+++ /dev/null
-/**
- * Driver for Altera PCIe core chaining DMA reference design.
- *
- * Copyright (C) 2008 Leon Woestenberg <leon.woestenberg@axon.tv>
- * Copyright (C) 2008 Nickolas Heppermann <heppermannwdt@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- *
- * Rationale: This driver exercises the chaining DMA read and write engine
- * in the reference design. It is meant as a complementary reference
- * driver that can be used for testing early designs as well as a basis to
- * write your custom driver.
- *
- * Status: Test results from Leon Woestenberg <leon.woestenberg@axon.tv>:
- *
- * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
- * Dell Precision 370 PC, x86, kernel 2.6.20 from Ubuntu 7.04.
- *
- * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
- * Freescale MPC8313E-RDB board, PowerPC, 2.6.24 w/ Freescale patches.
- *
- * Driver tests passed with PCIe Compiler 8.1. With PCIe 8.0 the DMA
- * loopback test had reproducable compare errors. I assume a change
- * in the compiler or reference design, but could not find evidence nor
- * documentation on a change or fix in that direction.
- *
- * The reference design does not have readable locations and thus a
- * dummy read, used to flush PCI posted writes, cannot be performed.
- *
- */
-
-#include <linux/kernel.h>
-#include <linux/cdev.h>
-#include <linux/delay.h>
-#include <linux/dma-mapping.h>
-#include <linux/init.h>
-#include <linux/interrupt.h>
-#include <linux/io.h>
-#include <linux/jiffies.h>
-#include <linux/module.h>
-#include <linux/pci.h>
-
-
-/* by default do not build the character device interface */
-/* XXX It is non-functional yet */
-#ifndef ALTPCIECHDMA_CDEV
-# define ALTPCIECHDMA_CDEV 0
-#endif
-
-/* build the character device interface? */
-#if ALTPCIECHDMA_CDEV
-# define MAX_CHDMA_SIZE (8 * 1024 * 1024)
-# include "mapper_user_to_sg.h"
-#endif
-
-/** driver name, mimicks Altera naming of the reference design */
-#define DRV_NAME "altpciechdma"
-/** number of BARs on the device */
-#define APE_BAR_NUM (6)
-/** BAR number where the RCSLAVE memory sits */
-#define APE_BAR_RCSLAVE (0)
-/** BAR number where the Descriptor Header sits */
-#define APE_BAR_HEADER (2)
-
-/** maximum size in bytes of the descriptor table, chdma logic limit */
-#define APE_CHDMA_TABLE_SIZE (4096)
-/* single transfer must not exceed 255 table entries. worst case this can be
- * achieved by 255 scattered pages, with only a single byte in the head and
- * tail pages. 253 * PAGE_SIZE is a safe upper bound for the transfer size.
- */
-#define APE_CHDMA_MAX_TRANSFER_LEN (253 * PAGE_SIZE)
-
-/**
- * Specifies those BARs to be mapped and the length of each mapping.
- *
- * Zero (0) means do not map, otherwise specifies the BAR lengths to be mapped.
- * If the actual BAR length is less, this is considered an error; then
- * reconfigure your PCIe core.
- *
- * @see ug_pci_express 8.0, table 7-2 at page 7-13.
- */
-static const unsigned long bar_min_len[APE_BAR_NUM] =
- { 32768, 0, 256, 0, 32768, 0 };
-
-/**
- * Descriptor Header, controls the DMA read engine or write engine.
- *
- * The descriptor header is the main data structure for starting DMA transfers.
- *
- * It sits in End Point (FPGA) memory BAR[2] for 32-bit or BAR[3:2] for 64-bit.
- * It references a descriptor table which exists in Root Complex (PC) memory.
- * Writing the rclast field starts the DMA operation, thus all other structures
- * and fields must be setup before doing so.
- *
- * @see ug_pci_express 8.0, tables 7-3, 7-4 and 7-5 at page 7-14.
- * @note This header must be written in four 32-bit (PCI DWORD) writes.
- */
-struct ape_chdma_header {
- /**
- * w0 consists of two 16-bit fields:
- * lsb u16 number; number of descriptors in ape_chdma_table
- * msb u16 control; global control flags
- */
- u32 w0;
- /* bus address to ape_chdma_table in Root Complex memory */
- u32 bdt_addr_h;
- u32 bdt_addr_l;
- /**
- * w3 consists of two 16-bit fields:
- * - lsb u16 rclast; last descriptor number available in Root Complex
- * - zero (0) means the first descriptor is ready,
- * - one (1) means two descriptors are ready, etc.
- * - msb u16 reserved;
- *
- * @note writing to this memory location starts the DMA operation!
- */
- u32 w3;
-} __attribute__ ((packed));
-
-/**
- * Descriptor Entry, describing a (non-scattered) single memory block transfer.
- *
- * There is one descriptor for each memory block involved in the transfer, a
- * block being a contiguous address range on the bus.
- *
- * Multiple descriptors are chained by means of the ape_chdma_table data
- * structure.
- *
- * @see ug_pci_express 8.0, tables 7-6, 7-7 and 7-8 at page 7-14 and page 7-15.
