x86, mrst: Fix whitespace breakage in apb_timer.c
authorH. Peter Anvin <hpa@zytor.com>
Wed, 3 Mar 2010 21:38:48 +0000 (13:38 -0800)
committerH. Peter Anvin <hpa@zytor.com>
Wed, 3 Mar 2010 21:44:19 +0000 (13:44 -0800)
Checkin bb24c4716185f6e116c440462c65c1f56649183b:
"Moorestown APB system timer driver" suffered from severe whitespace
damage in arch/x86/kernel/apb_timer.c due to using Microsoft Lookout
to send a patch.  Fix the whitespace breakage.

Reported-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
arch/x86/kernel/apb_timer.c

index 6f27f8b75795b1a9596bcf60a8ad6064b3bcf06d..2afa27d01297c23a274341c8e4eca6c47898e50f 100644 (file)
 #include <asm/fixmap.h>
 #include <asm/apb_timer.h>
 
-#define APBT_MASK      CLOCKSOURCE_MASK(32)
-#define APBT_SHIFT                     22
-#define APBT_CLOCKEVENT_RATING         150
-#define APBT_CLOCKSOURCE_RATING                250
-#define APBT_MIN_DELTA_USEC            200
+#define APBT_MASK                      CLOCKSOURCE_MASK(32)
+#define APBT_SHIFT                     22
+#define APBT_CLOCKEVENT_RATING         150
+#define APBT_CLOCKSOURCE_RATING                250
+#define APBT_MIN_DELTA_USEC            200
 
 #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
 #define APBT_CLOCKEVENT0_NUM   (0)
@@ -65,21 +65,21 @@ static int phy_cs_timer_id;
 static uint64_t apbt_freq;
 
 static void apbt_set_mode(enum clock_event_mode mode,
-                         struct clock_event_device *evt);
+                         struct clock_event_device *evt);
 static int apbt_next_event(unsigned long delta,
-                          struct clock_event_device *evt);
+                          struct clock_event_device *evt);
 static cycle_t apbt_read_clocksource(struct clocksource *cs);
 static void apbt_restart_clocksource(void);
 
 struct apbt_dev {
-       struct clock_event_device       evt;
-       unsigned int num;
-       int cpu;
-       unsigned int irq;
-       unsigned int tick;
-       unsigned int count;
-       unsigned int flags;
-       char name[10];
+       struct clock_event_device evt;
+       unsigned int num;
+       int cpu;
+       unsigned int irq;
+       unsigned int tick;
+       unsigned int count;
+       unsigned int flags;
+       char name[10];
 };
 
 int disable_apbt_percpu __cpuinitdata;
@@ -91,77 +91,77 @@ static unsigned int apbt_num_timers_used;
 static struct apbt_dev *apbt_devs;
 #endif
 
-static  inline unsigned long apbt_readl_reg(unsigned long a)
+static inline unsigned long apbt_readl_reg(unsigned long a)
 {
-       return readl(apbt_virt_address + a);
+       return readl(apbt_virt_address + a);
 }
 
 static inline void apbt_writel_reg(unsigned long d, unsigned long a)
 {
-       writel(d, apbt_virt_address + a);
+       writel(d, apbt_virt_address + a);
 }
 
 static inline unsigned long apbt_readl(int n, unsigned long a)
 {
-       return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
+       return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
 }
 
 static inline void apbt_writel(int n, unsigned long d, unsigned long a)
 {
-       writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
+       writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
 }
 
 static inline void apbt_set_mapping(void)
 {
-       struct sfi_timer_table_entry *mtmr;
-
-       if (apbt_virt_address) {
-               pr_debug("APBT base already mapped\n");
-               return;
-       }
-       mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
-       if (mtmr == NULL) {
-               printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
-                       APBT_CLOCKEVENT0_NUM);
-               return;
-       }
-       apbt_address = (unsigned long)mtmr->phys_addr;
-       if (!apbt_address) {
-               printk(KERN_WARNING "No timer base from SFI, use default\n");
-               apbt_address = APBT_DEFAULT_BASE;
-       }
-       apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
-       if (apbt_virt_address) {
-               pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
-                       (void *)apbt_address, (void *)apbt_virt_address);
-       } else {
-               pr_debug("Failed mapping APBT phy address at %p\n",\
-                       (void *)apbt_address);
-               goto panic_noapbt;
-       }
-       apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
-       sfi_free_mtmr(mtmr);
-
-       /* Now figure out the physical timer id for clocksource device */
-       mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
-       if (mtmr == NULL)
-               goto panic_noapbt;
-
-       /* Now figure out the physical timer id */
-       phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
-                       / APBTMRS_REG_SIZE;
-       pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
-       return;
+       struct sfi_timer_table_entry *mtmr;
+
+       if (apbt_virt_address) {
+               pr_debug("APBT base already mapped\n");
+               return;
+       }
+       mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
+       if (mtmr == NULL) {
+               printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
+                      APBT_CLOCKEVENT0_NUM);
+               return;
+       }
+       apbt_address = (unsigned long)mtmr->phys_addr;
+       if (!apbt_address) {
+               printk(KERN_WARNING "No timer base from SFI, use default\n");
+               apbt_address = APBT_DEFAULT_BASE;
+       }
+       apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
+       if (apbt_virt_address) {
+               pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
+                        (void *)apbt_address, (void *)apbt_virt_address);
+       } else {
+               pr_debug("Failed mapping APBT phy address at %p\n",\
+                        (void *)apbt_address);
+               goto panic_noapbt;
+       }
+       apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
+       sfi_free_mtmr(mtmr);
+
+       /* Now figure out the physical timer id for clocksource device */
+       mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
+       if (mtmr == NULL)
+               goto panic_noapbt;
+
+       /* Now figure out the physical timer id */
+       phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
+               / APBTMRS_REG_SIZE;
+       pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
+       return;
 
