ }
+
+ if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
+ !pvt->pci_sad0 || !pvt->pci_sad1 ||
+ !pvt->pci_ta) {
+ goto enodev;
+ }
+
+ for (i = 0; i < KNL_MAX_CHANNELS; i++) {
+ if (!pvt->knl.pci_channel[i]) {
+ sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
+ goto enodev;
+ }
+ }
+
+ for (i = 0; i < KNL_MAX_CHAS; i++) {
+ if (!pvt->knl.pci_cha[i]) {
+ sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
+ goto enodev;
+ }
+ }
+
+ return 0;
+
+enodev:
+ sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
+ return -ENODEV;
+}
+
/****************************************************************************
Error check routines
****************************************************************************/
if (!GET_BITFIELD(m->status, 58, 58))
return;
- rc = get_memory_error_data(mci, m->addr, &socket, &ha,
- &channel_mask, &rank, &area_type, msg);
+ if (pvt->info.type == KNIGHTS_LANDING) {
+ if (channel == 14) {
+ edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
+ overflow ? " OVERFLOW" : "",
+ (uncorrected_error && recoverable)
+ ? " recoverable" : "",
+ mscod, errcode,
+ m->bank);
+ } else {
+ char A = *("A");
+
+ channel = knl_channel_remap(channel);
+ channel_mask = 1 << channel;
+ snprintf(msg, sizeof(msg),
+ "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
+ overflow ? " OVERFLOW" : "",
+ (uncorrected_error && recoverable)
+ ? " recoverable" : " ",
+ mscod, errcode, channel, A + channel);
+ edac_mc_handle_error(tp_event, mci, core_err_cnt,
+ m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
+ channel, 0, -1,
+ optype, msg);
+ }
+ return;
+ } else {
+ rc = get_memory_error_data(mci, m->addr, &socket, &ha,
+ &channel_mask, &rank, &area_type, msg);
+ }
+
if (rc < 0)
goto err_parsing;
new_mci = get_mci_for_node_id(socket);
/* allocate a new MC control structure */
layers[0].type = EDAC_MC_LAYER_CHANNEL;
- layers[0].size = NUM_CHANNELS;
+ layers[0].size = type == KNIGHTS_LANDING ?
+ KNL_MAX_CHANNELS : NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
- layers[1].size = MAX_DIMMS;
+ layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
sizeof(*pvt));
pvt->sbridge_dev = sbridge_dev;
sbridge_dev->mci = mci;
- mci->mtype_cap = MEM_FLAG_DDR3;
+ mci->mtype_cap = type == KNIGHTS_LANDING ?
+ MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "sbridge_edac.c";
if (unlikely(rc < 0))
goto fail0;
break;
+ case KNIGHTS_LANDING:
+ /* pvt->info.rankcfgr == ??? */
+ pvt->info.get_tolm = knl_get_tolm;
+ pvt->info.get_tohm = knl_get_tohm;
+ pvt->info.dram_rule = knl_dram_rule;
+ pvt->info.get_memory_type = knl_get_memory_type;
+ pvt->info.get_node_id = knl_get_node_id;
+ pvt->info.rir_limit = NULL;
+ pvt->info.sad_limit = knl_sad_limit;
+ pvt->info.interleave_mode = knl_interleave_mode;
+ pvt->info.show_interleave_mode = knl_show_interleave_mode;
+ pvt->info.dram_attr = dram_attr_knl;
+ pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
+ pvt->info.interleave_list = knl_interleave_list;
+ pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
+ pvt->info.interleave_pkg = ibridge_interleave_pkg;
+ pvt->info.get_width = ibridge_get_width;
+ mci->ctl_name = kasprintf(GFP_KERNEL,
+ "Knights Landing Socket#%d", mci->mc_idx);
+
+ rc = knl_mci_bind_devs(mci, sbridge_dev);
+ if (unlikely(rc < 0))
+ goto fail0;
+ break;
}
/* Get dimm basic config and the memory layout */
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
- rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
+ rc = sbridge_get_all_devices(&num_mc,
+ pci_dev_descr_ibridge_table);
type = IVY_BRIDGE;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
- rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
+ rc = sbridge_get_all_devices(&num_mc,
+ pci_dev_descr_sbridge_table);
type = SANDY_BRIDGE;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
- rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
+ rc = sbridge_get_all_devices(&num_mc,
+ pci_dev_descr_haswell_table);
type = HASWELL;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
- rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
+ rc = sbridge_get_all_devices(&num_mc,
+ pci_dev_descr_broadwell_table);
type = BROADWELL;
+ break;
+ case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
+ rc = sbridge_get_all_devices_knl(&num_mc,
+ pci_dev_descr_knl_table);
+ type = KNIGHTS_LANDING;
break;
}
if (unlikely(rc < 0)) {