mtd/nand: Add Intel Moorestown/Denali NAND support
authorJason Roberts <jason.e.roberts@intel.com>
Thu, 13 May 2010 14:57:33 +0000 (15:57 +0100)
committerDavid Woodhouse <David.Woodhouse@intel.com>
Thu, 13 May 2010 15:12:16 +0000 (16:12 +0100)
There is more work to be done on this but it is basically working now.

Signed-off-by: Jason Roberts <jason.e.roberts@intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
drivers/mtd/nand/Kconfig
drivers/mtd/nand/Makefile
drivers/mtd/nand/denali.c [new file with mode: 0644]
drivers/mtd/nand/denali.h [new file with mode: 0644]

index 8f402d46a3629b290097f4fb938d5a6df338addb..98a04b3c9526e4bbd6a711b24846c98482fb01d6 100644 (file)
@@ -50,6 +50,23 @@ config MTD_NAND_AUTCPU12
          This enables the driver for the autronix autcpu12 board to
          access the SmartMediaCard.
 
+config MTD_NAND_DENALI
+       depends on PCI
+        tristate "Support Denali NAND controller on Intel Moorestown"
+        help
+          Enable the driver for NAND flash on Intel Moorestown, using the
+          Denali NAND controller core.
+config MTD_NAND_DENALI_SCRATCH_REG_ADDR
+        hex "Denali NAND size scratch register address"
+        default "0xFF108018"
+        help
+          Some platforms place the NAND chip size in a scratch register
+          because (some versions of) the driver aren't able to automatically
+          determine the size of certain chips. Set the address of the
+          scratch register here to enable this feature. On Intel Moorestown
+          boards, the scratch register is at 0xFF108018.
+
 config MTD_NAND_EDB7312
        tristate "Support for Cirrus Logic EBD7312 evaluation board"
        depends on ARCH_EDB7312
index 04bccf9d7b53074369d681d5d36dc34e82bf23dd..e8ab884ba47bdc562b0d180986cf34d9f2ef19fd 100644 (file)
@@ -11,6 +11,7 @@ obj-$(CONFIG_MTD_NAND_CAFE)           += cafe_nand.o
 obj-$(CONFIG_MTD_NAND_SPIA)            += spia.o
 obj-$(CONFIG_MTD_NAND_AMS_DELTA)       += ams-delta.o
 obj-$(CONFIG_MTD_NAND_AUTCPU12)                += autcpu12.o
+obj-$(CONFIG_MTD_NAND_DENALI)          += denali.o
 obj-$(CONFIG_MTD_NAND_EDB7312)         += edb7312.o
 obj-$(CONFIG_MTD_NAND_AU1550)          += au1550nd.o
 obj-$(CONFIG_MTD_NAND_BF5XX)           += bf5xx_nand.o
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
new file mode 100644 (file)
index 0000000..8a6ce0d
--- /dev/null
@@ -0,0 +1,2134 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/wait.h>
+#include <linux/mutex.h>
+#include <linux/pci.h>
+#include <linux/mtd/mtd.h>
+#include <linux/module.h>
+
+#include "denali.h"
+
+MODULE_LICENSE("GPL");
+
+/* We define a module parameter that allows the user to override 
+ * the hardware and decide what timing mode should be used.
+ */
+#define NAND_DEFAULT_TIMINGS   -1
+
+static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+module_param(onfi_timing_mode, int, S_IRUGO);
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
+                                       " use default timings");
+
+#define DENALI_NAND_NAME    "denali-nand"
+
+/* We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience. */
+#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
+                       INTR_STATUS0__ECC_TRANSACTION_DONE | \
+                       INTR_STATUS0__ECC_ERR | \
+                       INTR_STATUS0__PROGRAM_FAIL | \
+                       INTR_STATUS0__LOAD_COMP | \
+                       INTR_STATUS0__PROGRAM_COMP | \
+                       INTR_STATUS0__TIME_OUT | \
+                       INTR_STATUS0__ERASE_FAIL | \
+                       INTR_STATUS0__RST_COMP | \
+                       INTR_STATUS0__ERASE_COMP)
+
+/* indicates whether or not the internal value for the flash bank is 
+   valid or not */
+#define CHIP_SELECT_INVALID    -1
+
+#define SUPPORT_8BITECC                1
+
+/* This macro divides two integers and rounds fractional values up 
+ * to the nearest integer value. */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+
+/* this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
+
+/* These constants are defined by the driver to enable common driver
+   configuration options. */
+#define SPARE_ACCESS           0x41
+#define MAIN_ACCESS            0x42
+#define MAIN_SPARE_ACCESS      0x43
+
+#define DENALI_READ    0
+#define DENALI_WRITE   0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE  0
+#define ADDR_CYCLE     1
+#define STATUS_CYCLE   2
+
+/* this is a helper macro that allows us to 
+ * format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+
+/* List of platforms this NAND controller has be integrated into */
+static const struct pci_device_id denali_pci_ids[] = {
+       { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
+       { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
+       { /* end: all zeroes */ }
+};
+
+
+/* these are static lookup tables that give us easy access to 
+   registers in the NAND controller.  
+ */
+static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, 
+                                                 INTR_STATUS1, 
+                                                 INTR_STATUS2, 
+                                                 INTR_STATUS3};
+
+static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
+                                               DEVICE_RESET__BANK1,
+                                               DEVICE_RESET__BANK2,
+                                               DEVICE_RESET__BANK3};
+
+static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
+                                             INTR_STATUS1__TIME_OUT,
+                                             INTR_STATUS2__TIME_OUT,
+                                             INTR_STATUS3__TIME_OUT};
+
+static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
+                                          INTR_STATUS1__RST_COMP,
+                                          INTR_STATUS2__RST_COMP,
+                                          INTR_STATUS3__RST_COMP};
+
+/* specifies the debug level of the driver */
+static int nand_debug_level = 0;
+
+/* forward declarations */
+static void clear_interrupts(struct denali_nand_info *denali);
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
+static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+
+#define DEBUG_DENALI 0
+
+/* This is a wrapper for writing to the denali registers.
+ * this allows us to create debug information so we can
+ * observe how the driver is programming the device. 
+ * it uses standard linux convention for (val, addr) */
+static void denali_write32(uint32_t value, void *addr)
+{
+       iowrite32(value, addr); 
+
+#if DEBUG_DENALI
+       printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
+#endif
+} 
+
+/* Certain operations for the denali NAND controller use an indexed mode to read/write 
+   data. The operation is performed by writing the address value of the command to 
+   the device memory followed by the data. This function abstracts this common 
+   operation. 
+*/
+static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
+{
+       denali_write32(address, denali->flash_mem);
+       denali_write32(data, denali->flash_mem + 0x10);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(struct denali_nand_info *denali,
+                                uint32_t address, uint32_t *pdata)
+{
+       denali_write32(address, denali->flash_mem);
+       *pdata = ioread32(denali->flash_mem + 0x10);
+}
+
+/* We need to buffer some data for some of the NAND core routines. 
+ * The operations manage buffering that data. */
+static void reset_buf(struct denali_nand_info *denali)
+{
+       denali->buf.head = denali->buf.tail = 0;
+}
+
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+{
+       BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
+       denali->buf.buf[denali->buf.tail++] = byte;
+}
+
+/* reads the status of the device */
+static void read_status(struct denali_nand_info *denali)
+{
+       uint32_t cmd = 0x0;
+
+       /* initialize the data buffer to store status */
+       reset_buf(denali);
+
+       /* initiate a device status read */
+       cmd = MODE_11 | BANK(denali->flash_bank); 
+       index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
+       denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
+
+       /* update buffer with status value */
+       write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
+
+#if DEBUG_DENALI
+       printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]);
+#endif
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(struct denali_nand_info *denali)
+{
+       uint32_t irq_status = 0;
+       uint32_t irq_mask = reset_complete[denali->flash_bank] | 
+                           operation_timeout[denali->flash_bank];
+       int bank = 0;
+
+       clear_interrupts(denali);
+
+       bank = device_reset_banks[denali->flash_bank];
+       denali_write32(bank, denali->flash_reg + DEVICE_RESET);
+
+       irq_status = wait_for_irq(denali, irq_mask);
+       
+       if (irq_status & operation_timeout[denali->flash_bank])
+       {
+               printk(KERN_ERR "reset bank failed.\n");
+       }
+}
+
+/* Reset the flash controller */
+static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
+{
+       uint32_t i;
+
+       nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+                      __FILE__, __LINE__, __func__);
+
+       for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
+               denali_write32(reset_complete[i] | operation_timeout[i],
+               denali->flash_reg + intr_status_addresses[i]);
+
+       for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
+               denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
+               while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
+                       (reset_complete[i] | operation_timeout[i])))
+                       ;
+               if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
+                       operation_timeout[i])
+                       nand_dbg_print(NAND_DBG_WARN,
+                       "NAND Reset operation timed out on bank %d\n", i);
+       }
+
+       for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
+               denali_write32(reset_complete[i] | operation_timeout[i],
+                       denali->flash_reg + intr_status_addresses[i]);
+
+       return PASS;
+}
+
+/* this routine calculates the ONFI timing values for a given mode and programs
+ * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
+   routine.