 panic_noapbt:
-       panic("Failed to setup APB system timer\n");
+       panic("Failed to setup APB system timer\n");
 
 }
 
 static inline void apbt_clear_mapping(void)
 {
-       iounmap(apbt_virt_address);
-       apbt_virt_address = NULL;
+       iounmap(apbt_virt_address);
+       apbt_virt_address = NULL;
 }
 
 /*
@@ -169,28 +169,28 @@ static inline void apbt_clear_mapping(void)
  */
 static inline int is_apbt_capable(void)
 {
-       return apbt_virt_address ? 1 : 0;
+       return apbt_virt_address ? 1 : 0;
 }
 
 static struct clocksource clocksource_apbt = {
-       .name           = "apbt",
-       .rating         = APBT_CLOCKSOURCE_RATING,
-       .read           = apbt_read_clocksource,
-       .mask           = APBT_MASK,
-       .shift          = APBT_SHIFT,
-       .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
-       .resume         = apbt_restart_clocksource,
+       .name           = "apbt",
+       .rating         = APBT_CLOCKSOURCE_RATING,
+       .read           = apbt_read_clocksource,
+       .mask           = APBT_MASK,
+       .shift          = APBT_SHIFT,
+       .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
+       .resume         = apbt_restart_clocksource,
 };
 
 /* boot APB clock event device */
 static struct clock_event_device apbt_clockevent = {
-       .name           = "apbt0",
-       .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
-       .set_mode       = apbt_set_mode,
-       .set_next_event = apbt_next_event,
-       .shift          = APBT_SHIFT,
-       .irq            = 0,
-       .rating         = APBT_CLOCKEVENT_RATING,
+       .name           = "apbt0",
+       .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
+       .set_mode       = apbt_set_mode,
+       .set_next_event = apbt_next_event,
+       .shift          = APBT_SHIFT,
+       .irq            = 0,
+       .rating         = APBT_CLOCKEVENT_RATING,
 };
 
 /*
@@ -199,20 +199,20 @@ static struct clock_event_device apbt_clockevent = {
  */
 static inline int __init setup_x86_mrst_timer(char *arg)
 {
-       if (!arg)
-               return -EINVAL;
-
-       if (strcmp("apbt_only", arg) == 0)
-               disable_apbt_percpu = 0;
-       else if (strcmp("lapic_and_apbt", arg) == 0)
-               disable_apbt_percpu = 1;
-       else {
-               pr_warning("X86 MRST timer option %s not recognised"
-                       " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
-                       arg);
-               return -EINVAL;
-       }
-       return 0;
+       if (!arg)
+               return -EINVAL;
+
+       if (strcmp("apbt_only", arg) == 0)
+               disable_apbt_percpu = 0;
+       else if (strcmp("lapic_and_apbt", arg) == 0)
+               disable_apbt_percpu = 1;
+       else {
+               pr_warning("X86 MRST timer option %s not recognised"
+                          " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
+                          arg);
+               return -EINVAL;
+       }
+       return 0;
 }
 __setup("x86_mrst_timer=", setup_x86_mrst_timer);
 
@@ -222,176 +222,176 @@ __setup("x86_mrst_timer=", setup_x86_mrst_timer);
  */
 static void apbt_start_counter(int n)
 {
-       unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
-
-       ctrl &= ~APBTMR_CONTROL_ENABLE;
-       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
-       apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
-       /* enable, mask interrupt */
-       ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
-       ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
-       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
-       /* read it once to get cached counter value initialized */
-       apbt_read_clocksource(&clocksource_apbt);
+       unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
+
+       ctrl &= ~APBTMR_CONTROL_ENABLE;
+       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+       apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
+       /* enable, mask interrupt */
+       ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
+       ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
+       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+       /* read it once to get cached counter value initialized */
+       apbt_read_clocksource(&clocksource_apbt);
 }
 
 static irqreturn_t apbt_interrupt_handler(int irq, void *data)
 {
-       struct apbt_dev *dev = (struct apbt_dev *)data;
-       struct clock_event_device *aevt = &dev->evt;
-
-       if (!aevt->event_handler) {
-               printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
-                               dev->num);
-               return IRQ_NONE;
-       }
-       aevt->event_handler(aevt);
-       return IRQ_HANDLED;
+       struct apbt_dev *dev = (struct apbt_dev *)data;
+       struct clock_event_device *aevt = &dev->evt;
+
+       if (!aevt->event_handler) {
+               printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
+                      dev->num);
+               return IRQ_NONE;
+       }
+       aevt->event_handler(aevt);
+       return IRQ_HANDLED;
 }
 
 static void apbt_restart_clocksource(void)
 {
-       apbt_start_counter(phy_cs_timer_id);
+       apbt_start_counter(phy_cs_timer_id);
 }
 