- */
-struct ape_chdma_desc {
- /**
- * w0 consists of two 16-bit fields:
- * number of DWORDS to transfer
- * - lsb u16 length;
- * global control
- * - msb u16 control;
- */
- u32 w0;
- /* address of memory in the End Point */
- u32 ep_addr;
- /* bus address of source or destination memory in the Root Complex */
- u32 rc_addr_h;
- u32 rc_addr_l;
-} __attribute__ ((packed));
-
-/**
- * Descriptor Table, an array of descriptors describing a chained transfer.
- *
- * An array of descriptors, preceded by workspace for the End Point.
- * It exists in Root Complex memory.
- *
- * The End Point can update its last completed descriptor number in the
- * eplast field if requested by setting the EPLAST_ENA bit either
- * globally in the header's or locally in any descriptor's control field.
- *
- * @note this structure may not exceed 4096 bytes. This results in a
- * maximum of 4096 / (4 * 4) - 1 = 255 descriptors per chained transfer.
- *
- * @see ug_pci_express 8.0, tables 7-9, 7-10 and 7-11 at page 7-17 and page 7-18.
- */
-struct ape_chdma_table {
- /* workspace 0x00-0x0b, reserved */
- u32 reserved1[3];
- /* workspace 0x0c-0x0f, last descriptor handled by End Point */
- u32 w3;
- /* the actual array of descriptors
- * 0x10-0x1f, 0x20-0x2f, ... 0xff0-0xfff (255 entries)
- */
- struct ape_chdma_desc desc[255];
-} __attribute__ ((packed));
-
-/**
- * Altera PCI Express ('ape') board specific book keeping data
- *
- * Keeps state of the PCIe core and the Chaining DMA controller
- * application.
- */
-struct ape_dev {
- /** the kernel pci device data structure provided by probe() */
- struct pci_dev *pci_dev;
- /**
- * kernel virtual address of the mapped BAR memory and IO regions of
- * the End Point. Used by map_bars()/unmap_bars().
- */
- void * __iomem bar[APE_BAR_NUM];
- /** kernel virtual address for Descriptor Table in Root Complex memory */
- struct ape_chdma_table *table_virt;
- /**
- * bus address for the Descriptor Table in Root Complex memory, in
- * CPU-native endianess
- */
- dma_addr_t table_bus;
- /* if the device regions could not be allocated, assume and remember it
- * is in use by another driver; this driver must not disable the device.
- */
- int in_use;
- /* whether this driver enabled msi for the device */
- int msi_enabled;
- /* whether this driver could obtain the regions */
- int got_regions;
- /* irq line successfully requested by this driver, -1 otherwise */
- int irq_line;
- /* board revision */
- u8 revision;
- /* interrupt count, incremented by the interrupt handler */
- int irq_count;
-#if ALTPCIECHDMA_CDEV
- /* character device */
- dev_t cdevno;
- struct cdev cdev;
- /* user space scatter gather mapper */
- struct sg_mapping_t *sgm;
-#endif
-};
-
-/**
- * Using the subsystem vendor id and subsystem id, it is possible to
- * distinguish between different cards bases around the same
- * (third-party) logic core.
- *
- * Default Altera vendor and device ID's, and some (non-reserved)
- * ID's are now used here that are used amongst the testers/developers.
- */
-static const struct pci_device_id ids[] = {
- { PCI_DEVICE(0x1172, 0xE001), },
- { PCI_DEVICE(0x2071, 0x2071), },
- { 0, }
-};
-MODULE_DEVICE_TABLE(pci, ids);
-
-#if ALTPCIECHDMA_CDEV
-/* prototypes for character device */
-static int sg_init(struct ape_dev *ape);
-static void sg_exit(struct ape_dev *ape);
-#endif
-
-/**
- * altpciechdma_isr() - Interrupt handler
- *
- */
-static irqreturn_t altpciechdma_isr(int irq, void *dev_id)
-{
- struct ape_dev *ape = (struct ape_dev *)dev_id;
- if (!ape)
- return IRQ_NONE;
- ape->irq_count++;
- return IRQ_HANDLED;
-}
-
-static int __devinit scan_bars(struct ape_dev *ape, struct pci_dev *dev)
-{
- int i;
- for (i = 0; i < APE_BAR_NUM; i++) {
- unsigned long bar_start = pci_resource_start(dev, i);
- if (bar_start) {
- unsigned long bar_end = pci_resource_end(dev, i);
- unsigned long bar_flags = pci_resource_flags(dev, i);
- printk(KERN_DEBUG "BAR%d 0x%08lx-0x%08lx flags 0x%08lx\n",
- i, bar_start, bar_end, bar_flags);
- }
- }
- return 0;
-}
-
-/**
- * Unmap the BAR regions that had been mapped earlier using map_bars()
- */
-static void unmap_bars(struct ape_dev *ape, struct pci_dev *dev)
-{
- int i;
- for (i = 0; i < APE_BAR_NUM; i++) {
- /* is this BAR mapped? */
- if (ape->bar[i]) {
- /* unmap BAR */
- pci_iounmap(dev, ape->bar[i]);
- ape->bar[i] = NULL;
- }
- }
-}
-
-/**
- * Map the device memory regions into kernel virtual address space after
- * verifying their sizes respect the minimum sizes needed, given by the
- * bar_min_len[] array.