+ */
+static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
+{
+       uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
+       uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
+       uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
+       uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
+       uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
+       uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
+       uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
+       uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
+       uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
+       uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
+       uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
+       uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
+
+       uint16_t TclsRising = 1;
+       uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
+       uint16_t dv_window = 0;
+       uint16_t en_lo, en_hi;
+       uint16_t acc_clks;
+       uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+       nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+                      __FILE__, __LINE__, __func__);
+
+       en_lo = CEIL_DIV(Trp[mode], CLK_X);
+       en_hi = CEIL_DIV(Treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
+       if ((en_hi * CLK_X) < (Treh[mode] + 2))
+               en_hi++;
+#endif
+
+       if ((en_lo + en_hi) * CLK_X < Trc[mode])
+               en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
+
+       if ((en_lo + en_hi) < CLK_MULTI)
+               en_lo += CLK_MULTI - en_lo - en_hi;
+
+       while (dv_window < 8) {
+               data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
+
+               data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
+
+               data_invalid =
+                   data_invalid_rhoh <
+                   data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
+
+               dv_window = data_invalid - Trea[mode];
+
+               if (dv_window < 8)
+                       en_lo++;
+       }
+
+       acc_clks = CEIL_DIV(Trea[mode], CLK_X);
+
+       while (((acc_clks * CLK_X) - Trea[mode]) < 3)
+               acc_clks++;
+
+       if ((data_invalid - acc_clks * CLK_X) < 2)
+               nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
+                       __FILE__, __LINE__);
+
+       addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
+       re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
+       re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
+       we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
+       cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
+       if (!TclsRising)
+               cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
+       if (cs_cnt == 0)
+               cs_cnt = 1;
+
+       if (Tcea[mode]) {
+               while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
+                       cs_cnt++;
+       }
+
+#if MODE5_WORKAROUND
+       if (mode == 5)
+               acc_clks = 5;
+#endif
+
+       /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+       if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
+               (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
+               acc_clks = 6;
+
+       denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
+       denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
+       denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
+       denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
+       denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
+       denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
+       denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
+       denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+}
+
+/* configures the initial ECC settings for the controller */
+static void set_ecc_config(struct denali_nand_info *denali)
+{
+#if SUPPORT_8BITECC
+       if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
+               (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
+               denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+
+       if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
+               == 1) {
+               denali->dev_info.wECCBytesPerSector = 4;
+               denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
+               denali->dev_info.wNumPageSpareFlag =
+                       denali->dev_info.wPageSpareSize -
+                       denali->dev_info.wPageDataSize /
+                       (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
+                       denali->dev_info.wECCBytesPerSector
+                       - denali->dev_info.wSpareSkipBytes;
+       } else {
+               denali->dev_info.wECCBytesPerSector =
+                       (ioread32(denali->flash_reg + ECC_CORRECTION) &
+                       ECC_CORRECTION__VALUE) * 13 / 8;
+               if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
+                       denali->dev_info.wECCBytesPerSector += 2;
+               else
+                       denali->dev_info.wECCBytesPerSector += 1;
+
+               denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
+               denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
+                       denali->dev_info.wPageDataSize /
+                       (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
+                       denali->dev_info.wECCBytesPerSector
+                       - denali->dev_info.wSpareSkipBytes;
+       }
+}
+
+/* queries the NAND device to see what ONFI modes it supports. */
+static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
+{
+       int i;
+       uint16_t blks_lun_l, blks_lun_h, n_of_luns;
+       uint32_t blockperlun, id;
+
+       denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
+
+       while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
+               INTR_STATUS0__RST_COMP) |
+               (ioread32(denali->flash_reg + INTR_STATUS0) &
+               INTR_STATUS0__TIME_OUT)))
+               ;
+
+       if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
+               denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
+               while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
+                       INTR_STATUS1__RST_COMP) |
+                       (ioread32(denali->flash_reg + INTR_STATUS1) &
+                       INTR_STATUS1__TIME_OUT)))
+                       ;
+
+               if (ioread32(denali->flash_reg + INTR_STATUS1) &
+                       INTR_STATUS1__RST_COMP) {
+                       denali_write32(DEVICE_RESET__BANK2,
+                               denali->flash_reg + DEVICE_RESET);
+                       while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
+                               INTR_STATUS2__RST_COMP) |
+                               (ioread32(denali->flash_reg + INTR_STATUS2) &
+                               INTR_STATUS2__TIME_OUT)))
+                               ;
+
+                       if (ioread32(denali->flash_reg + INTR_STATUS2) &
+                               INTR_STATUS2__RST_COMP) {
+                               denali_write32(DEVICE_RESET__BANK3,
+                                       denali->flash_reg + DEVICE_RESET);
+                               while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
+                                       INTR_STATUS3__RST_COMP) |
+                                       (ioread32(denali->flash_reg + INTR_STATUS3) &
+                                       INTR_STATUS3__TIME_OUT)))
+                                       ;
+                       } else {
+                               printk(KERN_ERR "Getting a time out for bank 2!\n");
+                       }
+               } else {
+                       printk(KERN_ERR "Getting a time out for bank 1!\n");
+               }
+       }
+
+       denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
+       denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
+       denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
+       denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
+
+       denali->dev_info.wONFIDevFeatures =
+               ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
+       denali->dev_info.wONFIOptCommands =
+               ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
+       denali->dev_info.wONFITimingMode =
+               ioread32(denali->flash_reg + ONFI_TIMING_MODE);
+       denali->dev_info.wONFIPgmCacheTimingMode =
+               ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
+
+       n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+               ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
+       blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
+       blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
+
+       blockperlun = (blks_lun_h << 16) | blks_lun_l;
+
+       denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
+
+       if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+               ONFI_TIMING_MODE__VALUE))
+               return FAIL;
+
+       for (i = 5; i > 0; i--) {
+               if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
+                       break;
+       }
+
+       NAND_ONFi_Timing_Mode(denali, i);
+
+       index_addr(denali, MODE_11 | 0, 0x90);
+       index_addr(denali, MODE_11 | 1, 0);
+
+       for (i = 0; i < 3; i++)
+               index_addr_read_data(denali, MODE_11 | 2, &id);
+
+       nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
+
+       denali->dev_info.MLCDevice = id & 0x0C;
+
+       /* By now, all the ONFI devices we know support the page cache */
+       /* rw feature. So here we enable the pipeline_rw_ahead feature */
+       /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
+       /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
+
+       return PASS;
+}
+
+static void get_samsung_nand_para(struct denali_nand_info *denali)
+{
+       uint8_t no_of_planes;
+       uint32_t blk_size;
+       uint64_t plane_size, capacity;
+       uint32_t id_bytes[5];
+       int i;
+
+       index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
+       index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
+       for (i = 0; i < 5; i++)
+               index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
+
+       nand_dbg_print(NAND_DBG_DEBUG,
+               "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
+               id_bytes[0], id_bytes[1], id_bytes[2],
+               id_bytes[3], id_bytes[4]);
+
+       if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
+               /* Set timing register values according to datasheet */
+               denali_write32(5, denali->flash_reg + ACC_CLKS);
+               denali_write32(20, denali->flash_reg + RE_2_WE);
+               denali_write32(12, denali->flash_reg + WE_2_RE);
+               denali_write32(14, denali->flash_reg + ADDR_2_DATA);
+               denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
+               denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
+               denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
+       }
+
+       no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
+       plane_size  = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
+       blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
+       capacity = (uint64_t)128 * plane_size * no_of_planes;
+
+       do_div(capacity, blk_size);
+       denali->dev_info.wTotalBlocks = capacity;
+}
+
+static void get_toshiba_nand_para(struct denali_nand_info *denali)
+{
+       void __iomem *scratch_reg;
+       uint32_t tmp;
+
+       /* Workaround to fix a controller bug which reports a wrong */
+       /* spare area size for some kind of Toshiba NAND device */
+       if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+               (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+               denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+               tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
+                       ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+               denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
+               denali_write32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+               denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+       }
+
+       /* As Toshiba NAND can not provide it's block number, */
+       /* so here we need user to provide the correct block */
+       /* number in a scratch register before the Linux NAND */
+       /* driver is loaded. If no valid value found in the scratch */
+       /* register, then we use default block number value */
+       scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+       if (!scratch_reg) {
+               printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+                       __FILE__, __LINE__);
+               denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+       } else {
+               nand_dbg_print(NAND_DBG_WARN,
+                       "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+               denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
+               if (denali->dev_info.wTotalBlocks < 512)
+                       denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+               iounmap(scratch_reg);
+       }
+}
+
+static void get_hynix_nand_para(struct denali_nand_info *denali)
+{
+       void __iomem *scratch_reg;
+       uint32_t main_size, spare_size;
+
+       switch (denali->dev_info.wDeviceID) {
+       case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+       case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+               denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
+               denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+               denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+               main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
+               spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
+               denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+               denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+               denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
+#if SUPPORT_15BITECC
+               denali_write32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+               denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+               denali->dev_info.MLCDevice  = 1;
+               break;
+       default:
+               nand_dbg_print(NAND_DBG_WARN,
+                       "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
+                       "Will use default parameter values instead.\n",
+                       denali->dev_info.wDeviceID);
+       }
+
+       scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+       if (!scratch_reg) {
+               printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+                       __FILE__, __LINE__);
+               denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+       } else {
+               nand_dbg_print(NAND_DBG_WARN,
+                       "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+               denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
+               if (denali->dev_info.wTotalBlocks < 512)
+                       denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+               iounmap(scratch_reg);
+       }
+}
+
+/* determines how many NAND chips are connected to the controller. Note for
+   Intel CE4100 devices we don't support more than one device. 
+ */
+static void find_valid_banks(struct denali_nand_info *denali)
+{
+       uint32_t id[LLD_MAX_FLASH_BANKS];
+       int i;
+
+       denali->total_used_banks = 1;
+       for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
+               index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+               index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
+               index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
+
+               nand_dbg_print(NAND_DBG_DEBUG,
+                       "Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+               if (i == 0) {
+                       if (!(id[i] & 0x0ff))
+                               break; /* WTF? */
+               } else {
+                       if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+                               denali->total_used_banks++;
+                       else
+                               break;
+               }
+       }
+
+       if (denali->platform == INTEL_CE4100)
+       {
+               /* Platform limitations of the CE4100 device limit
+                * users to a single chip solution for NAND.
+                 * Multichip support is not enabled. 
+                */ 
+               if (denali->total_used_banks != 1)
+               {
+                       printk(KERN_ERR "Sorry, Intel CE4100 only supports "
+                                       "a single NAND device.\n");
+                       BUG();
+               }
+       }
+       nand_dbg_print(NAND_DBG_DEBUG,
+               "denali->total_used_banks: %d\n", denali->total_used_banks);
+}
+
+static void detect_partition_feature(struct denali_nand_info *denali)
+{
+       if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+               if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
+                       PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
+                       denali->dev_info.wSpectraStartBlock =
+                           ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
+                             MIN_MAX_BANK_1__MIN_VALUE) *
+                            denali->dev_info.wTotalBlocks)
+                           +
+                           (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
+                           MIN_BLK_ADDR_1__VALUE);
+
+                       denali->dev_info.wSpectraEndBlock =
+                           (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
+                              MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
+                            denali->dev_info.wTotalBlocks)
+                           +
+                           (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
+                           MAX_BLK_ADDR_1__VALUE);
+
+                       denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+
+                       if (denali->dev_info.wSpectraEndBlock >=
+                           denali->dev_info.wTotalBlocks) {
+                               denali->dev_info.wSpectraEndBlock =
+                                   denali->dev_info.wTotalBlocks - 1;
+                       }
+
+                       denali->dev_info.wDataBlockNum =
+                               denali->dev_info.wSpectraEndBlock -
+                               denali->dev_info.wSpectraStartBlock + 1;
+               } else {
+                       denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+                       denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
+                       denali->dev_info.wSpectraEndBlock =
+                               denali->dev_info.wTotalBlocks - 1;
+                       denali->dev_info.wDataBlockNum =
+                               denali->dev_info.wSpectraEndBlock -
+                               denali->dev_info.wSpectraStartBlock + 1;
+               }
+       } else {
+               denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+               denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
+               denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
+               denali->dev_info.wDataBlockNum =
+                       denali->dev_info.wSpectraEndBlock -
+                       denali->dev_info.wSpectraStartBlock + 1;
+       }
+}
+
+static void dump_device_info(struct denali_nand_info *denali)
+{
+       nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
+       nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
+               denali->dev_info.wDeviceMaker);
+       nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
+               denali->dev_info.wDeviceID);
+       nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
+               denali->dev_info.wDeviceType);
+       nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
+               denali->dev_info.wSpectraStartBlock);
+       nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
+               denali->dev_info.wSpectraEndBlock);
+       nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
+               denali->dev_info.wTotalBlocks);
+       nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
+               denali->dev_info.wPagesPerBlock);
+       nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
+               denali->dev_info.wPageSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
+               denali->dev_info.wPageDataSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
+               denali->dev_info.wPageSpareSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
+               denali->dev_info.wNumPageSpareFlag);
+       nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
+               denali->dev_info.wECCBytesPerSector);
+       nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
+               denali->dev_info.wBlockSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
+               denali->dev_info.wBlockDataSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
+               denali->dev_info.wDataBlockNum);
+       nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
+               denali->dev_info.bPlaneNum);
+       nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
+               denali->dev_info.wDeviceMainAreaSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
+               denali->dev_info.wDeviceSpareAreaSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
+               denali->dev_info.wDevicesConnected);
+       nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
+               denali->dev_info.wDeviceWidth);
+       nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
+               denali->dev_info.wHWRevision);
+       nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
+               denali->dev_info.wHWFeatures);
+       nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
+               denali->dev_info.wONFIDevFeatures);
+       nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
+               denali->dev_info.wONFIOptCommands);
+       nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
+               denali->dev_info.wONFITimingMode);
+       nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
+               denali->dev_info.wONFIPgmCacheTimingMode);
+       nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
+               denali->dev_info.MLCDevice ? "Yes" : "No");
+       nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
+               denali->dev_info.wSpareSkipBytes);
+       nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
+               denali->dev_info.nBitsInPageNumber);
+       nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
+               denali->dev_info.nBitsInPageDataSize);
+       nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
+               denali->dev_info.nBitsInBlockDataSize);
+}
+
+static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
+{
+       uint16_t status = PASS;
+       uint8_t no_of_planes;
+
+       nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+                      __FILE__, __LINE__, __func__);
+
+       denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
+       denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
+       denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
+       denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
+       denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);
+
+       denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
+
+       if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+               ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+               if (FAIL == get_onfi_nand_para(denali))
+                       return FAIL;
+       } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
+               get_samsung_nand_para(denali);
+       } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
+               get_toshiba_nand_para(denali);
+       } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
+               get_hynix_nand_para(denali);
+       } else {
+               denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+       }
+
+       nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+                       "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+                       "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+                       "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+                       ioread32(denali->flash_reg + ACC_CLKS),
+                       ioread32(denali->flash_reg + RE_2_WE),
+                       ioread32(denali->flash_reg + WE_2_RE),
+                       ioread32(denali->flash_reg + ADDR_2_DATA),
+                       ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+                       ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+                       ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+       denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
+       denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);
+
+       denali->dev_info.wDeviceMainAreaSize =
+               ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+       denali->dev_info.wDeviceSpareAreaSize =
+               ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+
+       denali->dev_info.wPageDataSize =
+               ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+
+       /* Note: When using the Micon 4K NAND device, the controller will report
+        * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
+        * And if force set it to 218 bytes, the controller can not work
+        * correctly. So just let it be. But keep in mind that this bug may
+        * cause
+        * other problems in future.       - Yunpeng  2008-10-10
+        */
+       denali->dev_info.wPageSpareSize =
+               ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+
+       denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);
+
+       denali->dev_info.wPageSize =
+           denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
+       denali->dev_info.wBlockSize =
+           denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
+       denali->dev_info.wBlockDataSize =
+           denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
+
+       denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
+       denali->dev_info.wDeviceType =
+               ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
+
+       denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+
+       denali->dev_info.wSpareSkipBytes =
+               ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
+               denali->dev_info.wDevicesConnected;
+
+       denali->dev_info.nBitsInPageNumber =
+               ilog2(denali->dev_info.wPagesPerBlock);
+       denali->dev_info.nBitsInPageDataSize =
+               ilog2(denali->dev_info.wPageDataSize);
+       denali->dev_info.nBitsInBlockDataSize =
+               ilog2(denali->dev_info.wBlockDataSize);
+
+       set_ecc_config(denali);
+
+       no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
+               NUMBER_OF_PLANES__VALUE;
+
+       switch (no_of_planes) {
+       case 0:
+       case 1:
+       case 3:
+       case 7:
+               denali->dev_info.bPlaneNum = no_of_planes + 1;
+               break;
+       default:
+               status = FAIL;
+               break;
+       }
+
+       find_valid_banks(denali);
+
+       detect_partition_feature(denali);
+
+       dump_device_info(denali);
+
+       /* If the user specified to override the default timings
+        * with a specific ONFI mode, we apply those changes here. 