 /* Setup IRQ routing via IOAPIC */
 #ifdef CONFIG_SMP
 static void apbt_setup_irq(struct apbt_dev *adev)
 {
-       struct irq_chip *chip;
-       struct irq_desc *desc;
-
-       /* timer0 irq has been setup early */
-       if (adev->irq == 0)
-               return;
-       desc = irq_to_desc(adev->irq);
-       chip = get_irq_chip(adev->irq);
-       disable_irq(adev->irq);
-       desc->status |= IRQ_MOVE_PCNTXT;
-       irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
-       /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */
-       set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge");
-       enable_irq(adev->irq);
-       if (system_state == SYSTEM_BOOTING)
-               if (request_irq(adev->irq, apbt_interrupt_handler,
-                       IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
-                       adev->name, adev)) {
-                       printk(KERN_ERR "Failed request IRQ for APBT%d\n",
-                                       adev->num);
-               }
+       struct irq_chip *chip;
+       struct irq_desc *desc;
+
+       /* timer0 irq has been setup early */
+       if (adev->irq == 0)
+               return;
+       desc = irq_to_desc(adev->irq);
+       chip = get_irq_chip(adev->irq);
+       disable_irq(adev->irq);
+       desc->status |= IRQ_MOVE_PCNTXT;
+       irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
+       /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */
+       set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge");
+       enable_irq(adev->irq);
+       if (system_state == SYSTEM_BOOTING)
+               if (request_irq(adev->irq, apbt_interrupt_handler,
+                               IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
+                               adev->name, adev)) {
+                       printk(KERN_ERR "Failed request IRQ for APBT%d\n",
+                              adev->num);
+               }
 }
 #endif
 
 static void apbt_enable_int(int n)
 {
-       unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
-       /* clear pending intr */
-       apbt_readl(n, APBTMR_N_EOI);
-       ctrl &= ~APBTMR_CONTROL_INT;
-       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+       unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
+       /* clear pending intr */
+       apbt_readl(n, APBTMR_N_EOI);
+       ctrl &= ~APBTMR_CONTROL_INT;
+       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 }
 
 static void apbt_disable_int(int n)
 {
-       unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
+       unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
 
-       ctrl |= APBTMR_CONTROL_INT;
-       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+       ctrl |= APBTMR_CONTROL_INT;
+       apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 }
 
 
 static int __init apbt_clockevent_register(void)
 {
-       struct sfi_timer_table_entry *mtmr;
-       struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
-
-       mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
-       if (mtmr == NULL) {
-               printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
-                       APBT_CLOCKEVENT0_NUM);
-               return -ENODEV;
-       }
-
-       /*
-        * We need to calculate the scaled math multiplication factor for
-        * nanosecond to apbt tick conversion.
-        * mult = (nsec/cycle)*2^APBT_SHIFT
-        */
-       apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
-                       , NSEC_PER_SEC, APBT_SHIFT);
-
-       /* Calculate the min / max delta */
-       apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
-                                                          &apbt_clockevent);
-       apbt_clockevent.min_delta_ns = clockevent_delta2ns(
-                                               APBT_MIN_DELTA_USEC*apbt_freq,
-                                               &apbt_clockevent);
-       /*
-        * Start apbt with the boot cpu mask and make it
-        * global if not used for per cpu timer.
-        */
-       apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
-       adev->num = smp_processor_id();
-       memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
-
-       if (disable_apbt_percpu) {
-               apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
+       struct sfi_timer_table_entry *mtmr;
+       struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
+
+       mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
+       if (mtmr == NULL) {
+               printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
+                      APBT_CLOCKEVENT0_NUM);
+               return -ENODEV;
+       }
+
+       /*
+        * We need to calculate the scaled math multiplication factor for
+        * nanosecond to apbt tick conversion.
+        * mult = (nsec/cycle)*2^APBT_SHIFT
+        */
+       apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
+                                     , NSEC_PER_SEC, APBT_SHIFT);
+
+       /* Calculate the min / max delta */
+       apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
+                                                          &apbt_clockevent);
+       apbt_clockevent.min_delta_ns = clockevent_delta2ns(
+               APBT_MIN_DELTA_USEC*apbt_freq,
+               &apbt_clockevent);
+       /*
+        * Start apbt with the boot cpu mask and make it
+        * global if not used for per cpu timer.
+        */
+       apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
+       adev->num = smp_processor_id();
+       memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
+
+       if (disable_apbt_percpu) {
+               apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
                global_clock_event = &adev->evt;
-               printk(KERN_DEBUG "%s clockevent registered as global\n",
-                       global_clock_event->name);
-       }
-
-       if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
-               IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
-               apbt_clockevent.name, adev)) {
-               printk(KERN_ERR "Failed request IRQ for APBT%d\n",
-                       apbt_clockevent.irq);
-       }
-
-       clockevents_register_device(&adev->evt);
-       /* Start APBT 0 interrupts */
-       apbt_enable_int(APBT_CLOCKEVENT0_NUM);
-
-       sfi_free_mtmr(mtmr);
-       return 0;
+               printk(KERN_DEBUG "%s clockevent registered as global\n",
+                      global_clock_event->name);
+       }
+
+       if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
+                       IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
+                       apbt_clockevent.name, adev)) {
+               printk(KERN_ERR "Failed request IRQ for APBT%d\n",
+                      apbt_clockevent.irq);
+       }
+
+       clockevents_register_device(&adev->evt);
+       /* Start APBT 0 interrupts */
+       apbt_enable_int(APBT_CLOCKEVENT0_NUM);
+
+       sfi_free_mtmr(mtmr);
+       return 0;
 }
 