- */
-static int __devinit map_bars(struct ape_dev *ape, struct pci_dev *dev)
-{
- int rc;
- int i;
- /* iterate through all the BARs */
- for (i = 0; i < APE_BAR_NUM; i++) {
- unsigned long bar_start = pci_resource_start(dev, i);
- unsigned long bar_end = pci_resource_end(dev, i);
- unsigned long bar_length = bar_end - bar_start + 1;
- ape->bar[i] = NULL;
- /* do not map, and skip, BARs with length 0 */
- if (!bar_min_len[i])
- continue;
- /* do not map BARs with address 0 */
- if (!bar_start || !bar_end) {
- printk(KERN_DEBUG "BAR #%d is not present?!\n", i);
- rc = -1;
- goto fail;
- }
- bar_length = bar_end - bar_start + 1;
- /* BAR length is less than driver requires? */
- if (bar_length < bar_min_len[i]) {
- printk(KERN_DEBUG "BAR #%d length = %lu bytes but driver "
- "requires at least %lu bytes\n",
- i, bar_length, bar_min_len[i]);
- rc = -1;
- goto fail;
- }
- /* map the device memory or IO region into kernel virtual
- * address space */
- ape->bar[i] = pci_iomap(dev, i, bar_min_len[i]);
- if (!ape->bar[i]) {
- printk(KERN_DEBUG "Could not map BAR #%d.\n", i);
- rc = -1;
- goto fail;
- }
- printk(KERN_DEBUG "BAR[%d] mapped at 0x%p with length %lu(/%lu).\n", i,
- ape->bar[i], bar_min_len[i], bar_length);
- }
- /* successfully mapped all required BAR regions */
- rc = 0;
- goto success;
-fail:
- /* unmap any BARs that we did map */
- unmap_bars(ape, dev);
-success:
- return rc;
-}
-
-#if 0 /* not yet implemented fully FIXME add opcode */
-static void __devinit rcslave_test(struct ape_dev *ape, struct pci_dev *dev)
-{
- u32 *rcslave_mem = (u32 *)ape->bar[APE_BAR_RCSLAVE];
- u32 result = 0;
- /** this number is assumed to be different each time this test runs */
- u32 seed = (u32)jiffies;
- u32 value = seed;
- int i;
-
- /* write loop */
- value = seed;
- for (i = 1024; i < 32768 / 4 ; i++) {
- printk(KERN_DEBUG "Writing 0x%08x to 0x%p.\n",
- (u32)value, (void *)rcslave_mem + i);
- iowrite32(value, rcslave_mem + i);
- value++;
- }
- /* read-back loop */
- value = seed;
- for (i = 1024; i < 32768 / 4; i++) {
- result = ioread32(rcslave_mem + i);
- if (result != value) {
- printk(KERN_DEBUG "Wrote 0x%08x to 0x%p, but read back 0x%08x.\n",
- (u32)value, (void *)rcslave_mem + i, (u32)result);
- break;
- }
- value++;
- }
-}
-#endif
-
-/* obtain the 32 most significant (high) bits of a 32-bit or 64-bit address */
-#define pci_dma_h(addr) ((addr >> 16) >> 16)
-/* obtain the 32 least significant (low) bits of a 32-bit or 64-bit address */
-#define pci_dma_l(addr) (addr & 0xffffffffUL)
-
-/* ape_fill_chdma_desc() - Fill a Altera PCI Express Chaining DMA descriptor
- *
- * @desc pointer to descriptor to be filled
- * @addr root complex address
- * @ep_addr end point address
- * @len number of bytes, must be a multiple of 4.
- */
-static inline void ape_chdma_desc_set(struct ape_chdma_desc *desc, dma_addr_t addr, u32 ep_addr, int len)
-{
- BUG_ON(len & 3);
- desc->w0 = cpu_to_le32(len / 4);
- desc->ep_addr = cpu_to_le32(ep_addr);
- desc->rc_addr_h = cpu_to_le32(pci_dma_h(addr));
- desc->rc_addr_l = cpu_to_le32(pci_dma_l(addr));
-}
-
-#if ALTPCIECHDMA_CDEV
-/*
- * ape_sg_to_chdma_table() - Create a device descriptor table from a scatterlist.
- *
- * The scatterlist must have been mapped by pci_map_sg(sgm->sgl).
- *
- * @sgl scatterlist.
- * @nents Number of entries in the scatterlist.
- * @first Start index in the scatterlist sgm->sgl.
- * @ep_addr End Point address for the scatter/gather transfer.
- * @desc pointer to first descriptor
- *
- * Returns Number of entries in the table on success, -1 on error.