+        */
+       if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+       {
+               NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);
+       }
+
+       return status;
+}
+
+static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
+                                       uint16_t INT_ENABLE)
+{
+       nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+                      __FILE__, __LINE__, __func__);
+
+       if (INT_ENABLE)
+               denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
+       else
+               denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+}
+
+/* validation function to verify that the controlling software is making
+   a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+       return (flash_bank >= 0 && flash_bank < 4); 
+}
+
+static void denali_irq_init(struct denali_nand_info *denali)
+{
+       uint32_t int_mask = 0;
+
+       /* Disable global interrupts */
+       NAND_LLD_Enable_Disable_Interrupts(denali, false);
+
+       int_mask = DENALI_IRQ_ALL;
+
+       /* Clear all status bits */
+       denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
+       denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
+       denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
+       denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
+
+       denali_irq_enable(denali, int_mask);
+}
+
+static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+{
+       NAND_LLD_Enable_Disable_Interrupts(denali, false);
+       free_irq(irqnum, denali);
+}
+
+static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
+{
+       denali_write32(int_mask, denali->flash_reg + INTR_EN0);
+       denali_write32(int_mask, denali->flash_reg + INTR_EN1);
+       denali_write32(int_mask, denali->flash_reg + INTR_EN2);
+       denali_write32(int_mask, denali->flash_reg + INTR_EN3);
+}
+
+/* This function only returns when an interrupt that this driver cares about
+ * occurs. This is to reduce the overhead of servicing interrupts 
+ */
+static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
+{
+       return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
+}
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+       uint32_t intr_status_reg = 0;
+
+       intr_status_reg = intr_status_addresses[denali->flash_bank];
+
+       denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(struct denali_nand_info *denali)
+{
+       uint32_t status = 0x0;
+       spin_lock_irq(&denali->irq_lock);
+
+       status = read_interrupt_status(denali);
+
+#if DEBUG_DENALI
+       denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
+       denali->idx %= 32;
+#endif
+
+       denali->irq_status = 0x0;
+       spin_unlock_irq(&denali->irq_lock);
+}
+
+static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+{
+       uint32_t intr_status_reg = 0;
+
+       intr_status_reg = intr_status_addresses[denali->flash_bank];
+
+       return ioread32(denali->flash_reg + intr_status_reg);
+}
+
+#if DEBUG_DENALI
+static void print_irq_log(struct denali_nand_info *denali)
+{
+       int i = 0;
+
+       printk("ISR debug log index = %X\n", denali->idx);
+       for (i = 0; i < 32; i++)
+       {
+               printk("%08X: %08X\n", i, denali->irq_debug_array[i]);
+       }
+}
+#endif
+
+/* This is the interrupt service routine. It handles all interrupts 
+ * sent to this device. Note that on CE4100, this is a shared 
+ * interrupt. 
+ */
+static irqreturn_t denali_isr(int irq, void *dev_id)
+{
+       struct denali_nand_info *denali = dev_id;
+       uint32_t irq_status = 0x0;
+       irqreturn_t result = IRQ_NONE;
+
+       spin_lock(&denali->irq_lock);
+
+       /* check to see if a valid NAND chip has 
+         * been selected. 
+        */
+       if (is_flash_bank_valid(denali->flash_bank))
+       {
+               /* check to see if controller generated 
+                * the interrupt, since this is a shared interrupt */
+               if ((irq_status = denali_irq_detected(denali)) != 0)
+               {
+#if DEBUG_DENALI
+                       denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
+                       denali->idx %= 32;
+
+                       printk("IRQ status = 0x%04x\n", irq_status);
+#endif
+                       /* handle interrupt */
+                       /* first acknowledge it */
+                       clear_interrupt(denali, irq_status);
+                       /* store the status in the device context for someone
+                          to read */
+                       denali->irq_status |= irq_status;
+                       /* notify anyone who cares that it happened */
+                       complete(&denali->complete);
+                       /* tell the OS that we've handled this */
+                       result = IRQ_HANDLED;
+               }
+       }
+       spin_unlock(&denali->irq_lock);
+       return result;
+}
+#define BANK(x) ((x) << 24)
+
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+       unsigned long comp_res = 0;
+       uint32_t intr_status = 0;
+       bool retry = false;
+       unsigned long timeout = msecs_to_jiffies(1000);
+
+       do
+       {
+#if DEBUG_DENALI
+               printk("waiting for 0x%x\n", irq_mask);
+#endif
+               comp_res = wait_for_completion_timeout(&denali->complete, timeout);
+               spin_lock_irq(&denali->irq_lock);
+               intr_status = denali->irq_status;
+
+#if DEBUG_DENALI
+               denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
+               denali->idx %= 32;
+#endif
+
+               if (intr_status & irq_mask)
+               {
+                       denali->irq_status &= ~irq_mask;
+                       spin_unlock_irq(&denali->irq_lock);
+#if DEBUG_DENALI
+                       if (retry) printk("status on retry = 0x%x\n", intr_status);
+#endif
+                       /* our interrupt was detected */
+                       break;
+               }
+               else 
+               {
+                       /* these are not the interrupts you are looking for - 
+                          need to wait again */
+                       spin_unlock_irq(&denali->irq_lock);
+#if DEBUG_DENALI
+                       print_irq_log(denali);
+                       printk("received irq nobody cared: irq_status = 0x%x,"
+                               " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
+#endif
+                       retry = true;
+               }
+       } while (comp_res != 0);
+
+       if (comp_res == 0)
+       {
+               /* timeout */
+               printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", 
+                               intr_status, irq_mask);
+
+               intr_status = 0;
+       }
+       return intr_status;
+}
+
+/* This helper function setups the registers for ECC and whether or not 
+   the spare area will be transfered. */
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, 
+                               bool transfer_spare)
+{
+       int ecc_en_flag = 0, transfer_spare_flag = 0; 
+
+       /* set ECC, transfer spare bits if needed */
+       ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+       transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+       /* Enable spare area/ECC per user's request. */
+       denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+       denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+}
+
+/* sends a pipeline command operation to the controller. See the Denali NAND 
+   controller's user guide for more information (section 4.2.3.6). 
+ */
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, 
+                                       bool transfer_spare, int access_type, 
+                                       int op)
+{
+       int status = PASS;
+       uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, 
+                irq_mask = 0;
+
+       if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
+       else if (op == DENALI_WRITE) irq_mask = 0;
+       else BUG();
+
+       setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+
+#if DEBUG_DENALI
+       spin_lock_irq(&denali->irq_lock);
+       denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
+       denali->idx %= 32;
+       spin_unlock_irq(&denali->irq_lock);
+#endif
+
+
+       /* clear interrupts */
+       clear_interrupts(denali);       
+
+       addr = BANK(denali->flash_bank) | denali->page;
+
+       if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
+       {
+               cmd = MODE_01 | addr; 
+               denali_write32(cmd, denali->flash_mem);
+       }
+       else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
+       {
+               /* read spare area */
+               cmd = MODE_10 | addr; 
+               index_addr(denali, (uint32_t)cmd, access_type);
+
+               cmd = MODE_01 | addr; 
+               denali_write32(cmd, denali->flash_mem);
+       }
+       else if (op == DENALI_READ)
+       {
+               /* setup page read request for access type */
+               cmd = MODE_10 | addr; 
+               index_addr(denali, (uint32_t)cmd, access_type);
+
+               /* page 33 of the NAND controller spec indicates we should not
+                  use the pipeline commands in Spare area only mode. So we 
+                  don't.
+                */
+               if (access_type == SPARE_ACCESS)
+               {
+                       cmd = MODE_01 | addr;
+                       denali_write32(cmd, denali->flash_mem);
+               }
+               else
+               {
+                       index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
+       
+                       /* wait for command to be accepted  
+                        * can always use status0 bit as the mask is identical for each
+                        * bank. */
+                       irq_status = wait_for_irq(denali, irq_mask);
+
+                       if (irq_status == 0)
+                       {
+                               printk(KERN_ERR "cmd, page, addr on timeout "
+                                       "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
+                               status = FAIL;
+                       }
+                       else
+                       {
+                               cmd = MODE_01 | addr;
+                               denali_write32(cmd, denali->flash_mem);
+                       }
+               }
+       }
+       return status;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, 
+                                       int len) 
+{
+       uint32_t i = 0, *buf32;
+
+       /* verify that the len is a multiple of 4. see comment in 
+        * read_data_from_flash_mem() */        
+       BUG_ON((len % 4) != 0);
+
+       /* write the data to the flash memory */
+       buf32 = (uint32_t *)buf;
+       for (i = 0; i < len / 4; i++)
+       {
+               denali_write32(*buf32++, denali->flash_mem + 0x10);
+       }
+       return i*4; /* intent is to return the number of bytes read */ 
+}
+
+/* helper function that simply reads a buffer from the flash */
+static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, 
+                                       int len)
+{
+       uint32_t i = 0, *buf32;
+
+       /* we assume that len will be a multiple of 4, if not
+        * it would be nice to know about it ASAP rather than
+        * have random failures... 
+         *     
+        * This assumption is based on the fact that this 
+        * function is designed to be used to read flash pages, 
+        * which are typically multiples of 4...