 #ifdef CONFIG_SMP
 /* Should be called with per cpu */
 void apbt_setup_secondary_clock(void)
 {
-       struct apbt_dev *adev;
-       struct clock_event_device *aevt;
-       int cpu;
-
-       /* Don't register boot CPU clockevent */
-       cpu = smp_processor_id();
-       if (cpu == boot_cpu_id)
-               return;
-       /*
-        * We need to calculate the scaled math multiplication factor for
-        * nanosecond to apbt tick conversion.
-        * mult = (nsec/cycle)*2^APBT_SHIFT
-        */
-       printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
-       adev = &per_cpu(cpu_apbt_dev, cpu);
-       aevt = &adev->evt;
-
-       memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
-       aevt->cpumask = cpumask_of(cpu);
-       aevt->name = adev->name;
-       aevt->mode = CLOCK_EVT_MODE_UNUSED;
-
-       printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
-               cpu, aevt->name, *(u32 *)aevt->cpumask);
-
-       apbt_setup_irq(adev);
-
-       clockevents_register_device(aevt);
-
-       apbt_enable_int(cpu);
-
-       return;
+       struct apbt_dev *adev;
+       struct clock_event_device *aevt;
+       int cpu;
+
+       /* Don't register boot CPU clockevent */
+       cpu = smp_processor_id();
+       if (cpu == boot_cpu_id)
+               return;
+       /*
+        * We need to calculate the scaled math multiplication factor for
+        * nanosecond to apbt tick conversion.
+        * mult = (nsec/cycle)*2^APBT_SHIFT
+        */
+       printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
+       adev = &per_cpu(cpu_apbt_dev, cpu);
+       aevt = &adev->evt;
+
+       memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
+       aevt->cpumask = cpumask_of(cpu);
+       aevt->name = adev->name;
+       aevt->mode = CLOCK_EVT_MODE_UNUSED;
+
+       printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
+              cpu, aevt->name, *(u32 *)aevt->cpumask);
+
+       apbt_setup_irq(adev);
+
+       clockevents_register_device(aevt);
+
+       apbt_enable_int(cpu);
+
+       return;
 }
 
 /*
@@ -405,34 +405,34 @@ void apbt_setup_secondary_clock(void)
  * the extra interrupt is harmless.
  */
 static int apbt_cpuhp_notify(struct notifier_block *n,
-               unsigned long action, void *hcpu)
+                            unsigned long action, void *hcpu)
 {
-       unsigned long cpu = (unsigned long)hcpu;
-       struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
-
-       switch (action & 0xf) {
-       case CPU_DEAD:
-               apbt_disable_int(cpu);
-               if (system_state == SYSTEM_RUNNING)
-                       pr_debug("skipping APBT CPU %lu offline\n", cpu);
-               else if (adev) {
-                       pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
-                       free_irq(adev->irq, adev);
-               }
-               break;
-       default:
-               pr_debug(KERN_INFO "APBT notified %lu, no action\n", action);
-       }
-       return NOTIFY_OK;
+       unsigned long cpu = (unsigned long)hcpu;
+       struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
+
+       switch (action & 0xf) {
+       case CPU_DEAD:
+               apbt_disable_int(cpu);
+               if (system_state == SYSTEM_RUNNING)
+                       pr_debug("skipping APBT CPU %lu offline\n", cpu);
+               else if (adev) {
+                       pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
+                       free_irq(adev->irq, adev);
+               }
+               break;
+       default:
+               pr_debug(KERN_INFO "APBT notified %lu, no action\n", action);
+       }
+       return NOTIFY_OK;
 }
 
 static __init int apbt_late_init(void)
 {
-       if (disable_apbt_percpu)
-               return 0;
-       /* This notifier should be called after workqueue is ready */
-       hotcpu_notifier(apbt_cpuhp_notify, -20);
-       return 0;
+       if (disable_apbt_percpu)
+               return 0;
+       /* This notifier should be called after workqueue is ready */
+       hotcpu_notifier(apbt_cpuhp_notify, -20);
+       return 0;
 }
 fs_initcall(apbt_late_init);
 #else
@@ -442,93 +442,93 @@ void apbt_setup_secondary_clock(void) {}
 #endif /* CONFIG_SMP */
 