- */
-static int ape_sg_to_chdma_table(struct scatterlist *sgl, int nents, int first, struct ape_chdma_desc *desc, u32 ep_addr)
-{
- int i = first, j = 0;
- /* inspect first entry */
- dma_addr_t addr = sg_dma_address(&sgl[i]);
- unsigned int len = sg_dma_len(&sgl[i]);
- /* contiguous block */
- dma_addr_t cont_addr = addr;
- unsigned int cont_len = len;
- /* iterate over remaining entries */
- for (; j < 25 && i < nents - 1; i++) {
- /* bus address of next entry i + 1 */
- dma_addr_t next = sg_dma_address(&sgl[i + 1]);
- /* length of this entry i */
- len = sg_dma_len(&sgl[i]);
- printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
- (unsigned long long)addr, len);
- /* entry i + 1 is non-contiguous with entry i? */
- if (next != addr + len) {
- /* TODO create entry here (we could overwrite i) */
- printk(KERN_DEBUG "%4d: cont_addr=0x%Lx cont_len=0x%08x\n", j,
- (unsigned long long)cont_addr, cont_len);
- /* set descriptor for contiguous transfer */
- ape_chdma_desc_set(&desc[j], cont_addr, ep_addr, cont_len);
- /* next end point memory address */
- ep_addr += cont_len;
- /* start new contiguous block */
- cont_addr = next;
- cont_len = 0;
- j++;
- }
- /* add entry i + 1 to current contiguous block */
- cont_len += len;
- /* goto entry i + 1 */
- addr = next;
- }
- /* TODO create entry here (we could overwrite i) */
- printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
- (unsigned long long)addr, len);
- printk(KERN_DEBUG "%4d: cont_addr=0x%Lx length=0x%08x\n", j,
- (unsigned long long)cont_addr, cont_len);
- j++;
- return j;
-}
-#endif
-
-/* compare buffers */
-static inline int compare(u32 *p, u32 *q, int len)
-{
- int result = -1;
- int fail = 0;
- int i;
- for (i = 0; i < len / 4; i++) {
- if (*p == *q) {
- /* every so many u32 words, show equals */
- if ((i & 255) == 0)
- printk(KERN_DEBUG "[%p] = 0x%08x [%p] = 0x%08x\n", p, *p, q, *q);
- } else {
- fail++;
- /* show the first few miscompares */
- if (fail < 10)
- printk(KERN_DEBUG "[%p] = 0x%08x != [%p] = 0x%08x ?!\n", p, *p, q, *q);
- /* but stop after a while */
- else if (fail == 10)
- printk(KERN_DEBUG "---more errors follow! not printed---\n");
- else
- /* stop compare after this many errors */
- break;
- }
- p++;
- q++;
- }
- if (!fail)
- result = 0;
- return result;
-}
-
-/* dma_test() - Perform DMA loop back test to end point and back to root complex.
- *
- * Allocate a cache-coherent buffer in host memory, consisting of four pages.
- *
- * Fill the four memory pages such that each 32-bit word contains its own address.
- *
- * Now perform a loop back test, have the end point device copy the first buffer
- * half to end point memory, then have it copy back into the second half.
- *
- * Create a descriptor table to copy the first buffer half into End Point
- * memory. Instruct the End Point to do a DMA read using that table.
- *
- * Create a descriptor table to copy End Point memory to the second buffer
- * half. Instruct the End Point to do a DMA write using that table.
- *
- * Compare results, fail or pass.
- *
- */
-static int __devinit dma_test(struct ape_dev *ape, struct pci_dev *dev)
-{
- /* test result; guilty until proven innocent */
- int result = -1;
- /* the DMA read header sits at address 0x00 of the DMA engine BAR */
- struct ape_chdma_header *write_header = (struct ape_chdma_header *)ape->bar[APE_BAR_HEADER];
- /* the write DMA header sits after the read header at address 0x10 */
- struct ape_chdma_header *read_header = write_header + 1;
- /* virtual address of the allocated buffer */
- u8 *buffer_virt = 0;
- /* bus address of the allocated buffer */
- dma_addr_t buffer_bus = 0;
- int i, n = 0, irq_count;
-
- /* temporary value used to construct 32-bit data words */
- u32 w;
-
- printk(KERN_DEBUG "bar_tests(), PAGE_SIZE = 0x%0x\n", (int)PAGE_SIZE);
- printk(KERN_DEBUG "write_header = 0x%p.\n", write_header);
- printk(KERN_DEBUG "read_header = 0x%p.\n", read_header);
- printk(KERN_DEBUG "&write_header->w3 = 0x%p\n", &write_header->w3);
- printk(KERN_DEBUG "&read_header->w3 = 0x%p\n", &read_header->w3);
- printk(KERN_DEBUG "ape->table_virt = 0x%p.\n", ape->table_virt);
-
- if (!write_header || !read_header || !ape->table_virt)
- goto fail;
-
- /* allocate and map coherently-cached memory for a DMA-able buffer */
- /* @see Documentation/PCI/PCI-DMA-mapping.txt, near line 318 */
- buffer_virt = (u8 *)pci_alloc_consistent(dev, PAGE_SIZE * 4, &buffer_bus);
- if (!buffer_virt) {
- printk(KERN_DEBUG "Could not allocate coherent DMA buffer.\n");
- goto fail;
- }
- printk(KERN_DEBUG "Allocated cache-coherent DMA buffer (virtual address = %p, bus address = 0x%016llx).\n",
- buffer_virt, (u64)buffer_bus);
-
- /* fill first half of buffer with its virtual address as data */
- for (i = 0; i < 4 * PAGE_SIZE; i += 4)
-#if 0
- *(u32 *)(buffer_virt + i) = i / PAGE_SIZE + 1;
-#else
- *(u32 *)(buffer_virt + i) = (u32)(unsigned long)(buffer_virt + i);
-#endif
-#if 0
- compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
-#endif
-
-#if 0
- /* fill second half of buffer with zeroes */
- for (i = 2 * PAGE_SIZE; i < 4 * PAGE_SIZE; i += 4)
- *(u32 *)(buffer_virt + i) = 0;
-#endif
-
- /* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
- ape->table_virt->w3 = cpu_to_le32(0x0000FADE);
-
- /* fill in first descriptor */
- n = 0;
- /* read 8192 bytes from RC buffer to EP address 4096 */
- ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus, 4096, 2 * PAGE_SIZE);
-#if 1
- for (i = 0; i < 255; i++)
- ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus, 4096, 2 * PAGE_SIZE);
- /* index of last descriptor */
- n = i - 1;
-#endif
-#if 0
- /* fill in next descriptor */
- n++;
- /* read 1024 bytes from RC buffer to EP address 4096 + 1024 */
- ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 1024, 4096 + 1024, 1024);
-#endif
-
-#if 1
