Let's start assuming that something in the idle loop posts a callback,
and scheduling-clock interrupt occurs:
1. The system is idle and stays that way, no runnable tasks.
2. Scheduling-clock interrupt occurs, rcu_check_callbacks() is called
as result, which in turn calls rcu_is_cpu_rrupt_from_idle().
3. rcu_is_cpu_rrupt_from_idle() reports the CPU was interrupted from
idle, which results in rcu_sched_qs() call, which does a
raise_softirq(RCU_SOFTIRQ).
4. Upon return from interrupt, rcu_irq_exit() is invoked, which calls
rcu_idle_enter_common(), which in turn calls rcu_sched_qs() again,
which does another raise_softirq(RCU_SOFTIRQ).
5. The softirq happens shortly and invokes rcu_process_callbacks(),
which invokes __rcu_process_callbacks().
6. So now callbacks can be invoked. At least they can be if
->donetail has been updated. Which it will have been because
rcu_sched_qs() invokes rcu_qsctr_help().
In the described scenario rcu_sched_qs() and raise_softirq(RCU_SOFTIRQ)
get called twice in steps 3 and 4. This redundancy could be eliminated
by removing rcu_is_cpu_rrupt_from_idle() function.
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
#endif /* defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) */
-/*
- * Test whether the current CPU was interrupted from idle. Nested
- * interrupts don't count, we must be running at the first interrupt
- * level.
- */
-static int rcu_is_cpu_rrupt_from_idle(void)
-{
- return rcu_dynticks_nesting <= 1;
-}
-
/*
* Helper function for rcu_sched_qs() and rcu_bh_qs().
* Also irqs are disabled to avoid confusion due to interrupt handlers
void rcu_check_callbacks(int user)
{
RCU_TRACE(check_cpu_stalls());
- if (user || rcu_is_cpu_rrupt_from_idle())
+ if (user)
rcu_sched_qs();
else if (!in_softirq())
rcu_bh_qs();