+        */
+
+       BUG_ON((len % 4) != 0);
+
+       /* transfer the data from the flash */
+       buf32 = (uint32_t *)buf;
+       for (i = 0; i < len / 4; i++)
+       {
+               *buf32++ = ioread32(denali->flash_mem + 0x10);
+       }
+       return i*4; /* intent is to return the number of bytes read */ 
+}
+
+/* writes OOB data to the device */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+       uint32_t irq_status = 0;
+       uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | 
+                                               INTR_STATUS0__PROGRAM_FAIL;
+       int status = 0;
+
+       denali->page = page;
+
+       if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, 
+                                                       DENALI_WRITE) == PASS) 
+       {
+               write_data_to_flash_mem(denali, buf, mtd->oobsize);
+
+#if DEBUG_DENALI
+               spin_lock_irq(&denali->irq_lock);
+               denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
+               denali->idx %= 32;
+               spin_unlock_irq(&denali->irq_lock);
+#endif
+
+       
+               /* wait for operation to complete */
+               irq_status = wait_for_irq(denali, irq_mask);
+
+               if (irq_status == 0)
+               {
+                       printk(KERN_ERR "OOB write failed\n");
+                       status = -EIO;
+               }
+       }
+       else 
+       {       
+               printk(KERN_ERR "unable to send pipeline command\n");
+               status = -EIO; 
+       }
+       return status;
+}
+
+/* reads OOB data from the device */
+static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+       uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;
+
+       denali->page = page;
+
+#if DEBUG_DENALI
+       printk("read_oob %d\n", page);
+#endif
+       if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, 
+                                                       DENALI_READ) == PASS) 
+       {
+               read_data_from_flash_mem(denali, buf, mtd->oobsize);    
+
+               /* wait for command to be accepted  
+                * can always use status0 bit as the mask is identical for each
+                * bank. */
+               irq_status = wait_for_irq(denali, irq_mask);
+
+               if (irq_status == 0)
+               {
+                       printk(KERN_ERR "page on OOB timeout %d\n", denali->page);
+               }
+
+               /* We set the device back to MAIN_ACCESS here as I observed
+                * instability with the controller if you do a block erase
+                * and the last transaction was a SPARE_ACCESS. Block erase
+                * is reliable (according to the MTD test infrastructure)
+                * if you are in MAIN_ACCESS. 
+                */
+               addr = BANK(denali->flash_bank) | denali->page;
+               cmd = MODE_10 | addr; 
+               index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+
+#if DEBUG_DENALI
+               spin_lock_irq(&denali->irq_lock);
+               denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
+               denali->idx %= 32;
+               spin_unlock_irq(&denali->irq_lock);
+#endif
+       }
+}
+
+/* this function examines buffers to see if they contain data that 
+ * indicate that the buffer is part of an erased region of flash.
+ */
+bool is_erased(uint8_t *buf, int len)
+{
+       int i = 0;
+       for (i = 0; i < len; i++)
+       {       
+               if (buf[i] != 0xFF)
+               {
+                       return false;
+               }
+       }
+       return true;
+}
+#define ECC_SECTOR_SIZE 512
+
+#define ECC_SECTOR(x)  (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
+#define ECC_BYTE(x)    (((x) & ECC_ERROR_ADDRESS__OFFSET))
+#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
+#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
+#define ECC_ERR_DEVICE(x)      ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
+#define ECC_LAST_ERR(x)                ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
+
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, 
+                       uint8_t *oobbuf, uint32_t irq_status)
+{
+       bool check_erased_page = false;
+
+       if (irq_status & INTR_STATUS0__ECC_ERR)
+       {
+               /* read the ECC errors. we'll ignore them for now */
+               uint32_t err_address = 0, err_correction_info = 0;
+               uint32_t err_byte = 0, err_sector = 0, err_device = 0;
+               uint32_t err_correction_value = 0;
+
+               do 
+               {
+                       err_address = ioread32(denali->flash_reg + 
+                                               ECC_ERROR_ADDRESS);
+                       err_sector = ECC_SECTOR(err_address);
+                       err_byte = ECC_BYTE(err_address);
+
+
+                       err_correction_info = ioread32(denali->flash_reg + 
+                                               ERR_CORRECTION_INFO);
+                       err_correction_value = 
+                               ECC_CORRECTION_VALUE(err_correction_info);
+                       err_device = ECC_ERR_DEVICE(err_correction_info);
+
+                       if (ECC_ERROR_CORRECTABLE(err_correction_info))
+                       {
+                               /* offset in our buffer is computed as:
+                                  sector number * sector size + offset in 
+                                  sector
+                                */
+                               int offset = err_sector * ECC_SECTOR_SIZE + 
+                                                               err_byte;
+                               if (offset < denali->mtd.writesize)
+                               {
+                                       /* correct the ECC error */
+                                       buf[offset] ^= err_correction_value;
+                                       denali->mtd.ecc_stats.corrected++;
+                               }
+                               else
+                               {
+                                       /* bummer, couldn't correct the error */
+                                       printk(KERN_ERR "ECC offset invalid\n");
+                                       denali->mtd.ecc_stats.failed++;
+                               }
+                       }
+                       else
+                       {
+                               /* if the error is not correctable, need to 
+                                * look at the page to see if it is an erased page.
+                                * if so, then it's not a real ECC error */     
+                               check_erased_page = true;
+                       }
+
+#if DEBUG_DENALI 
+                       printk("Detected ECC error in page %d: err_addr = 0x%08x,"
+                               " info to fix is 0x%08x\n", denali->page, err_address, 
+                               err_correction_info);
+#endif
+               } while (!ECC_LAST_ERR(err_correction_info));
+       }
+       return check_erased_page;
+}
+
+/* programs the controller to either enable/disable DMA transfers */
+static void enable_dma(struct denali_nand_info *denali, bool en)
+{
+       uint32_t reg_val = 0x0;
+
+       if (en) reg_val = DMA_ENABLE__FLAG;
+
+       denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
+       ioread32(denali->flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void setup_dma(struct denali_nand_info *denali, int op)
+{
+       uint32_t mode = 0x0;
+       const int page_count = 1;
+       dma_addr_t addr = denali->buf.dma_buf;
+
+       mode = MODE_10 | BANK(denali->flash_bank);
+
+       /* DMA is a four step process */
+
+       /* 1. setup transfer type and # of pages */
+       index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+       /* 2. set memory high address bits 23:8 */
+       index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
+
+       /* 3. set memory low address bits 23:8 */
+       index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
+
+       /* 4.  interrupt when complete, burst len = 64 bytes*/
+       index_addr(denali, mode | 0x14000, 0x2400);
+}
+
+/* writes a page. user specifies type, and this function handles the 
+   configuration details. */
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip, 
+                       const uint8_t *buf, bool raw_xfer)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+       struct pci_dev *pci_dev = denali->dev;
+
+       dma_addr_t addr = denali->buf.dma_buf;
+       size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+       uint32_t irq_status = 0;
+       uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | 
+                                               INTR_STATUS0__PROGRAM_FAIL;
+
+       /* if it is a raw xfer, we want to disable ecc, and send
+        * the spare area.
+        * !raw_xfer - enable ecc
+        * raw_xfer - transfer spare
+        */
+       setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+
+       /* copy buffer into DMA buffer */
+       memcpy(denali->buf.buf, buf, mtd->writesize);
+
+       if (raw_xfer)
+       {
+               /* transfer the data to the spare area */
+               memcpy(denali->buf.buf + mtd->writesize, 
+                       chip->oob_poi, 
+                       mtd->oobsize); 
+       }
+
+       pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
+
+       clear_interrupts(denali);
+       enable_dma(denali, true);       
+
+       setup_dma(denali, DENALI_WRITE);
+
+       /* wait for operation to complete */
+       irq_status = wait_for_irq(denali, irq_mask);
+
+       if (irq_status == 0)
+       {
+               printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
+               denali->status = 
+                  (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : 
+                                                            PASS;
+       }
+
+       enable_dma(denali, false);      
+       pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
+}
+
+/* NAND core entry points */
+
+/* this is the callback that the NAND core calls to write a page. Since 
+   writing a page with ECC or without is similar, all the work is done 
+   by write_page above.   */
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, 
+                               const uint8_t *buf)
+{
+       /* for regular page writes, we let HW handle all the ECC
+         * data written to the device. */
+       write_page(mtd, chip, buf, false);
+}
+
+/* This is the callback that the NAND core calls to write a page without ECC. 
+   raw access is similiar to ECC page writes, so all the work is done in the
+   write_page() function above. 
+ */
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 
+                                       const uint8_t *buf)
+{
+       /* for raw page writes, we want to disable ECC and simply write 
+          whatever data is in the buffer. */
+       write_page(mtd, chip, buf, true);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, 
+                           int page)
+{
+       return write_oob_data(mtd, chip->oob_poi, page);        
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, 
+                          int page, int sndcmd)
+{
+       read_oob_data(mtd, chip->oob_poi, page);
+
+       return 0; /* notify NAND core to send command to 
+                   * NAND device. */
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+                           uint8_t *buf, int page)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+       struct pci_dev *pci_dev = denali->dev;
+
+       dma_addr_t addr = denali->buf.dma_buf;
+       size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+       uint32_t irq_status = 0;
+       uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | 
+                           INTR_STATUS0__ECC_ERR;
+       bool check_erased_page = false;
+
+       setup_ecc_for_xfer(denali, true, false);
+
+       enable_dma(denali, true);
+       pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+       clear_interrupts(denali);
+       setup_dma(denali, DENALI_READ);
+
+       /* wait for operation to complete */
+       irq_status = wait_for_irq(denali, irq_mask);
+
+       pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+       memcpy(buf, denali->buf.buf, mtd->writesize);
+       
+       check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
+       enable_dma(denali, false);
+
+       if (check_erased_page)
+       {
+               read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
+
+               /* check ECC failures that may have occurred on erased pages */
+               if (check_erased_page)
+               {
+                       if (!is_erased(buf, denali->mtd.writesize))
+                       {
+                               denali->mtd.ecc_stats.failed++;
+                       }
+                       if (!is_erased(buf, denali->mtd.oobsize))
+                       {
+                               denali->mtd.ecc_stats.failed++;
+                       }
+               }       
+       }
+       return 0;
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+                               uint8_t *buf, int page)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+       struct pci_dev *pci_dev = denali->dev;
+
+       dma_addr_t addr = denali->buf.dma_buf;
+       size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+       uint32_t irq_status = 0;
+       uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
+                                               
+       setup_ecc_for_xfer(denali, false, true);
+       enable_dma(denali, true);
+
+       pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+       clear_interrupts(denali);
+       setup_dma(denali, DENALI_READ);
+
+       /* wait for operation to complete */
+       irq_status = wait_for_irq(denali, irq_mask);
+
+       pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+       enable_dma(denali, false);
+
+       memcpy(buf, denali->buf.buf, mtd->writesize);
+       memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+
+       return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+       uint8_t result = 0xff;
+
+       if (denali->buf.head < denali->buf.tail)
+       {
+               result = denali->buf.buf[denali->buf.head++];
+       }
+
+#if DEBUG_DENALI
+       printk("read byte -> 0x%02x\n", result);
+#endif
+       return result;
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+#if DEBUG_DENALI
+       printk("denali select chip %d\n", chip);
+#endif
+       spin_lock_irq(&denali->irq_lock);
+       denali->flash_bank = chip;
+       spin_unlock_irq(&denali->irq_lock);
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+       int status = denali->status;
+       denali->status = 0;
+
+#if DEBUG_DENALI
+       printk("waitfunc %d\n", status);
+#endif
+       return status;
+}
+
+static void denali_erase(struct mtd_info *mtd, int page)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+       uint32_t cmd = 0x0, irq_status = 0;
+
+#if DEBUG_DENALI
+       printk("erase page: %d\n", page);
+#endif
+       /* clear interrupts */
+       clear_interrupts(denali);       
+
+       /* setup page read request for access type */
+       cmd = MODE_10 | BANK(denali->flash_bank) | page;
+       index_addr(denali, (uint32_t)cmd, 0x1);
+
+       /* wait for erase to complete or failure to occur */
+       irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | 
+                                       INTR_STATUS0__ERASE_FAIL);
+
+       denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : 
+                                                                PASS;
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, 
+                          int page)
+{
+       struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+#if DEBUG_DENALI
+       printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
+#endif
+       switch (cmd)
+       { 
+               case NAND_CMD_PAGEPROG:
+                       break;
+               case NAND_CMD_STATUS:
+                       read_status(denali);
+                       break;
+               case NAND_CMD_READID:
+                       reset_buf(denali);
+                       if (denali->flash_bank < denali->total_used_banks)
+                       {
+                               /* write manufacturer information into nand 
+                                  buffer for NAND subsystem to fetch.