- /* enable MSI after the last descriptor is completed */
- if (ape->msi_enabled)
- ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
-#endif
-#if 0
- /* dump descriptor table for debugging */
- printk(KERN_DEBUG "Descriptor Table (Read, in Root Complex Memory, # = %d)\n", n + 1);
- for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
- u32 *p = (u32 *)ape->table_virt;
- p += i;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
- p++;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
- p++;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
- p++;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
- }
-#endif
- /* set available number of descriptors in table */
- w = (u32)(n + 1);
- w |= (1UL << 18)/*global EPLAST_EN*/;
-#if 0
- if (ape->msi_enabled)
- w |= (1UL << 17)/*global MSI*/;
-#endif
- printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", w, (void *)&read_header->w0);
- iowrite32(w, &read_header->w0);
-
- /* write table address (higher 32-bits) */
- printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)((ape->table_bus >> 16) >> 16), (void *)&read_header->bdt_addr_h);
- iowrite32(pci_dma_h(ape->table_bus), &read_header->bdt_addr_h);
-
- /* write table address (lower 32-bits) */
- printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)(ape->table_bus & 0xffffffffUL), (void *)&read_header->bdt_addr_l);
- iowrite32(pci_dma_l(ape->table_bus), &read_header->bdt_addr_l);
-
- /* memory write barrier */
- wmb();
- printk(KERN_DEBUG "Flush posted writes\n");
- /** FIXME Add dummy read to flush posted writes but need a readable location! */
-#if 0
- (void)ioread32();
-#endif
-
- /* remember IRQ count before the transfer */
- irq_count = ape->irq_count;
- /* write number of descriptors - this starts the DMA */
- printk(KERN_DEBUG "\nStart DMA read\n");
- printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)n, (void *)&read_header->w3);
- iowrite32(n, &read_header->w3);
- printk(KERN_DEBUG "EPLAST = %lu\n", le32_to_cpu(*(u32 *)&ape->table_virt->w3) & 0xffffUL);
-
- /** memory write barrier */
- wmb();
- /* dummy read to flush posted writes */
- /* FIXME Need a readable location! */
-#if 0
- (void)ioread32();
-#endif
- printk(KERN_DEBUG "POLL FOR READ:\n");
- /* poll for chain completion, 1000 times 1 millisecond */
- for (i = 0; i < 100; i++) {
- volatile u32 *p = &ape->table_virt->w3;
- u32 eplast = le32_to_cpu(*p) & 0xffffUL;
- printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
- if (eplast == n) {
- printk(KERN_DEBUG "DONE\n");
- /* print IRQ count before the transfer */
- printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
- break;
- }
- udelay(100);
- }
-
- /* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
- ape->table_virt->w3 = cpu_to_le32(0x0000FADE);
-
- /* setup first descriptor */
- n = 0;
- ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
-#if 1
- for (i = 0; i < 255; i++)
- ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
-
- /* index of last descriptor */
- n = i - 1;
-#endif
-#if 1 /* test variable, make a module option later */
- if (ape->msi_enabled)
- ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
-#endif
-#if 0
- /* dump descriptor table for debugging */
- printk(KERN_DEBUG "Descriptor Table (Write, in Root Complex Memory, # = %d)\n", n + 1);
- for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
- u32 *p = (u32 *)ape->table_virt;
- p += i;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
- p++;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
- p++;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
- p++;
- printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
- }
-#endif
-
- /* set number of available descriptors in the table */
- w = (u32)(n + 1);
- /* enable updates of eplast for each descriptor completion */
- w |= (u32)(1UL << 18)/*global EPLAST_EN*/;
-#if 0 /* test variable, make a module option later */
- /* enable MSI for each descriptor completion */
- if (ape->msi_enabled)
- w |= (1UL << 17)/*global MSI*/;
-#endif
- iowrite32(w, &write_header->w0);
- iowrite32(pci_dma_h(ape->table_bus), &write_header->bdt_addr_h);
- iowrite32(pci_dma_l(ape->table_bus), &write_header->bdt_addr_l);
-
- /** memory write barrier and flush posted writes */
- wmb();
- /* dummy read to flush posted writes */
- /* FIXME Need a readable location! */
-#if 0
- (void)ioread32();
-#endif
- irq_count = ape->irq_count;
-
- printk(KERN_DEBUG "\nStart DMA write\n");
- iowrite32(n, &write_header->w3);
-
- /** memory write barrier */
- wmb();
- /** dummy read to flush posted writes */
- /* (void) ioread32(); */
-
- printk(KERN_DEBUG "POLL FOR WRITE:\n");
- /* poll for completion, 1000 times 1 millisecond */
- for (i = 0; i < 100; i++) {
- volatile u32 *p = &ape->table_virt->w3;
- u32 eplast = le32_to_cpu(*p) & 0xffffUL;
- printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
- if (eplast == n) {
- printk(KERN_DEBUG "DONE\n");
- /* print IRQ count before the transfer */
- printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
- break;
- }
- udelay(100);
- }
- /* soft-reset DMA write engine */
- iowrite32(0x0000ffffUL, &write_header->w0);
- /* soft-reset DMA read engine */
- iowrite32(0x0000ffffUL, &read_header->w0);
-
- /** memory write barrier */
- wmb();
- /* dummy read to flush posted writes */
- /* FIXME Need a readable location! */
-#if 0
- (void)ioread32();
-#endif
- /* compare first half of buffer with second half, should be identical */
- result = compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
- printk(KERN_DEBUG "DMA loop back test %s.\n", result ? "FAILED" : "PASSED");
-
- pci_free_consistent(dev, 4 * PAGE_SIZE, buffer_virt, buffer_bus);
-fail:
- printk(KERN_DEBUG "bar_tests() end, result %d\n", result);
- return result;
-}
-
-/* Called when the PCI sub system thinks we can control the given device.