 static void apbt_set_mode(enum clock_event_mode mode,
-                         struct clock_event_device *evt)
+                         struct clock_event_device *evt)
 {
-       unsigned long ctrl;
-       uint64_t delta;
-       int timer_num;
-       struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
-
-       timer_num = adev->num;
-       pr_debug("%s CPU %d timer %d mode=%d\n",
-               __func__, first_cpu(*evt->cpumask), timer_num, mode);
-
-       switch (mode) {
-       case CLOCK_EVT_MODE_PERIODIC:
-               delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
-               delta >>= apbt_clockevent.shift;
-               ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
-               ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
-               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-               /*
-                * DW APB p. 46, have to disable timer before load counter,
-                * may cause sync problem.
-                */
-               ctrl &= ~APBTMR_CONTROL_ENABLE;
-               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-               udelay(1);
-               pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
-               apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
-               ctrl |= APBTMR_CONTROL_ENABLE;
-               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-               break;
-       /* APB timer does not have one-shot mode, use free running mode */
-       case CLOCK_EVT_MODE_ONESHOT:
-               ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
-               /*
-                * set free running mode, this mode will let timer reload max
-                * timeout which will give time (3min on 25MHz clock) to rearm
-                * the next event, therefore emulate the one-shot mode.
-                */
-               ctrl &= ~APBTMR_CONTROL_ENABLE;
-               ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
-
-               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-               /* write again to set free running mode */
-               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-
-               /*
-                * DW APB p. 46, load counter with all 1s before starting free
-                * running mode.
-                */
-               apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
-               ctrl &= ~APBTMR_CONTROL_INT;
-               ctrl |= APBTMR_CONTROL_ENABLE;
-               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-               break;
-
-       case CLOCK_EVT_MODE_UNUSED:
-       case CLOCK_EVT_MODE_SHUTDOWN:
-               apbt_disable_int(timer_num);
-               ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
-               ctrl &= ~APBTMR_CONTROL_ENABLE;
-               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-               break;
-
-       case CLOCK_EVT_MODE_RESUME:
-               apbt_enable_int(timer_num);
-               break;
-       }
+       unsigned long ctrl;
+       uint64_t delta;
+       int timer_num;
+       struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
+
+       timer_num = adev->num;
+       pr_debug("%s CPU %d timer %d mode=%d\n",
+                __func__, first_cpu(*evt->cpumask), timer_num, mode);
+
+       switch (mode) {
+       case CLOCK_EVT_MODE_PERIODIC:
+               delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
+               delta >>= apbt_clockevent.shift;
+               ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+               ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
+               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+               /*
+                * DW APB p. 46, have to disable timer before load counter,
+                * may cause sync problem.
+                */
+               ctrl &= ~APBTMR_CONTROL_ENABLE;
+               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+               udelay(1);
+               pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
+               apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
+               ctrl |= APBTMR_CONTROL_ENABLE;
+               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+               break;
+               /* APB timer does not have one-shot mode, use free running mode */
+       case CLOCK_EVT_MODE_ONESHOT:
+               ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+               /*
+                * set free running mode, this mode will let timer reload max
+                * timeout which will give time (3min on 25MHz clock) to rearm
+                * the next event, therefore emulate the one-shot mode.
+                */
+               ctrl &= ~APBTMR_CONTROL_ENABLE;
+               ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
+
+               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+               /* write again to set free running mode */
+               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+
+               /*
+                * DW APB p. 46, load counter with all 1s before starting free
+                * running mode.
+                */
+               apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
+               ctrl &= ~APBTMR_CONTROL_INT;
+               ctrl |= APBTMR_CONTROL_ENABLE;
+               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+               break;
+
+       case CLOCK_EVT_MODE_UNUSED:
+       case CLOCK_EVT_MODE_SHUTDOWN:
+               apbt_disable_int(timer_num);
+               ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+               ctrl &= ~APBTMR_CONTROL_ENABLE;
+               apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+               break;
+
+       case CLOCK_EVT_MODE_RESUME:
+               apbt_enable_int(timer_num);
+               break;
+       }
 }
 
 static int apbt_next_event(unsigned long delta,
-                          struct clock_event_device *evt)
+                          struct clock_event_device *evt)
 {
-       unsigned long ctrl;
-       int timer_num;
-
-       struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
-
-       timer_num = adev->num;
-       /* Disable timer */
-       ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
-       ctrl &= ~APBTMR_CONTROL_ENABLE;
-       apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-       /* write new count */
-       apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
-       ctrl |= APBTMR_CONTROL_ENABLE;
-       apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-       return  0;
+       unsigned long ctrl;
+       int timer_num;
+
+       struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
+
+       timer_num = adev->num;
+       /* Disable timer */
+       ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+       ctrl &= ~APBTMR_CONTROL_ENABLE;
+       apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+       /* write new count */
+       apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
+       ctrl |= APBTMR_CONTROL_ENABLE;
+       apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+       return 0;
 }
 