+                                */ 
+                               write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
+                               write_byte_to_buf(denali, denali->dev_info.wDeviceID);
+                               write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
+                               write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
+                               write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
+                       }
+                       else 
+                       {
+                               int i;
+                               for (i = 0; i < 5; i++) 
+                                       write_byte_to_buf(denali, 0xff);
+                       }
+                       break;
+               case NAND_CMD_READ0:
+               case NAND_CMD_SEQIN:
+                       denali->page = page;
+                       break;
+               case NAND_CMD_RESET:
+                       reset_bank(denali);
+                       break;
+               case NAND_CMD_READOOB:
+                       /* TODO: Read OOB data */
+                       break;
+               default:
+                       printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
+                       break;
+       }
+}
+
+/* stubs for ECC functions not used by the NAND core */
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, 
+                               uint8_t *ecc_code)
+{
+       printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
+       BUG();
+       return -EIO;
+}
+
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, 
+                               uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+       printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
+       BUG();
+       return -EIO;
+}
+
+static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
+{
+       printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
+       BUG();
+}
+/* end NAND core entry points */
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+       denali_irq_init(denali);
+       NAND_Flash_Reset(denali);
+       denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
+       denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+
+       denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
+       denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+
+       /* Should set value for these registers when init */
+       denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+       denali_write32(1, denali->flash_reg + ECC_ENABLE);
+}
+
+/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
+#define ECC_BYTES_SLC   4 * (2048 / ECC_SECTOR_SIZE)
+static struct nand_ecclayout nand_oob_slc = {
+       .eccbytes = 4,
+       .eccpos = { 0, 1, 2, 3 }, /* not used */
+       .oobfree = {{ 
+                       .offset = ECC_BYTES_SLC, 
+                       .length = 64 - ECC_BYTES_SLC  
+                  }}
+};
+
+#define ECC_BYTES_MLC   14 * (2048 / ECC_SECTOR_SIZE)
+static struct nand_ecclayout nand_oob_mlc_14bit = {
+       .eccbytes = 14,
+       .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
+       .oobfree = {{ 
+                       .offset = ECC_BYTES_MLC, 
+                       .length = 64 - ECC_BYTES_MLC  
+                  }}
+};
+
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 8,
+       .len = 4,
+       .veroffs = 12,
+       .maxblocks = 4,
+       .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 8,
+       .len = 4,
+       .veroffs = 12,
+       .maxblocks = 4,
+       .pattern = mirror_pattern,
+};
+
+/* initalize driver data structures */
+void denali_drv_init(struct denali_nand_info *denali)
+{
+       denali->idx = 0;
+
+       /* setup interrupt handler */
+       /* the completion object will be used to notify 
+        * the callee that the interrupt is done */
+       init_completion(&denali->complete);
+
+       /* the spinlock will be used to synchronize the ISR
+        * with any element that might be access shared 
+        * data (interrupt status) */
+       spin_lock_init(&denali->irq_lock);
+
+       /* indicate that MTD has not selected a valid bank yet */
+       denali->flash_bank = CHIP_SELECT_INVALID;
+
+       /* initialize our irq_status variable to indicate no interrupts */
+       denali->irq_status = 0;
+}
+
+/* driver entry point */
+static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+       int ret = -ENODEV;
+       resource_size_t csr_base, mem_base;
+       unsigned long csr_len, mem_len;
+       struct denali_nand_info *denali;
+
+       nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+                      __FILE__, __LINE__, __func__);
+
+       denali = kzalloc(sizeof(*denali), GFP_KERNEL);
+       if (!denali)
+               return -ENOMEM;
+
+       ret = pci_enable_device(dev);
+       if (ret) {
+               printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
+               goto failed_enable;
+       }
+
+       if (id->driver_data == INTEL_CE4100) {
+               /* Due to a silicon limitation, we can only support 
+                * ONFI timing mode 1 and below. 
+                */ 
+               if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
+               {
+                       printk("Intel CE4100 only supports ONFI timing mode 1 "
+                               "or below\n");
+                       ret = -EINVAL;
+                       goto failed_enable;
+               }
+               denali->platform = INTEL_CE4100;
+               mem_base = pci_resource_start(dev, 0);
+               mem_len = pci_resource_len(dev, 1);
+               csr_base = pci_resource_start(dev, 1);
+               csr_len = pci_resource_len(dev, 1);
+       } else {
+               denali->platform = INTEL_MRST;
+               csr_base = pci_resource_start(dev, 0);
+               csr_len = pci_resource_start(dev, 0);
+               mem_base = pci_resource_start(dev, 1);
+               mem_len = pci_resource_len(dev, 1);
+               if (!mem_len) {
+                       mem_base = csr_base + csr_len;
+                       mem_len = csr_len;
+                       nand_dbg_print(NAND_DBG_WARN,
+                                      "Spectra: No second BAR for PCI device; assuming %08Lx\n",
+                                      (uint64_t)csr_base);
+               }
+       }
+
+       /* Is 32-bit DMA supported? */
+       ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
+
+       if (ret)
+       {
+               printk(KERN_ERR "Spectra: no usable DMA configuration\n");
+               goto failed_enable;
+       }
+       denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, 
+                                        PCI_DMA_BIDIRECTIONAL);
+
+       if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
+       {
+               printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
+               goto failed_enable;
+       }
+
+       pci_set_master(dev);
+       denali->dev = dev;
+
+       ret = pci_request_regions(dev, DENALI_NAND_NAME);
+       if (ret) {
+               printk(KERN_ERR "Spectra: Unable to request memory regions\n");
+               goto failed_req_csr;
+       }
+
+       denali->flash_reg = ioremap_nocache(csr_base, csr_len);
+       if (!denali->flash_reg) {
+               printk(KERN_ERR "Spectra: Unable to remap memory region\n");
+               ret = -ENOMEM;
+               goto failed_remap_csr;
+       }
+       nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
+                      (uint64_t)csr_base, denali->flash_reg, csr_len);
+
+       denali->flash_mem = ioremap_nocache(mem_base, mem_len);
+       if (!denali->flash_mem) {
+               printk(KERN_ERR "Spectra: ioremap_nocache failed!");
+               iounmap(denali->flash_reg);
+               ret = -ENOMEM;
+               goto failed_remap_csr;
+       }
+
+       nand_dbg_print(NAND_DBG_WARN,
+               "Spectra: Remapped flash base address: "
+               "0x%p, len: %ld\n",
+               denali->flash_mem, csr_len);
+
+       denali_hw_init(denali);
+       denali_drv_init(denali);
+
+       nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
+       if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
+                       DENALI_NAND_NAME, denali)) {
+               printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
+               ret = -ENODEV;
+               goto failed_request_irq;
+       }
+
+       /* now that our ISR is registered, we can enable interrupts */
+       NAND_LLD_Enable_Disable_Interrupts(denali, true);
+
+       pci_set_drvdata(dev, denali);
+
+       NAND_Read_Device_ID(denali);
+
+       /* MTD supported page sizes vary by kernel. We validate our 
+           kernel supports the device here.
+        */
+       if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
+       {
+               ret = -ENODEV;
+               printk(KERN_ERR "Spectra: device size not supported by this "
+                       "version of MTD.");
+               goto failed_nand;
+       }
+
+       nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+                       "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+                       "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+                       "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+                       ioread32(denali->flash_reg + ACC_CLKS),
+                       ioread32(denali->flash_reg + RE_2_WE),
+                       ioread32(denali->flash_reg + WE_2_RE),
+                       ioread32(denali->flash_reg + ADDR_2_DATA),
+                       ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+                       ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+                       ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+       denali->mtd.name = "Denali NAND";
+       denali->mtd.owner = THIS_MODULE;
+       denali->mtd.priv = &denali->nand;
+
+       /* register the driver with the NAND core subsystem */
+       denali->nand.select_chip = denali_select_chip;
+       denali->nand.cmdfunc = denali_cmdfunc;
+       denali->nand.read_byte = denali_read_byte;
+       denali->nand.waitfunc = denali_waitfunc;
+
+       /* scan for NAND devices attached to the controller 
+        * this is the first stage in a two step process to register
+        * with the nand subsystem */   
+       if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
+       {
+               ret = -ENXIO;
+               goto failed_nand;
+       }
+       
+       /* second stage of the NAND scan 
+        * this stage requires information regarding ECC and 
+         * bad block management. */
+
+       /* Bad block management */
+       denali->nand.bbt_td = &bbt_main_descr;
+       denali->nand.bbt_md = &bbt_mirror_descr;
+
+       /* skip the scan for now until we have OOB read and write support */
+       denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
+       denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+
+       if (denali->dev_info.MLCDevice)
+       {
+               denali->nand.ecc.layout = &nand_oob_mlc_14bit;
+               denali->nand.ecc.bytes = ECC_BYTES_MLC;
+       }
+       else /* SLC */
+       {
+               denali->nand.ecc.layout = &nand_oob_slc;
+               denali->nand.ecc.bytes = ECC_BYTES_SLC;
+       }
+
+       /* These functions are required by the NAND core framework, otherwise, 
+           the NAND core will assert. However, we don't need them, so we'll stub 
+           them out. */
+       denali->nand.ecc.calculate = denali_ecc_calculate;
+       denali->nand.ecc.correct = denali_ecc_correct;
+       denali->nand.ecc.hwctl = denali_ecc_hwctl;
+
+       /* override the default read operations */
+       denali->nand.ecc.size = denali->mtd.writesize;
+       denali->nand.ecc.read_page = denali_read_page;
+       denali->nand.ecc.read_page_raw = denali_read_page_raw;
+       denali->nand.ecc.write_page = denali_write_page;
+       denali->nand.ecc.write_page_raw = denali_write_page_raw;
+       denali->nand.ecc.read_oob = denali_read_oob;