- * Inspect if we can support the device and if so take control of it.
- *
- * Return 0 when we have taken control of the given device.
- *
- * - allocate board specific bookkeeping
- * - allocate coherently-mapped memory for the descriptor table
- * - enable the board
- * - verify board revision
- * - request regions
- * - query DMA mask
- * - obtain and request irq
- * - map regions into kernel address space
- */
-static int __devinit probe(struct pci_dev *dev, const struct pci_device_id *id)
-{
- int rc = 0;
- struct ape_dev *ape = NULL;
- u8 irq_pin, irq_line;
- printk(KERN_DEBUG "probe(dev = 0x%p, pciid = 0x%p)\n", dev, id);
-
- /* allocate memory for per-board book keeping */
- ape = kzalloc(sizeof(struct ape_dev), GFP_KERNEL);
- if (!ape) {
- printk(KERN_DEBUG "Could not kzalloc()ate memory.\n");
- goto err_ape;
- }
- ape->pci_dev = dev;
- dev_set_drvdata(&dev->dev, ape);
- printk(KERN_DEBUG "probe() ape = 0x%p\n", ape);
-
- printk(KERN_DEBUG "sizeof(struct ape_chdma_table) = %d.\n",
- (int)sizeof(struct ape_chdma_table));
- /* the reference design has a size restriction on the table size */
- BUG_ON(sizeof(struct ape_chdma_table) > APE_CHDMA_TABLE_SIZE);
-
- /* allocate and map coherently-cached memory for a descriptor table */
- /* @see LDD3 page 446 */
- ape->table_virt = (struct ape_chdma_table *)pci_alloc_consistent(dev,
- APE_CHDMA_TABLE_SIZE, &ape->table_bus);
- /* could not allocate table? */
- if (!ape->table_virt) {
- printk(KERN_DEBUG "Could not dma_alloc()ate_coherent memory.\n");
- goto err_table;
- }
-
- printk(KERN_DEBUG "table_virt = %p, table_bus = 0x%16llx.\n",
- ape->table_virt, (u64)ape->table_bus);
-
- /* enable device */
- rc = pci_enable_device(dev);
- if (rc) {
- printk(KERN_DEBUG "pci_enable_device() failed\n");
- goto err_enable;
- }
-
- /* enable bus master capability on device */
- pci_set_master(dev);
- /* enable message signaled interrupts */
- rc = pci_enable_msi(dev);
- /* could not use MSI? */
- if (rc) {
- /* resort to legacy interrupts */
- printk(KERN_DEBUG "Could not enable MSI interrupting.\n");
- ape->msi_enabled = 0;
- /* MSI enabled, remember for cleanup */
- } else {
- printk(KERN_DEBUG "Enabled MSI interrupting.\n");
- ape->msi_enabled = 1;
- }
-
- pci_read_config_byte(dev, PCI_REVISION_ID, &ape->revision);
-#if 0 /* example */
- /* (for example) this driver does not support revision 0x42 */
- if (ape->revision == 0x42) {
- printk(KERN_DEBUG "Revision 0x42 is not supported by this driver.\n");
- rc = -ENODEV;
- goto err_rev;
- }
-#endif
- /** XXX check for native or legacy PCIe endpoint? */
-
- rc = pci_request_regions(dev, DRV_NAME);
- /* could not request all regions? */
- if (rc) {
- /* assume device is in use (and do not disable it later!) */
- ape->in_use = 1;
- goto err_regions;
- }
- ape->got_regions = 1;
-
-#if 1 /* @todo For now, disable 64-bit, because I do not understand the implications (DAC!) */
- /* query for DMA transfer */
- /* @see Documentation/PCI/PCI-DMA-mapping.txt */
- if (!pci_set_dma_mask(dev, DMA_BIT_MASK(64))) {
- pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(64));
- /* use 64-bit DMA */
- printk(KERN_DEBUG "Using a 64-bit DMA mask.\n");
- } else
-#endif
- if (!pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
- printk(KERN_DEBUG "Could not set 64-bit DMA mask.\n");
- pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(32));
- /* use 32-bit DMA */
- printk(KERN_DEBUG "Using a 32-bit DMA mask.\n");
- } else {
- printk(KERN_DEBUG "No suitable DMA possible.\n");
- /** @todo Choose proper error return code */
- rc = -1;
- goto err_mask;
- }
-
- rc = pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq_pin);
- /* could not read? */
- if (rc)
- goto err_irq;
- printk(KERN_DEBUG "IRQ pin #%d (0=none, 1=INTA#...4=INTD#).\n", irq_pin);
-
- /* @see LDD3, page 318 */
- rc = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq_line);
- /* could not read? */
- if (rc) {
- printk(KERN_DEBUG "Could not query PCI_INTERRUPT_LINE, error %d\n", rc);
- goto err_irq;
- }
- printk(KERN_DEBUG "IRQ line #%d.\n", irq_line);
-#if 1
- irq_line = dev->irq;
- /* @see LDD3, page 259 */