 /*
@@ -540,94 +540,94 @@ static int apbt_next_event(unsigned long delta,
  */
 static cycle_t apbt_read_clocksource(struct clocksource *cs)
 {
-       unsigned long t0, t1, t2;
-       static unsigned long last_read;
+       unsigned long t0, t1, t2;
+       static unsigned long last_read;
 
 bad_count:
-       t1 = apbt_readl(phy_cs_timer_id,
-                               APBTMR_N_CURRENT_VALUE);
-       t2 = apbt_readl(phy_cs_timer_id,
-                               APBTMR_N_CURRENT_VALUE);
-       if (unlikely(t1 < t2)) {
-               pr_debug("APBT: read current count error %lx:%lx:%lx\n",
-                               t1, t2, t2 - t1);
-               goto bad_count;
-       }
-       /*
-        * check against cached last read, makes sure time does not go back.
-        * it could be a normal rollover but we will do tripple check anyway
-        */
-       if (unlikely(t2 > last_read)) {
-               /* check if we have a normal rollover */
-               unsigned long raw_intr_status =
-                       apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
-               /*
-                * cs timer interrupt is masked but raw intr bit is set if
-                * rollover occurs. then we read EOI reg to clear it.
-                */
-               if (raw_intr_status & (1 << phy_cs_timer_id)) {
-                       apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
-                       goto out;
-               }
-               pr_debug("APB CS going back %lx:%lx:%lx ",
-                               t2, last_read, t2 - last_read);
+       t1 = apbt_readl(phy_cs_timer_id,
+                       APBTMR_N_CURRENT_VALUE);
+       t2 = apbt_readl(phy_cs_timer_id,
+                       APBTMR_N_CURRENT_VALUE);
+       if (unlikely(t1 < t2)) {
+               pr_debug("APBT: read current count error %lx:%lx:%lx\n",
+                        t1, t2, t2 - t1);
+               goto bad_count;
+       }
+       /*
+        * check against cached last read, makes sure time does not go back.
+        * it could be a normal rollover but we will do tripple check anyway
+        */
+       if (unlikely(t2 > last_read)) {
+               /* check if we have a normal rollover */
+               unsigned long raw_intr_status =
+                       apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
+               /*
+                * cs timer interrupt is masked but raw intr bit is set if
+                * rollover occurs. then we read EOI reg to clear it.
+                */
+               if (raw_intr_status & (1 << phy_cs_timer_id)) {
+                       apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
+                       goto out;
+               }
+               pr_debug("APB CS going back %lx:%lx:%lx ",
+                        t2, last_read, t2 - last_read);
 bad_count_x3:
-               pr_debug(KERN_INFO "tripple check enforced\n");
-               t0 = apbt_readl(phy_cs_timer_id,
-                               APBTMR_N_CURRENT_VALUE);
-               udelay(1);
-               t1 = apbt_readl(phy_cs_timer_id,
-                               APBTMR_N_CURRENT_VALUE);
-               udelay(1);
-               t2 = apbt_readl(phy_cs_timer_id,
-                               APBTMR_N_CURRENT_VALUE);
-               if ((t2 > t1) || (t1 > t0)) {
-                       printk(KERN_ERR "Error: APB CS tripple check failed\n");
-                       goto bad_count_x3;
-               }
-       }
+               pr_debug(KERN_INFO "tripple check enforced\n");
+               t0 = apbt_readl(phy_cs_timer_id,
+                               APBTMR_N_CURRENT_VALUE);
+               udelay(1);
+               t1 = apbt_readl(phy_cs_timer_id,
+                               APBTMR_N_CURRENT_VALUE);
+               udelay(1);
+               t2 = apbt_readl(phy_cs_timer_id,
+                               APBTMR_N_CURRENT_VALUE);
+               if ((t2 > t1) || (t1 > t0)) {
+                       printk(KERN_ERR "Error: APB CS tripple check failed\n");
+                       goto bad_count_x3;
+               }
+       }
 out:
-       last_read = t2;
-       return (cycle_t)~t2;
+       last_read = t2;
+       return (cycle_t)~t2;
 }
 