+       denali->nand.ecc.write_oob = denali_write_oob;
+       denali->nand.erase_cmd = denali_erase;
+
+       if (nand_scan_tail(&denali->mtd))
+       {
+               ret = -ENXIO;
+               goto failed_nand;
+       }
+
+       ret = add_mtd_device(&denali->mtd);
+       if (ret) {
+               printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
+               goto failed_nand;
+       }
+       return 0;
+
+ failed_nand:
+       denali_irq_cleanup(dev->irq, denali);
+ failed_request_irq:
+       iounmap(denali->flash_reg);
+       iounmap(denali->flash_mem);
+ failed_remap_csr:
+       pci_release_regions(dev);
+ failed_req_csr:
+       pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, 
+                                                       PCI_DMA_BIDIRECTIONAL);
+ failed_enable:
+       kfree(denali);
+       return ret;
+}
+
+/* driver exit point */
+static void denali_pci_remove(struct pci_dev *dev)
+{
+       struct denali_nand_info *denali = pci_get_drvdata(dev);
+
+       nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+                      __FILE__, __LINE__, __func__);
+
+       nand_release(&denali->mtd);
+       del_mtd_device(&denali->mtd);
+
+       denali_irq_cleanup(dev->irq, denali);
+
+       iounmap(denali->flash_reg);
+       iounmap(denali->flash_mem);
+       pci_release_regions(dev);
+       pci_disable_device(dev);
+       pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, 
+                                                       PCI_DMA_BIDIRECTIONAL);
+       pci_set_drvdata(dev, NULL);
+       kfree(denali);
+}
+
+MODULE_DEVICE_TABLE(pci, denali_pci_ids);
+
+static struct pci_driver denali_pci_driver = {
+       .name = DENALI_NAND_NAME,
+       .id_table = denali_pci_ids,
+       .probe = denali_pci_probe,
+       .remove = denali_pci_remove,
+};
+
+static int __devinit denali_init(void)
+{
+       printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
+       return pci_register_driver(&denali_pci_driver);
+}
+
+/* Free memory */
+static void __devexit denali_exit(void)
+{
+       pci_unregister_driver(&denali_pci_driver);
+}
+
+module_init(denali_init);
+module_exit(denali_exit);
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
new file mode 100644 (file)
index 0000000..422a29a
--- /dev/null
@@ -0,0 +1,816 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <linux/mtd/nand.h> 
+
+#define DEVICE_RESET                           0x0
+#define     DEVICE_RESET__BANK0                                0x0001
+#define     DEVICE_RESET__BANK1                                0x0002
+#define     DEVICE_RESET__BANK2                                0x0004
+#define     DEVICE_RESET__BANK3                                0x0008
+
+#define TRANSFER_SPARE_REG                     0x10
+#define     TRANSFER_SPARE_REG__FLAG                   0x0001
+
+#define LOAD_WAIT_CNT                          0x20
+#define     LOAD_WAIT_CNT__VALUE                               0xffff
+
+#define PROGRAM_WAIT_CNT                       0x30
+#define     PROGRAM_WAIT_CNT__VALUE                    0xffff
+
+#define ERASE_WAIT_CNT                         0x40
+#define     ERASE_WAIT_CNT__VALUE                      0xffff
+
+#define INT_MON_CYCCNT                         0x50
+#define     INT_MON_CYCCNT__VALUE                      0xffff
+
+#define RB_PIN_ENABLED                         0x60
+#define     RB_PIN_ENABLED__BANK0                      0x0001
+#define     RB_PIN_ENABLED__BANK1                      0x0002
+#define     RB_PIN_ENABLED__BANK2                      0x0004
+#define     RB_PIN_ENABLED__BANK3                      0x0008
+
+#define MULTIPLANE_OPERATION                   0x70
+#define     MULTIPLANE_OPERATION__FLAG                 0x0001
+
+#define MULTIPLANE_READ_ENABLE                 0x80
+#define     MULTIPLANE_READ_ENABLE__FLAG               0x0001
+
+#define COPYBACK_DISABLE                       0x90
+#define     COPYBACK_DISABLE__FLAG                     0x0001
+
+#define CACHE_WRITE_ENABLE                     0xa0
+#define     CACHE_WRITE_ENABLE__FLAG                   0x0001
+
+#define CACHE_READ_ENABLE                      0xb0
+#define     CACHE_READ_ENABLE__FLAG                    0x0001
+
+#define PREFETCH_MODE                          0xc0
+#define     PREFETCH_MODE__PREFETCH_EN                 0x0001
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH       0xfff0
+
+#define CHIP_ENABLE_DONT_CARE                  0xd0
+#define     CHIP_EN_DONT_CARE__FLAG                    0x01
+
+#define ECC_ENABLE                             0xe0
+#define     ECC_ENABLE__FLAG                           0x0001
+
+#define GLOBAL_INT_ENABLE                      0xf0
+#define     GLOBAL_INT_EN_FLAG                         0x01
+
+#define WE_2_RE                                        0x100
+#define     WE_2_RE__VALUE                             0x003f
+
+#define ADDR_2_DATA                            0x110
+#define     ADDR_2_DATA__VALUE                         0x003f
+
+#define RE_2_WE                                        0x120
+#define     RE_2_WE__VALUE                             0x003f
+
+#define ACC_CLKS                               0x130
+#define     ACC_CLKS__VALUE                            0x000f
+
+#define NUMBER_OF_PLANES                       0x140
+#define     NUMBER_OF_PLANES__VALUE                    0x0007
+
+#define PAGES_PER_BLOCK                                0x150
+#define     PAGES_PER_BLOCK__VALUE                     0xffff
+
+#define DEVICE_WIDTH                           0x160
+#define     DEVICE_WIDTH__VALUE                                0x0003
+
+#define DEVICE_MAIN_AREA_SIZE                  0x170
+#define     DEVICE_MAIN_AREA_SIZE__VALUE               0xffff
+
+#define DEVICE_SPARE_AREA_SIZE                 0x180
+#define     DEVICE_SPARE_AREA_SIZE__VALUE              0xffff
+
+#define TWO_ROW_ADDR_CYCLES                    0x190
+#define     TWO_ROW_ADDR_CYCLES__FLAG                  0x0001
+
+#define MULTIPLANE_ADDR_RESTRICT               0x1a0
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG             0x0001
+
+#define ECC_CORRECTION                         0x1b0
+#define     ECC_CORRECTION__VALUE                      0x001f
+
+#define READ_MODE                              0x1c0
+#define     READ_MODE__VALUE                           0x000f
+
+#define WRITE_MODE                             0x1d0
+#define     WRITE_MODE__VALUE                          0x000f
+
+#define COPYBACK_MODE                          0x1e0
+#define     COPYBACK_MODE__VALUE                       0x000f
+
+#define RDWR_EN_LO_CNT                         0x1f0
+#define     RDWR_EN_LO_CNT__VALUE                      0x001f
+
+#define RDWR_EN_HI_CNT                         0x200
+#define     RDWR_EN_HI_CNT__VALUE                      0x001f
+
+#define MAX_RD_DELAY                           0x210
+#define     MAX_RD_DELAY__VALUE                                0x000f
+
+#define CS_SETUP_CNT                           0x220
+#define     CS_SETUP_CNT__VALUE                                0x001f
+
+#define SPARE_AREA_SKIP_BYTES                  0x230
+#define     SPARE_AREA_SKIP_BYTES__VALUE               0x003f
+
+#define SPARE_AREA_MARKER                      0x240
+#define     SPARE_AREA_MARKER__VALUE                   0xffff
+
+#define DEVICES_CONNECTED                      0x250
+#define     DEVICES_CONNECTED__VALUE                   0x0007
+
+#define DIE_MASK                                       0x260
+#define     DIE_MASK__VALUE                            0x00ff
+
+#define FIRST_BLOCK_OF_NEXT_PLANE              0x270
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE           0xffff
+
+#define WRITE_PROTECT                          0x280
+#define     WRITE_PROTECT__FLAG                                0x0001
+
+#define RE_2_RE                                        0x290
+#define     RE_2_RE__VALUE                             0x003f
+
+#define MANUFACTURER_ID                        0x300
+#define     MANUFACTURER_ID__VALUE                     0x00ff
+
+#define DEVICE_ID                              0x310
+#define     DEVICE_ID__VALUE                           0x00ff
+
+#define DEVICE_PARAM_0                         0x320
+#define     DEVICE_PARAM_0__VALUE                      0x00ff
+
+#define DEVICE_PARAM_1                         0x330
+#define     DEVICE_PARAM_1__VALUE                      0x00ff
+
+#define DEVICE_PARAM_2                         0x340
+#define     DEVICE_PARAM_2__VALUE                      0x00ff
+
+#define LOGICAL_PAGE_DATA_SIZE                 0x350
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE              0xffff
+
+#define LOGICAL_PAGE_SPARE_SIZE                        0x360
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE             0xffff
+
+#define REVISION                                       0x370
+#define     REVISION__VALUE                            0xffff
+
+#define ONFI_DEVICE_FEATURES                   0x380
+#define     ONFI_DEVICE_FEATURES__VALUE                        0x003f
+
+#define ONFI_OPTIONAL_COMMANDS         0x390
+#define     ONFI_OPTIONAL_COMMANDS__VALUE              0x003f
+
+#define ONFI_TIMING_MODE                       0x3a0
+#define     ONFI_TIMING_MODE__VALUE                    0x003f
+
+#define ONFI_PGM_CACHE_TIMING_MODE             0x3b0
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE          0x003f
+
+#define ONFI_DEVICE_NO_OF_LUNS                 0x3c0
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS         0x00ff
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE                0x0100
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L     0x3d0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE  0xffff
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U     0x3e0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE  0xffff
+
+#define FEATURES                                       0x3f0
+#define     FEATURES__N_BANKS                          0x0003
+#define     FEATURES__ECC_MAX_ERR                      0x003c
+#define     FEATURES__DMA                                      0x0040
+#define     FEATURES__CMD_DMA                          0x0080
+#define     FEATURES__PARTITION                                0x0100
+#define     FEATURES__XDMA_SIDEBAND                    0x0200
+#define     FEATURES__GPREG                            0x0400
+#define     FEATURES__INDEX_ADDR                               0x0800
+
+#define TRANSFER_MODE                          0x400
+#define     TRANSFER_MODE__VALUE                       0x0003
+
+#define INTR_STATUS0                           0x410
+#define     INTR_STATUS0__ECC_TRANSACTION_DONE         0x0001
+#define     INTR_STATUS0__ECC_ERR                      0x0002
+#define     INTR_STATUS0__DMA_CMD_COMP                 0x0004
+#define     INTR_STATUS0__TIME_OUT                     0x0008
+#define     INTR_STATUS0__PROGRAM_FAIL                 0x0010
+#define     INTR_STATUS0__ERASE_FAIL                   0x0020
+#define     INTR_STATUS0__LOAD_COMP                    0x0040
+#define     INTR_STATUS0__PROGRAM_COMP                 0x0080
+#define     INTR_STATUS0__ERASE_COMP                   0x0100
+#define     INTR_STATUS0__PIPE_CPYBCK_CMD_COMP         0x0200
+#define     INTR_STATUS0__LOCKED_BLK                   0x0400
+#define     INTR_STATUS0__UNSUP_CMD                    0x0800
+#define     INTR_STATUS0__INT_ACT                      0x1000
+#define     INTR_STATUS0__RST_COMP                     0x2000
+#define     INTR_STATUS0__PIPE_CMD_ERR                 0x4000
+#define     INTR_STATUS0__PAGE_XFER_INC                        0x8000
+
+#define INTR_EN0                                       0x420
+#define     INTR_EN0__ECC_TRANSACTION_DONE             0x0001
+#define     INTR_EN0__ECC_ERR                          0x0002
+#define     INTR_EN0__DMA_CMD_COMP                     0x0004
+#define     INTR_EN0__TIME_OUT                         0x0008
+#define     INTR_EN0__PROGRAM_FAIL                     0x0010
+#define     INTR_EN0__ERASE_FAIL                               0x0020
+#define     INTR_EN0__LOAD_COMP                                0x0040
+#define     INTR_EN0__PROGRAM_COMP                     0x0080