- rc = request_irq(irq_line, altpciechdma_isr, IRQF_SHARED, DRV_NAME, (void *)ape);
- if (rc) {
- printk(KERN_DEBUG "Could not request IRQ #%d, error %d\n", irq_line, rc);
- ape->irq_line = -1;
- goto err_irq;
- }
- /* remember which irq we allocated */
- ape->irq_line = (int)irq_line;
- printk(KERN_DEBUG "Successfully requested IRQ #%d with dev_id 0x%p\n", irq_line, ape);
-#endif
- /* show BARs */
- scan_bars(ape, dev);
- /* map BARs */
- rc = map_bars(ape, dev);
- if (rc)
- goto err_map;
-#if ALTPCIECHDMA_CDEV
- /* initialize character device */
- rc = sg_init(ape);
- if (rc)
- goto err_cdev;
-#endif
- /* perform DMA engines loop back test */
- rc = dma_test(ape, dev);
- (void)rc;
- /* successfully took the device */
- rc = 0;
- printk(KERN_DEBUG "probe() successful.\n");
- goto end;
-#if ALTPCIECHDMA_CDEV
-err_cdev:
- /* unmap the BARs */
- unmap_bars(ape, dev);
-#endif
-err_map:
- /* free allocated irq */
- if (ape->irq_line >= 0)
- free_irq(ape->irq_line, (void *)ape);
-err_irq:
- if (ape->msi_enabled)
- pci_disable_msi(dev);
- /* disable the device iff it is not in use */
- if (!ape->in_use)
- pci_disable_device(dev);
- if (ape->got_regions)
- pci_release_regions(dev);
-err_mask:
-err_regions:
-/*err_rev:*/
-/* clean up everything before device enable() */
-err_enable:
- if (ape->table_virt)
- pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
-/* clean up everything before allocating descriptor table */
-err_table:
- if (ape)
- kfree(ape);
-err_ape:
-end:
- return rc;
-}
-
-static void __devexit remove(struct pci_dev *dev)
-{
- struct ape_dev *ape = dev_get_drvdata(&dev->dev);
-
- printk(KERN_DEBUG "remove(0x%p)\n", dev);
- printk(KERN_DEBUG "remove(dev = 0x%p) where ape = 0x%p\n", dev, ape);
-
- /* remove character device */
-#if ALTPCIECHDMA_CDEV
- sg_exit(ape);
-#endif
-
- if (ape->table_virt)
- pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
-
- /* free IRQ
- * @see LDD3 page 279
- */
- if (ape->irq_line >= 0) {
- printk(KERN_DEBUG "Freeing IRQ #%d for dev_id 0x%08lx.\n",
- ape->irq_line, (unsigned long)ape);
- free_irq(ape->irq_line, (void *)ape);
- }
- /* MSI was enabled? */
- if (ape->msi_enabled) {
- /* Disable MSI @see Documentation/MSI-HOWTO.txt */
- pci_disable_msi(dev);
- ape->msi_enabled = 0;
- }
- /* unmap the BARs */
- unmap_bars(ape, dev);
- if (!ape->in_use)
- pci_disable_device(dev);
- if (ape->got_regions)
- /* to be called after device disable */
- pci_release_regions(dev);
-}
-
-#if ALTPCIECHDMA_CDEV
-
-/*
- * Called when the device goes from unused to used.
- */
-static int sg_open(struct inode *inode, struct file *file)
-{
- struct ape_dev *ape;
- printk(KERN_DEBUG DRV_NAME "_open()\n");
- /* pointer to containing data structure of the character device inode */
- ape = container_of(inode->i_cdev, struct ape_dev, cdev);
- /* create a reference to our device state in the opened file */
- file->private_data = ape;
- /* create virtual memory mapper */
- ape->sgm = sg_create_mapper(MAX_CHDMA_SIZE);
- return 0;
-}
-
-/*
- * Called when the device goes from used to unused.
- */
-static int sg_close(struct inode *inode, struct file *file)
-{
- /* fetch device specific data stored earlier during open */
- struct ape_dev *ape = (struct ape_dev *)file->private_data;
- printk(KERN_DEBUG DRV_NAME "_close()\n");
- /* destroy virtual memory mapper */
- sg_destroy_mapper(ape->sgm);
- return 0;
-}
-
-static ssize_t sg_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
-{
- /* fetch device specific data stored earlier during open */
- struct ape_dev *ape = (struct ape_dev *)file->private_data;
- (void)ape;
- printk(KERN_DEBUG DRV_NAME "_read(buf=0x%p, count=%lld, pos=%llu)\n", buf, (s64)count, (u64)*pos);
- return count;
-}
-
-/* sg_write() - Write to the device
- *
- * @buf userspace buffer
- * @count number of bytes in the userspace buffer
- *
- * Iterate over the userspace buffer, taking at most 255 * PAGE_SIZE bytes for
- * each DMA transfer.
- * For each transfer, get the user pages, build a sglist, map, build a
- * descriptor table. submit the transfer. wait for the interrupt handler
- * to wake us on completion.