 static int apbt_clocksource_register(void)
 {
-       u64 start, now;
-       cycle_t t1;
-
-       /* Start the counter, use timer 2 as source, timer 0/1 for event */
-       apbt_start_counter(phy_cs_timer_id);
-
-       /* Verify whether apbt counter works */
-       t1 = apbt_read_clocksource(&clocksource_apbt);
-       rdtscll(start);
-
-       /*
-        * We don't know the TSC frequency yet, but waiting for
-        * 200000 TSC cycles is safe:
-        * 4 GHz == 50us
-        * 1 GHz == 200us
-        */
-       do {
-               rep_nop();
-               rdtscll(now);
-       } while ((now - start) < 200000UL);
-
-       /* APBT is the only always on clocksource, it has to work! */
-       if (t1 == apbt_read_clocksource(&clocksource_apbt))
-               panic("APBT counter not counting. APBT disabled\n");
-
-       /*
-        * initialize and register APBT clocksource
-        * convert that to ns/clock cycle
-        * mult = (ns/c) * 2^APBT_SHIFT
-        */
-       clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
-               (unsigned long) apbt_freq, APBT_SHIFT);
-       clocksource_register(&clocksource_apbt);
-
-       return 0;
+       u64 start, now;
+       cycle_t t1;
+
+       /* Start the counter, use timer 2 as source, timer 0/1 for event */
+       apbt_start_counter(phy_cs_timer_id);
+
+       /* Verify whether apbt counter works */
+       t1 = apbt_read_clocksource(&clocksource_apbt);
+       rdtscll(start);
+
+       /*
+        * We don't know the TSC frequency yet, but waiting for
+        * 200000 TSC cycles is safe:
+        * 4 GHz == 50us
+        * 1 GHz == 200us
+        */
+       do {
+               rep_nop();
+               rdtscll(now);
+       } while ((now - start) < 200000UL);
+
+       /* APBT is the only always on clocksource, it has to work! */
+       if (t1 == apbt_read_clocksource(&clocksource_apbt))
+               panic("APBT counter not counting. APBT disabled\n");
+
+       /*
+        * initialize and register APBT clocksource
+        * convert that to ns/clock cycle
+        * mult = (ns/c) * 2^APBT_SHIFT
+        */
+       clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
+                                      (unsigned long) apbt_freq, APBT_SHIFT);
+       clocksource_register(&clocksource_apbt);
+
+       return 0;
 }
 
 /*
@@ -640,145 +640,145 @@ static int apbt_clocksource_register(void)
 void __init apbt_time_init(void)
 {
 #ifdef CONFIG_SMP
-       int i;
-       struct sfi_timer_table_entry *p_mtmr;
-       unsigned int percpu_timer;
-       struct apbt_dev *adev;
+       int i;
+       struct sfi_timer_table_entry *p_mtmr;
+       unsigned int percpu_timer;
+       struct apbt_dev *adev;
 #endif
 
-       if (apb_timer_block_enabled)
-               return;
-       apbt_set_mapping();
-       if (apbt_virt_address) {
-               pr_debug("Found APBT version 0x%lx\n",\
-                        apbt_readl_reg(APBTMRS_COMP_VERSION));
-       } else
-               goto out_noapbt;
-       /*
-        * Read the frequency and check for a sane value, for ESL model
-        * we extend the possible clock range to allow time scaling.
-        */
-
-       if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
-               pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
-               goto out_noapbt;
-       }
-       if (apbt_clocksource_register()) {
-               pr_debug("APBT has failed to register clocksource\n");
-               goto out_noapbt;
-       }
-       if (!apbt_clockevent_register())
-               apb_timer_block_enabled = 1;
-       else {
-               pr_debug("APBT has failed to register clockevent\n");
-               goto out_noapbt;
-       }
+       if (apb_timer_block_enabled)
+               return;
+       apbt_set_mapping();
+       if (apbt_virt_address) {
+               pr_debug("Found APBT version 0x%lx\n",\
+                        apbt_readl_reg(APBTMRS_COMP_VERSION));
+       } else
+               goto out_noapbt;
+       /*
+        * Read the frequency and check for a sane value, for ESL model
+        * we extend the possible clock range to allow time scaling.
+        */
+
+       if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
+               pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
+               goto out_noapbt;
+       }
+       if (apbt_clocksource_register()) {
+               pr_debug("APBT has failed to register clocksource\n");
+               goto out_noapbt;
+       }
+       if (!apbt_clockevent_register())
+               apb_timer_block_enabled = 1;
+       else {
+               pr_debug("APBT has failed to register clockevent\n");
+               goto out_noapbt;
+       }
 #ifdef CONFIG_SMP
-       /* kernel cmdline disable apb timer, so we will use lapic timers */
-       if (disable_apbt_percpu) {
-               printk(KERN_INFO "apbt: disabled per cpu timer\n");
-               return;
-       }
-       pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
-       if (num_possible_cpus() <= sfi_mtimer_num) {
-               percpu_timer = 1;
-               apbt_num_timers_used = num_possible_cpus();
-       } else {
-               percpu_timer = 0;
-               apbt_num_timers_used = 1;
-               adev = &per_cpu(cpu_apbt_dev, 0);
-               adev->flags &= ~APBT_DEV_USED;
-       }
-       pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
-
-       /* here we set up per CPU timer data structure */
-       apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
-                               GFP_KERNEL);
-       if (!apbt_devs) {
-               printk(KERN_ERR "Failed to allocate APB timer devices\n");
-               return;
-       }
-       for (i = 0; i < apbt_num_timers_used; i++) {
-               adev = &per_cpu(cpu_apbt_dev, i);
-               adev->num = i;
-               adev->cpu = i;
-               p_mtmr = sfi_get_mtmr(i);
-               if (p_mtmr) {
-                       adev->tick = p_mtmr->freq_hz;
-                       adev->irq = p_mtmr->irq;
-               } else
-                       printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
-               adev->count = 0;
-               sprintf(adev->name, "apbt%d", i);
-       }
+       /* kernel cmdline disable apb timer, so we will use lapic timers */
+       if (disable_apbt_percpu) {
+               printk(KERN_INFO "apbt: disabled per cpu timer\n");
+               return;
+       }
+       pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
+       if (num_possible_cpus() <= sfi_mtimer_num) {
+               percpu_timer = 1;
+               apbt_num_timers_used = num_possible_cpus();
+       } else {
+               percpu_timer = 0;
+               apbt_num_timers_used = 1;
+               adev = &per_cpu(cpu_apbt_dev, 0);
+               adev->flags &= ~APBT_DEV_USED;
+       }
+       pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
+
+       /* here we set up per CPU timer data structure */
+       apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
+                           GFP_KERNEL);
+       if (!apbt_devs) {
+               printk(KERN_ERR "Failed to allocate APB timer devices\n");
+               return;
+       }
+       for (i = 0; i < apbt_num_timers_used; i++) {
+               adev = &per_cpu(cpu_apbt_dev, i);
+               adev->num = i;
+               adev->cpu = i;
+               p_mtmr = sfi_get_mtmr(i);
+               if (p_mtmr) {
+                       adev->tick = p_mtmr->freq_hz;
+                       adev->irq = p_mtmr->irq;
+               } else
+                       printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
+               adev->count = 0;
+               sprintf(adev->name, "apbt%d", i);
+       }
 #endif
 