+#define     INTR_EN0__ERASE_COMP                               0x0100
+#define     INTR_EN0__PIPE_CPYBCK_CMD_COMP             0x0200
+#define     INTR_EN0__LOCKED_BLK                               0x0400
+#define     INTR_EN0__UNSUP_CMD                                0x0800
+#define     INTR_EN0__INT_ACT                          0x1000
+#define     INTR_EN0__RST_COMP                         0x2000
+#define     INTR_EN0__PIPE_CMD_ERR                     0x4000
+#define     INTR_EN0__PAGE_XFER_INC                    0x8000
+
+#define PAGE_CNT0                              0x430
+#define     PAGE_CNT0__VALUE                           0x00ff
+
+#define ERR_PAGE_ADDR0                         0x440
+#define     ERR_PAGE_ADDR0__VALUE                      0xffff
+
+#define ERR_BLOCK_ADDR0                        0x450
+#define     ERR_BLOCK_ADDR0__VALUE                     0xffff
+
+#define INTR_STATUS1                           0x460
+#define     INTR_STATUS1__ECC_TRANSACTION_DONE         0x0001
+#define     INTR_STATUS1__ECC_ERR                      0x0002
+#define     INTR_STATUS1__DMA_CMD_COMP                 0x0004
+#define     INTR_STATUS1__TIME_OUT                     0x0008
+#define     INTR_STATUS1__PROGRAM_FAIL                 0x0010
+#define     INTR_STATUS1__ERASE_FAIL                   0x0020
+#define     INTR_STATUS1__LOAD_COMP                    0x0040
+#define     INTR_STATUS1__PROGRAM_COMP                 0x0080
+#define     INTR_STATUS1__ERASE_COMP                   0x0100
+#define     INTR_STATUS1__PIPE_CPYBCK_CMD_COMP         0x0200
+#define     INTR_STATUS1__LOCKED_BLK                   0x0400
+#define     INTR_STATUS1__UNSUP_CMD                    0x0800
+#define     INTR_STATUS1__INT_ACT                      0x1000
+#define     INTR_STATUS1__RST_COMP                     0x2000
+#define     INTR_STATUS1__PIPE_CMD_ERR                 0x4000
+#define     INTR_STATUS1__PAGE_XFER_INC                        0x8000
+
+#define INTR_EN1                                       0x470
+#define     INTR_EN1__ECC_TRANSACTION_DONE             0x0001
+#define     INTR_EN1__ECC_ERR                          0x0002
+#define     INTR_EN1__DMA_CMD_COMP                     0x0004
+#define     INTR_EN1__TIME_OUT                         0x0008
+#define     INTR_EN1__PROGRAM_FAIL                     0x0010
+#define     INTR_EN1__ERASE_FAIL                               0x0020
+#define     INTR_EN1__LOAD_COMP                                0x0040
+#define     INTR_EN1__PROGRAM_COMP                     0x0080
+#define     INTR_EN1__ERASE_COMP                               0x0100
+#define     INTR_EN1__PIPE_CPYBCK_CMD_COMP             0x0200
+#define     INTR_EN1__LOCKED_BLK                               0x0400
+#define     INTR_EN1__UNSUP_CMD                                0x0800
+#define     INTR_EN1__INT_ACT                          0x1000
+#define     INTR_EN1__RST_COMP                         0x2000
+#define     INTR_EN1__PIPE_CMD_ERR                     0x4000
+#define     INTR_EN1__PAGE_XFER_INC                    0x8000
+
+#define PAGE_CNT1                              0x480
+#define     PAGE_CNT1__VALUE                           0x00ff
+
+#define ERR_PAGE_ADDR1                         0x490
+#define     ERR_PAGE_ADDR1__VALUE                      0xffff
+
+#define ERR_BLOCK_ADDR1                        0x4a0
+#define     ERR_BLOCK_ADDR1__VALUE                     0xffff
+
+#define INTR_STATUS2                           0x4b0
+#define     INTR_STATUS2__ECC_TRANSACTION_DONE         0x0001
+#define     INTR_STATUS2__ECC_ERR                      0x0002
+#define     INTR_STATUS2__DMA_CMD_COMP                 0x0004
+#define     INTR_STATUS2__TIME_OUT                     0x0008
+#define     INTR_STATUS2__PROGRAM_FAIL                 0x0010
+#define     INTR_STATUS2__ERASE_FAIL                   0x0020
+#define     INTR_STATUS2__LOAD_COMP                    0x0040
+#define     INTR_STATUS2__PROGRAM_COMP                 0x0080
+#define     INTR_STATUS2__ERASE_COMP                   0x0100
+#define     INTR_STATUS2__PIPE_CPYBCK_CMD_COMP         0x0200
+#define     INTR_STATUS2__LOCKED_BLK                   0x0400
+#define     INTR_STATUS2__UNSUP_CMD                    0x0800
+#define     INTR_STATUS2__INT_ACT                      0x1000
+#define     INTR_STATUS2__RST_COMP                     0x2000
+#define     INTR_STATUS2__PIPE_CMD_ERR                 0x4000
+#define     INTR_STATUS2__PAGE_XFER_INC                        0x8000
+
+#define INTR_EN2                                       0x4c0
+#define     INTR_EN2__ECC_TRANSACTION_DONE             0x0001
+#define     INTR_EN2__ECC_ERR                          0x0002
+#define     INTR_EN2__DMA_CMD_COMP                     0x0004
+#define     INTR_EN2__TIME_OUT                         0x0008
+#define     INTR_EN2__PROGRAM_FAIL                     0x0010
+#define     INTR_EN2__ERASE_FAIL                               0x0020
+#define     INTR_EN2__LOAD_COMP                                0x0040
+#define     INTR_EN2__PROGRAM_COMP                     0x0080
+#define     INTR_EN2__ERASE_COMP                               0x0100
+#define     INTR_EN2__PIPE_CPYBCK_CMD_COMP             0x0200
+#define     INTR_EN2__LOCKED_BLK                               0x0400
+#define     INTR_EN2__UNSUP_CMD                                0x0800
+#define     INTR_EN2__INT_ACT                          0x1000
+#define     INTR_EN2__RST_COMP                         0x2000
+#define     INTR_EN2__PIPE_CMD_ERR                     0x4000
+#define     INTR_EN2__PAGE_XFER_INC                    0x8000
+
+#define PAGE_CNT2                              0x4d0
+#define     PAGE_CNT2__VALUE                           0x00ff
+
+#define ERR_PAGE_ADDR2                         0x4e0
+#define     ERR_PAGE_ADDR2__VALUE                      0xffff
+
+#define ERR_BLOCK_ADDR2                        0x4f0
+#define     ERR_BLOCK_ADDR2__VALUE                     0xffff
+
+#define INTR_STATUS3                           0x500
+#define     INTR_STATUS3__ECC_TRANSACTION_DONE         0x0001
+#define     INTR_STATUS3__ECC_ERR                      0x0002
+#define     INTR_STATUS3__DMA_CMD_COMP                 0x0004
+#define     INTR_STATUS3__TIME_OUT                     0x0008
+#define     INTR_STATUS3__PROGRAM_FAIL                 0x0010
+#define     INTR_STATUS3__ERASE_FAIL                   0x0020
+#define     INTR_STATUS3__LOAD_COMP                    0x0040
+#define     INTR_STATUS3__PROGRAM_COMP                 0x0080
+#define     INTR_STATUS3__ERASE_COMP                   0x0100
+#define     INTR_STATUS3__PIPE_CPYBCK_CMD_COMP         0x0200
+#define     INTR_STATUS3__LOCKED_BLK                   0x0400
+#define     INTR_STATUS3__UNSUP_CMD                    0x0800
+#define     INTR_STATUS3__INT_ACT                      0x1000
+#define     INTR_STATUS3__RST_COMP                     0x2000
+#define     INTR_STATUS3__PIPE_CMD_ERR                 0x4000
+#define     INTR_STATUS3__PAGE_XFER_INC                        0x8000
+
+#define INTR_EN3                                       0x510
+#define     INTR_EN3__ECC_TRANSACTION_DONE             0x0001
+#define     INTR_EN3__ECC_ERR                          0x0002
+#define     INTR_EN3__DMA_CMD_COMP                     0x0004
+#define     INTR_EN3__TIME_OUT                         0x0008
+#define     INTR_EN3__PROGRAM_FAIL                     0x0010
+#define     INTR_EN3__ERASE_FAIL                               0x0020
+#define     INTR_EN3__LOAD_COMP                                0x0040
+#define     INTR_EN3__PROGRAM_COMP                     0x0080
+#define     INTR_EN3__ERASE_COMP                               0x0100
+#define     INTR_EN3__PIPE_CPYBCK_CMD_COMP             0x0200
+#define     INTR_EN3__LOCKED_BLK                               0x0400
+#define     INTR_EN3__UNSUP_CMD                                0x0800
+#define     INTR_EN3__INT_ACT                          0x1000
+#define     INTR_EN3__RST_COMP                         0x2000
+#define     INTR_EN3__PIPE_CMD_ERR                     0x4000
+#define     INTR_EN3__PAGE_XFER_INC                    0x8000
+
+#define PAGE_CNT3                              0x520
+#define     PAGE_CNT3__VALUE                           0x00ff
+
+#define ERR_PAGE_ADDR3                         0x530
+#define     ERR_PAGE_ADDR3__VALUE                      0xffff
+
+#define ERR_BLOCK_ADDR3                        0x540
+#define     ERR_BLOCK_ADDR3__VALUE                     0xffff
+
+#define DATA_INTR                              0x550
+#define     DATA_INTR__WRITE_SPACE_AV                  0x0001
+#define     DATA_INTR__READ_DATA_AV                    0x0002
+
+#define DATA_INTR_EN                           0x560
+#define     DATA_INTR_EN__WRITE_SPACE_AV               0x0001
+#define     DATA_INTR_EN__READ_DATA_AV                 0x0002
+
+#define GPREG_0                                        0x570
+#define     GPREG_0__VALUE                             0xffff
+
+#define GPREG_1                                        0x580
+#define     GPREG_1__VALUE                             0xffff
+
+#define GPREG_2                                        0x590
+#define     GPREG_2__VALUE                             0xffff
+
+#define GPREG_3                                        0x5a0
+#define     GPREG_3__VALUE                             0xffff
+
+#define ECC_THRESHOLD                          0x600
+#define     ECC_THRESHOLD__VALUE                               0x03ff
+
+#define ECC_ERROR_BLOCK_ADDRESS                0x610
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE             0xffff
+
+#define ECC_ERROR_PAGE_ADDRESS                 0x620
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE              0x0fff
+#define     ECC_ERROR_PAGE_ADDRESS__BANK               0xf000
+
+#define ECC_ERROR_ADDRESS                      0x630
+#define     ECC_ERROR_ADDRESS__OFFSET                  0x0fff
+#define     ECC_ERROR_ADDRESS__SECTOR_NR               0xf000
+
+#define ERR_CORRECTION_INFO                    0x640
+#define     ERR_CORRECTION_INFO__BYTEMASK              0x00ff
+#define     ERR_CORRECTION_INFO__DEVICE_NR             0x0f00
+#define     ERR_CORRECTION_INFO__ERROR_TYPE            0x4000
+#define     ERR_CORRECTION_INFO__LAST_ERR_INFO         0x8000
+
+#define DMA_ENABLE                             0x700
+#define     DMA_ENABLE__FLAG                           0x0001
+
+#define IGNORE_ECC_DONE                                0x710
+#define     IGNORE_ECC_DONE__FLAG                      0x0001
+
+#define DMA_INTR                               0x720
+#define     DMA_INTR__TARGET_ERROR                     0x0001
+#define     DMA_INTR__DESC_COMP_CHANNEL0               0x0002
+#define     DMA_INTR__DESC_COMP_CHANNEL1               0x0004
+#define     DMA_INTR__DESC_COMP_CHANNEL2               0x0008
+#define     DMA_INTR__DESC_COMP_CHANNEL3               0x0010
+#define     DMA_INTR__MEMCOPY_DESC_COMP                0x0020
+
+#define DMA_INTR_EN                            0x730
+#define     DMA_INTR_EN__TARGET_ERROR                  0x0001
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL0            0x0002
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL1            0x0004
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL2            0x0008
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL3            0x0010
+#define     DMA_INTR_EN__MEMCOPY_DESC_COMP             0x0020
+
+#define TARGET_ERR_ADDR_LO                     0x740
+#define     TARGET_ERR_ADDR_LO__VALUE                  0xffff
+
+#define TARGET_ERR_ADDR_HI                     0x750
+#define     TARGET_ERR_ADDR_HI__VALUE                  0xffff
+
+#define CHNL_ACTIVE                            0x760
+#define     CHNL_ACTIVE__CHANNEL0                      0x0001
+#define     CHNL_ACTIVE__CHANNEL1                      0x0002
+#define     CHNL_ACTIVE__CHANNEL2                      0x0004
+#define     CHNL_ACTIVE__CHANNEL3                      0x0008
+
+#define ACTIVE_SRC_ID                          0x800
+#define     ACTIVE_SRC_ID__VALUE                               0x00ff
+
+#define PTN_INTR                                       0x810
+#define     PTN_INTR__CONFIG_ERROR                     0x0001