- */
-static ssize_t sg_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
-{
- int hwnents, tents;
- size_t transfer_len, remaining = count, done = 0;
- u64 transfer_addr = (u64)buf;
- /* fetch device specific data stored earlier during open */
- struct ape_dev *ape = (struct ape_dev *)file->private_data;
- printk(KERN_DEBUG DRV_NAME "_write(buf=0x%p, count=%lld, pos=%llu)\n",
- buf, (s64)count, (u64)*pos);
- /* TODO transfer boundaries at PAGE_SIZE granularity */
- while (remaining > 0) {
- /* limit DMA transfer size */
- transfer_len = (remaining < APE_CHDMA_MAX_TRANSFER_LEN) ? remaining :
- APE_CHDMA_MAX_TRANSFER_LEN;
- /* get all user space buffer pages and create a scattergather list */
- sgm_map_user_pages(ape->sgm, transfer_addr, transfer_len, 0/*read from userspace*/);
- printk(KERN_DEBUG DRV_NAME "mapped_pages=%d\n", ape->sgm->mapped_pages);
- /* map all entries in the scattergather list */
- hwnents = pci_map_sg(ape->pci_dev, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
- printk(KERN_DEBUG DRV_NAME "hwnents=%d\n", hwnents);
- /* build device descriptor tables and submit them to the DMA engine */
- tents = ape_sg_to_chdma_table(ape->sgm->sgl, hwnents, 0, &ape->table_virt->desc[0], 4096);
- printk(KERN_DEBUG DRV_NAME "tents=%d\n", hwnents);
-#if 0
- while (tables) {
- /* TODO build table */
- /* TODO submit table to the device */
- /* if engine stopped and unfinished work then start engine */
- }
- put ourselves on wait queue
-#endif
-
- dma_unmap_sg(NULL, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
- /* dirty and free the pages */
- sgm_unmap_user_pages(ape->sgm, 1/*dirtied*/);
- /* book keeping */
- transfer_addr += transfer_len;
- remaining -= transfer_len;
- done += transfer_len;
- }
- return done;
-}
-
-/*
- * character device file operations
- */
-static const struct file_operations sg_fops = {
- .owner = THIS_MODULE,
- .open = sg_open,
- .release = sg_close,
- .read = sg_read,
- .write = sg_write,
-};
-
-/* sg_init() - Initialize character device
- *
- * XXX Should ideally be tied to the device, on device probe, not module init.
- */
-static int sg_init(struct ape_dev *ape)
-{
- int rc;
- printk(KERN_DEBUG DRV_NAME " sg_init()\n");
- /* allocate a dynamically allocated character device node */
- rc = alloc_chrdev_region(&ape->cdevno, 0/*requested minor*/, 1/*count*/, DRV_NAME);
- /* allocation failed? */
- if (rc < 0) {
- printk("alloc_chrdev_region() = %d\n", rc);
- goto fail_alloc;
- }
- /* couple the device file operations to the character device */
- cdev_init(&ape->cdev, &sg_fops);
- ape->cdev.owner = THIS_MODULE;
- /* bring character device live */
- rc = cdev_add(&ape->cdev, ape->cdevno, 1/*count*/);
- if (rc < 0) {
- printk("cdev_add() = %d\n", rc);
- goto fail_add;
- }
- printk(KERN_DEBUG "altpciechdma = %d:%d\n", MAJOR(ape->cdevno), MINOR(ape->cdevno));
- return 0;
-fail_add:
- /* free the dynamically allocated character device node */
- unregister_chrdev_region(ape->cdevno, 1/*count*/);
-fail_alloc:
- return -1;
-}
-
-/* sg_exit() - Cleanup character device
- *
- * XXX Should ideally be tied to the device, on device remove, not module exit.
- */
-
-static void sg_exit(struct ape_dev *ape)
-{
- printk(KERN_DEBUG DRV_NAME " sg_exit()\n");
- /* remove the character device */
- cdev_del(&ape->cdev);
- /* free the dynamically allocated character device node */
- unregister_chrdev_region(ape->cdevno, 1/*count*/);
-}
-
-#endif /* ALTPCIECHDMA_CDEV */
-
-/* used to register the driver with the PCI kernel sub system
- * @see LDD3 page 311
- */
-static struct pci_driver pci_driver = {
- .name = DRV_NAME,
- .id_table = ids,
- .probe = probe,
- .remove = __devexit_p(remove),
- /* resume, suspend are optional */
-};
-
-/**
- * alterapciechdma_init() - Module initialization, registers devices.
- */
-static int __init alterapciechdma_init(void)
-{
- int rc = 0;
- printk(KERN_DEBUG DRV_NAME " init(), built at " __DATE__ " " __TIME__ "\n");
- /* register this driver with the PCI bus driver */
- rc = pci_register_driver(&pci_driver);
- if (rc < 0)
- return rc;
- return 0;
-}
-
-/**
- * alterapciechdma_init() - Module cleanup, unregisters devices.
- */
-static void __exit alterapciechdma_exit(void)
-{
- printk(KERN_DEBUG DRV_NAME " exit(), built at " __DATE__ " " __TIME__ "\n");
- /* unregister this driver from the PCI bus driver */
- pci_unregister_driver(&pci_driver);
-}
-
-MODULE_LICENSE("GPL");
-
-module_init(alterapciechdma_init);
-module_exit(alterapciechdma_exit);
-