-       return;
+       return;
 
 out_noapbt:
-       apbt_clear_mapping();
-       apb_timer_block_enabled = 0;
-       panic("failed to enable APB timer\n");
+       apbt_clear_mapping();
+       apb_timer_block_enabled = 0;
+       panic("failed to enable APB timer\n");
 }
 
 static inline void apbt_disable(int n)
 {
-       if (is_apbt_capable()) {
-               unsigned long ctrl =  apbt_readl(n, APBTMR_N_CONTROL);
-               ctrl &= ~APBTMR_CONTROL_ENABLE;
-               apbt_writel(n, ctrl, APBTMR_N_CONTROL);
-       }
+       if (is_apbt_capable()) {
+               unsigned long ctrl =  apbt_readl(n, APBTMR_N_CONTROL);
+               ctrl &= ~APBTMR_CONTROL_ENABLE;
+               apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+       }
 }
 
 /* called before apb_timer_enable, use early map */
 unsigned long apbt_quick_calibrate()
 {
-       int i, scale;
-       u64 old, new;
-       cycle_t t1, t2;
-       unsigned long khz = 0;
-       u32 loop, shift;
-
-       apbt_set_mapping();
-       apbt_start_counter(phy_cs_timer_id);
-
-       /* check if the timer can count down, otherwise return */
-       old = apbt_read_clocksource(&clocksource_apbt);
-       i = 10000;
-       while (--i) {
-               if (old != apbt_read_clocksource(&clocksource_apbt))
-                       break;
-       }
-       if (!i)
-               goto failed;
-
-       /* count 16 ms */
-       loop = (apbt_freq * 1000) << 4;
-
-       /* restart the timer to ensure it won't get to 0 in the calibration */
-       apbt_start_counter(phy_cs_timer_id);
-
-       old = apbt_read_clocksource(&clocksource_apbt);
-       old += loop;
-
-       t1 = __native_read_tsc();
-
-       do {
-               new = apbt_read_clocksource(&clocksource_apbt);
-       } while (new < old);
-
-       t2 = __native_read_tsc();
-
-       shift = 5;
-       if (unlikely(loop >> shift == 0)) {
-               printk(KERN_INFO
-               "APBT TSC calibration failed, not enough resolution\n");
-               return 0;
-       }
-       scale = (int)div_u64((t2 - t1), loop >> shift);
-       khz = (scale * apbt_freq * 1000) >> shift;
-       printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
-       return khz;
+       int i, scale;
+       u64 old, new;
+       cycle_t t1, t2;
+       unsigned long khz = 0;
+       u32 loop, shift;
+
+       apbt_set_mapping();
+       apbt_start_counter(phy_cs_timer_id);
+
+       /* check if the timer can count down, otherwise return */
+       old = apbt_read_clocksource(&clocksource_apbt);
+       i = 10000;
+       while (--i) {
+               if (old != apbt_read_clocksource(&clocksource_apbt))
+                       break;
+       }
+       if (!i)
+               goto failed;
+
+       /* count 16 ms */
+       loop = (apbt_freq * 1000) << 4;
+
+       /* restart the timer to ensure it won't get to 0 in the calibration */
+       apbt_start_counter(phy_cs_timer_id);
+
+       old = apbt_read_clocksource(&clocksource_apbt);
+       old += loop;
+
+       t1 = __native_read_tsc();
+
+       do {
+               new = apbt_read_clocksource(&clocksource_apbt);
+       } while (new < old);
+
+       t2 = __native_read_tsc();
+
+       shift = 5;
+       if (unlikely(loop >> shift == 0)) {
+               printk(KERN_INFO
+                      "APBT TSC calibration failed, not enough resolution\n");
+               return 0;
+       }
+       scale = (int)div_u64((t2 - t1), loop >> shift);
+       khz = (scale * apbt_freq * 1000) >> shift;
+       printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
+       return khz;
 failed:
-       return 0;
+       return 0;
 }