+#define     PTN_INTR__ACCESS_ERROR_BANK0               0x0002
+#define     PTN_INTR__ACCESS_ERROR_BANK1               0x0004
+#define     PTN_INTR__ACCESS_ERROR_BANK2               0x0008
+#define     PTN_INTR__ACCESS_ERROR_BANK3               0x0010
+#define     PTN_INTR__REG_ACCESS_ERROR                 0x0020
+
+#define PTN_INTR_EN                            0x820
+#define     PTN_INTR_EN__CONFIG_ERROR                  0x0001
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK0            0x0002
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK1            0x0004
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK2            0x0008
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK3            0x0010
+#define     PTN_INTR_EN__REG_ACCESS_ERROR              0x0020
+
+#define PERM_SRC_ID_0                          0x830
+#define     PERM_SRC_ID_0__SRCID                               0x00ff
+#define     PERM_SRC_ID_0__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_0__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_0__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_0__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_0                         0x840
+#define     MIN_BLK_ADDR_0__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_0                         0x850
+#define     MAX_BLK_ADDR_0__VALUE                      0xffff
+
+#define MIN_MAX_BANK_0                         0x860
+#define     MIN_MAX_BANK_0__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_0__MAX_VALUE                  0x000c
+
+#define PERM_SRC_ID_1                          0x870
+#define     PERM_SRC_ID_1__SRCID                               0x00ff
+#define     PERM_SRC_ID_1__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_1__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_1__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_1__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_1                         0x880
+#define     MIN_BLK_ADDR_1__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_1                         0x890
+#define     MAX_BLK_ADDR_1__VALUE                      0xffff
+
+#define MIN_MAX_BANK_1                         0x8a0
+#define     MIN_MAX_BANK_1__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_1__MAX_VALUE                  0x000c
+
+#define PERM_SRC_ID_2                          0x8b0
+#define     PERM_SRC_ID_2__SRCID                               0x00ff
+#define     PERM_SRC_ID_2__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_2__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_2__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_2__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_2                         0x8c0
+#define     MIN_BLK_ADDR_2__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_2                         0x8d0
+#define     MAX_BLK_ADDR_2__VALUE                      0xffff
+
+#define MIN_MAX_BANK_2                         0x8e0
+#define     MIN_MAX_BANK_2__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_2__MAX_VALUE                  0x000c
+
+#define PERM_SRC_ID_3                          0x8f0
+#define     PERM_SRC_ID_3__SRCID                               0x00ff
+#define     PERM_SRC_ID_3__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_3__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_3__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_3__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_3                         0x900
+#define     MIN_BLK_ADDR_3__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_3                         0x910
+#define     MAX_BLK_ADDR_3__VALUE                      0xffff
+
+#define MIN_MAX_BANK_3                         0x920
+#define     MIN_MAX_BANK_3__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_3__MAX_VALUE                  0x000c
+
+#define PERM_SRC_ID_4                          0x930
+#define     PERM_SRC_ID_4__SRCID                               0x00ff
+#define     PERM_SRC_ID_4__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_4__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_4__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_4__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_4                         0x940
+#define     MIN_BLK_ADDR_4__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_4                         0x950
+#define     MAX_BLK_ADDR_4__VALUE                      0xffff
+
+#define MIN_MAX_BANK_4                         0x960
+#define     MIN_MAX_BANK_4__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_4__MAX_VALUE                  0x000c
+
+#define PERM_SRC_ID_5                          0x970
+#define     PERM_SRC_ID_5__SRCID                               0x00ff
+#define     PERM_SRC_ID_5__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_5__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_5__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_5__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_5                         0x980
+#define     MIN_BLK_ADDR_5__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_5                         0x990
+#define     MAX_BLK_ADDR_5__VALUE                      0xffff
+
+#define MIN_MAX_BANK_5                         0x9a0
+#define     MIN_MAX_BANK_5__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_5__MAX_VALUE                  0x000c
+
+#define PERM_SRC_ID_6                          0x9b0
+#define     PERM_SRC_ID_6__SRCID                               0x00ff
+#define     PERM_SRC_ID_6__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_6__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_6__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_6__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_6                         0x9c0
+#define     MIN_BLK_ADDR_6__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_6                         0x9d0
+#define     MAX_BLK_ADDR_6__VALUE                      0xffff
+
+#define MIN_MAX_BANK_6                         0x9e0
+#define     MIN_MAX_BANK_6__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_6__MAX_VALUE                  0x000c
+
+#define PERM_SRC_ID_7                          0x9f0
+#define     PERM_SRC_ID_7__SRCID                               0x00ff
+#define     PERM_SRC_ID_7__DIRECT_ACCESS_ACTIVE                0x0800
+#define     PERM_SRC_ID_7__WRITE_ACTIVE                        0x2000
+#define     PERM_SRC_ID_7__READ_ACTIVE                 0x4000
+#define     PERM_SRC_ID_7__PARTITION_VALID             0x8000
+
+#define MIN_BLK_ADDR_7                         0xa00
+#define     MIN_BLK_ADDR_7__VALUE                      0xffff
+
+#define MAX_BLK_ADDR_7                         0xa10
+#define     MAX_BLK_ADDR_7__VALUE                      0xffff
+
+#define MIN_MAX_BANK_7                         0xa20
+#define     MIN_MAX_BANK_7__MIN_VALUE                  0x0003
+#define     MIN_MAX_BANK_7__MAX_VALUE                  0x000c
+
+/* flash.h */
+struct device_info_tag {
+        uint16_t wDeviceMaker;
+        uint16_t wDeviceID;
+       uint8_t  bDeviceParam0;
+       uint8_t  bDeviceParam1;
+       uint8_t  bDeviceParam2;
+        uint32_t wDeviceType;
+        uint32_t wSpectraStartBlock;
+        uint32_t wSpectraEndBlock;
+        uint32_t wTotalBlocks;
+        uint16_t wPagesPerBlock;
+        uint16_t wPageSize;
+        uint16_t wPageDataSize;
+        uint16_t wPageSpareSize;
+        uint16_t wNumPageSpareFlag;
+        uint16_t wECCBytesPerSector;
+        uint32_t wBlockSize;
+        uint32_t wBlockDataSize;
+        uint32_t wDataBlockNum;
+        uint8_t bPlaneNum;
+        uint16_t wDeviceMainAreaSize;
+        uint16_t wDeviceSpareAreaSize;
+        uint16_t wDevicesConnected;
+        uint16_t wDeviceWidth;
+        uint16_t wHWRevision;
+        uint16_t wHWFeatures;
+
+        uint16_t wONFIDevFeatures;
+        uint16_t wONFIOptCommands;
+        uint16_t wONFITimingMode;
+        uint16_t wONFIPgmCacheTimingMode;
+
+        uint16_t MLCDevice;
+        uint16_t wSpareSkipBytes;
+
+        uint8_t nBitsInPageNumber;
+        uint8_t nBitsInPageDataSize;
+        uint8_t nBitsInBlockDataSize;
+};
+
+/* ffsdefs.h */
+#define CLEAR 0                 /*use this to clear a field instead of "fail"*/
+#define SET   1                 /*use this to set a field instead of "pass"*/
+#define FAIL 1                  /*failed flag*/
+#define PASS 0                  /*success flag*/
+#define ERR -1                  /*error flag*/
+
+/* lld.h */
+#define GOOD_BLOCK 0
+#define DEFECTIVE_BLOCK 1
+#define READ_ERROR 2
+
+#define CLK_X  5
+#define CLK_MULTI 4
+
+/* ffsport.h */
+#define VERBOSE    1
+
+#define NAND_DBG_WARN  1
+#define NAND_DBG_DEBUG 2
+#define NAND_DBG_TRACE 3
+
+#ifdef VERBOSE
+#define nand_dbg_print(level, args...)                  \
+        do {                                            \
+                if (level <= nand_debug_level)          \
+                        printk(KERN_ALERT args);        \
+        } while (0)
+#else
+#define nand_dbg_print(level, args...)
+#endif
+
+
+/* spectraswconfig.h */
+#define CMD_DMA 0
+
+#define SPECTRA_PARTITION_ID    0
+/**** Block Table and Reserved Block Parameters *****/
+#define SPECTRA_START_BLOCK     3
+#define NUM_FREE_BLOCKS_GATE    30
+
+/* KBV - Updated to LNW scratch register address */
+#define SCRATCH_REG_ADDR    CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
+#define SCRATCH_REG_SIZE    64
+
+#define GLOB_HWCTL_DEFAULT_BLKS    2048
+
+#define SUPPORT_15BITECC        1
+#define SUPPORT_8BITECC         1
+
+#define CUSTOM_CONF_PARAMS      0
+
+#define ONFI_BLOOM_TIME         1
+#define MODE5_WORKAROUND        0
+
+/* lld_nand.h */
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#ifndef _LLD_NAND_
+#define _LLD_NAND_
+
+#define MODE_00    0x00000000
+#define MODE_01    0x04000000
+#define MODE_10    0x08000000
+#define MODE_11    0x0C000000
+
+
+#define DATA_TRANSFER_MODE              0
+#define PROTECTION_PER_BLOCK            1
+#define LOAD_WAIT_COUNT                 2
+#define PROGRAM_WAIT_COUNT              3
+#define ERASE_WAIT_COUNT                4
+#define INT_MONITOR_CYCLE_COUNT         5
+#define READ_BUSY_PIN_ENABLED           6
+#define MULTIPLANE_OPERATION_SUPPORT    7
+#define PRE_FETCH_MODE                  8
+#define CE_DONT_CARE_SUPPORT            9
+#define COPYBACK_SUPPORT                10
+#define CACHE_WRITE_SUPPORT             11
+#define CACHE_READ_SUPPORT              12
+#define NUM_PAGES_IN_BLOCK              13
+#define ECC_ENABLE_SELECT               14
+#define WRITE_ENABLE_2_READ_ENABLE      15
+#define ADDRESS_2_DATA                  16
+#define READ_ENABLE_2_WRITE_ENABLE      17
+#define TWO_ROW_ADDRESS_CYCLES          18
+#define MULTIPLANE_ADDRESS_RESTRICT     19
+#define ACC_CLOCKS                      20
+#define READ_WRITE_ENABLE_LOW_COUNT     21
+#define READ_WRITE_ENABLE_HIGH_COUNT    22
+
+#define ECC_SECTOR_SIZE     512
+#define LLD_MAX_FLASH_BANKS     4
+
+#define DENALI_BUF_SIZE                NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE
+
+struct nand_buf
+{
+       int head;
+       int tail;
+       uint8_t buf[DENALI_BUF_SIZE];
+       dma_addr_t dma_buf;
+};
+
+#define INTEL_CE4100   1
+#define INTEL_MRST     2
+
+struct denali_nand_info {
+       struct mtd_info mtd;
+       struct nand_chip nand;
+       struct device_info_tag dev_info;
+       int flash_bank; /* currently selected chip */
+       int status;
+       int platform;
+       struct nand_buf buf;
+       struct pci_dev *dev;
+       int total_used_banks;
+       uint32_t block;  /* stored for future use */
+       uint16_t page;
+       void __iomem *flash_reg;  /* Mapped io reg base address */
+       void __iomem *flash_mem;  /* Mapped io reg base address */
+
+       /* elements used by ISR */
+       struct completion complete;
+       spinlock_t irq_lock;
+       uint32_t irq_status;
+       int irq_debug_array[32];
+       int idx;
+};
+
+static uint16_t  NAND_Flash_Reset(struct denali_nand_info *denali);
+static uint16_t  NAND_Read_Device_ID(struct denali_nand_info *denali);
+static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, uint16_t INT_ENABLE);
+
+#endif /*_LLD_NAND_*/
+